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Abstract: The spectral reflectance technique for the quantification of the functional components
was applied in different studies for different crops, but related research on kale leaves is limited.
This study was conducted to estimate the glucosinolate and anthocyanin components of kale leaves
cultivated in a plant factory based on diffuse reflectance spectroscopy through regression methods.
Kale was grown in a plant factory under different treatments. After specific periods of transplan-
tation, leaf samples were collected, and reflectance spectra were measured immediately from nine
different points on each leaf. The same leaf samples were freeze-dried and stored for analysis of
the functional components. Regression procedures, such as principal component regression (PCR),
partial least squares regression (PLSR), and stepwise multiple linear regression (SMLR), were applied
to relate the functional components with the spectral data. In the laboratory analysis, progoitrin and
glucobrassicin, as well as cyanidin and malvidin, were found to be dominating components in glu-
cosinolates and anthocyanins, respectively. From the overall analysis, the SMLR model showed better
performance, and the identified wavelengths for estimating the glucosinolates and anthocyanins
were in the early near-infrared (NIR) region. Specifically, reflectance at 742, 761, 787, 796, 805, 833,
855, 932, 947, and 1000 nm showed a strong correlation.

Keywords: protected horticulture; crop sensor; functional components; reflectance spectroscopy

1. Introduction

Kale (Brassica oleracea var. alboglabra) is one of the major sources of phytonutrient
components (e.g., glucosinolates, anthocyanins, carotenoids, amino acids, and sugars),
from which glucosinolates and anthocyanins are well known for containing cancer-chemo
preventive compounds. In basic terms, glucosinolates and anthocyanins are the combina-
tion of secondary metabolites, enriched with nitrogen and sulfur-containing glycosides,
available in species of the Brassicaceae families [1]. In-vitro and in-vivo studies reported
that glucosinolates and their breakdown components inhibited many cancer development
steps, such as phase I and II modulation of detoxification enzymes [2]. Consumption of
anthocyanins reduces the risk of cardiovascular problems, diabetes, and cancer due to their
anti-inflammatory and antioxidant activities [3,4].

Quantification of functional components in vegetables and fruits is important to
nutritionists and researchers but also essential to farmers for producing nutrient-rich
crops. Usually, functional components are analyzed in the laboratory using different
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reagents, tools, and equipment, which is time-consuming and labor-intensive work and
sometimes hazardous to humans. High-performance liquid chromatography (HPLC)
analysis, commonly used in laboratories, is one of the popular methods for determining
the level of functional components. This method requires specialized technicians, time,
and usually involves high costs. The stability of results and the health of humans and
the environment can be affected by the reagents used during the extraction steps and the
HPLC analysis procedure [5–8]. Reflectance spectroscopic techniques could be considered
as an alternative method due to their nondestructive and simple procedure, quick response
characteristics, and the relatively small amount of samples required [9].

The spectral reflectance technique is applied to estimate the functional components
and nutritional status of different vegetables, where significant differences in results were
observed based on the vegetable species, cultivation methods, and environmental param-
eters [10–14]. The application of the reflectance spectroscopy technique was introduced
in the early 20th century [15]. Results showed that the wavelengths in the infrared region
were suitable for the rapid assessment of forage quality. Recently, researchers [9,16] applied
and analyzed the reflectance spectra to estimate the nutritional and functional components
in various leafy vegetables and medicinal plants. Generally, leaf reflectance spectra were
low in the visible region (from 400 to 700 nm) due to light absorption by photosynthesis
pigments (e.g., chlorophyll and carotenoids) [8], and sometimes physiological structure also
affects the magnitude of reflectance [17]. Leaf pigments such as chlorophyll, carotenoids,
and anthocyanins in higher plants could easily be detected in the reflectance range of 400 to
800 nm. More specifically, total chlorophyll content was identified either at 540 to 560 nm
(green region) or 700 to 730 nm (red region) and also at 760 nm in beech leaves [18]; 540 to
560 nm and 700 to 705 nm, depending on detection point of lettuce; and 510 to 540 nm for
spinach [19]. The carotenoid contents of maple, chestnut, and beech leaves were identified,
and it was reported that 510 to 550 nm are closely related to total pigment content [20].

As the consumption of certain cruciferous vegetables (i.e., kale, cabbage) is more
strongly related to health benefits, the estimation and study of health-promoting compo-
nents, specifically glucosinolates and anthocyanins, through spectral reflectance are quite
popular among researchers and growers [21–24]. The functional components of Chinese
cabbage were estimated using diffuse reflectance spectroscopy, and the sugar, amino acid,
glucosinolate and carotenoid contents were modelled using wavelengths of 317, 390, 888,
940 nm; 520, 960 nm; 385, 860, 945 nm; and 454, 472, 530 nm, respectively [9]. The effects of
various fertilizer treatments and light intensity on functional components in white head
cabbage and Chinese kale were also inspected, respectively [25,26]. A comparison was
also carried out to show the similarities of wavelength ranges for estimating the functional
components of kale and Chinese cabbage cultivated in plant factory and reported that
leading wavelengths were found under 470~1050 nm and 317~960 nm, respectively [27].

Traditionally, kale is cultivated in the open fields using different bio-extracts or bio-
decomposed matter with moderate fertilizer and pesticides to reduce impacts on soils.
However, maintenance of quantity and nutrient contents cannot be ensured [28–30]. Kim
and Chung [30] showed that plant growth and glucosinolate contents were greater in
protected cultivation facilities, such as greenhouses and plant factories, than open field
cultivation. Moreover, kale production using hydroponic systems has gained popularity in
recent years due to uniform controlled environments, sustainable growth, efficient use of
nutrients, lower rates of diseases, and year-round high-quality production with minimum
influence of geological and climatic conditions [31–33]. Controlled environmental factors,
namely temperature, humidity, carbon dioxide, light, and soil fertility, have significant
effects on the concentration of health-promoting components, specifically glucosinolates
in growing plants and distribution among plant organs. Determination of the effects
of controlled environmental parameters and soil properties on the growth, formation,
release, germination, yield, and quality of crops have been the focus of many studies
worldwide [34–36]. Analysis of the functional components (e.g., glucosinolates, antho-
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cyanins, carotenoids, amino acids, and sugars) is also essential for ensuring nutritional
levels and determining proper harvesting schedules [9,37,38].

Although controlled-environment cultivation increases the concentration of the func-
tional components of crops, the accumulation rate of every component is not the same.
Quantification of the functional components of various vegetables using the spectral re-
flectance technique was reported in some studies, but significant differences in results were
observed, even among species of the same crop family, due to cultivation methods and
environmental parameters. As research related to the quantification of functional com-
ponents on kale leaves is limited, the objective of this study was to estimate the contents
of glucosinolates and anthocyanins in leaves of kale grown in a plant factory through
UV/VIS/NIR-diffuse reflectance spectroscopy data.

2. Materials and Methods
2.1. Kale Cultivation in a Plant Factory

A plant factory is a closed crop cultivation facility used to grow high-value crops
of a high quality throughout the year by utilizing artificially controlled environmental
parameters. In this study, a plant factory was used to maintain the desired levels of the
controlled environmental parameters precisely and evaluate their effect on the accumu-
lation of the nutritional components of kale. For this purpose, three experiments for the
ambient environmental factors (temperature, humidity, and carbon dioxide (CO2)), three
experiments for the light conditions (light type, light intensity, and light photoperiod), and
one experiment for the electrical conductivity (EC) were implemented. In each experiment,
five different levels for each environmental factor were implemented. All the treatments
were prepared following the guidelines of the horticultural crop cultivation process and
summarized in Table 1. A wireless sensor and control networks were used for monitoring
and controlling the ambient environmental conditions, as detailed by Chung et al. [39].

Kale was selected because it is a nutrient-dense vegetable and is considered a healthy
and popular food in many countries for its powerful medicinal properties. A commercial
kale variety with smooth, green leaves and a hard and fibred stem was cultivated in the
plant factory. Kale seeds were sown in a hydroponic germination sponge, and three weeks
after germination, healthy seedlings with true leaves were transplanted into the plant beds.
Twenty-four plants were placed in each plant bed. Seedlings were grown using a recycle-
type aeroponic nutrient management system over a period of about 40 to 50 days (Figure 1).
Commercial nutrient solutions A and B (Daeyu Co., Ltd., Seoul, Korea) were used, and the
target nutrient level was monitored and managed once a day using the electrical conduction
(EC) and pH sensors. The nutrient solution was sprayed onto the plant root zone for two
minutes at 15-min intervals. The unused solution was returned to the nutrient mixing tank,
and filtration and sterilization were performed using a commercial UV-sterilizer and filter
(HY-600F, Haiyang, China). Additional distilled water and stock solutions were added
during nutrient replenishment to prepare the target nutrient solution.
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Table 1. Summary of the target and obtained levels of each treatment along with the specification of sensors used during
the cultivation period of kale plants in the plant factory.

Environmental Factors Experimental Treatments Specification of the Used
SensorsTarget Levels Obtained Levels

Temperature (◦C) 14 ± 1
17 ± 1
20 ± 1
23 ± 1
25 ± 1

14.58 ± 0.74
17.34 ± 1.8
20.25 ± 0.69
23.26 ± 0.52
25.97 ± 1.64

Model: ETH-01DV
Range: −40~125 °C
Resolution: 14 bit

Accuracy: ± 1.3 °C

Humidity (%) 45 ± 5
55 ± 5
65 ± 5
75 ± 5
85 ± 5

45.78 ± 6.23
58.06 ± 4.35
67.66 ± 4.67
72.66 ± 4.49
83.85 ± 4.65

Model: ETH-01DV
Range: 0~100%

Resolution: 14bit
Accuracy: ± 4.5%

CO2 (ppm) 400 ± 100
700 ± 100

1000 ± 100
1300 ± 100
1600 ± 100

475.62 ± 106.3
723.9 ± 140.6

1008.75 ± 175.36
1375.5 ± 125.11
1693.21 ± 137.2

Model: SH-300-DX
Range: 0 ~ 5000 ppm
Response time: < 30 s

Accuracy: ± 2%

Light source (light emitting
diode color ratio)

1 R:B:W, R:B, R:W, Fluorescent - -

Photosynthetic photon flux
density (µmol m−2s−1)

100, 130, 160, 190, 220 - Model: GY-30
Range: 1–65,535 lux
Resolution: 16-bit
Accuracy: ± 3%

Photoperiod
(day/night hours)

12/12, 14/10, 16/8, 18/6, 20/4 - Time switch: MaxiRex 5QT
Prds rating: AC 230 V, 60 Hz Load

capacity: 16 A
Electrical conduction

(µS cm−1)
0.80 ± 0.2
1.00 ± 0.2
1.20 ± 0.2
1.40 ± 0.2
1.60 ± 0.2

0.86 ± 0.3
1.02 ± 0.34
1.28 ± 0.22
1.39 ± 0.24
1.63 ± 0.25

Model: conductivity probe
Range: 2~20,000 µScm−1

Resolution: 10 µScm−1

Accuracy: ± 4%

1 R, red; B, blue; W, white.

2.2. Leaf Sample Collection

Two and four weeks after transplanting, leaf sample collection was performed in three
steps. Mature and healthy leaf samples were visually selected and collected according
to their color and size condition for spectral reflectance measurement and analysis of
functional components. Three normal-sized, matured, and healthy leaves were harvested
from each plant, and total nine leaves were collected from three plants in each plant bed.
Three replications were applied. In total, 27 (3 leaves × 3 plants × 3 replications) kale
leaves were harvested. The reflectance spectra were measured first, and the leaves were
transferred to the chemical laboratory immediately (to minimize the degradation of nutrient
contents) for functional component analyses using a commercial high-performance liquid
chromatography (HPLC) machine (model: 1200 series, Agilent Technologies, Santa Clara,
CA, USA). Figure 2 shows the different growth stages of kale after different periods of
transplantation, a selected plant, and a harvested leaf sample for reflectance acquisition
and functional components analysis. The measured reflectance spectra and functional
components from 9 leaves were averaged to represent one data point. In total, 204 data
points (34 treatments × 2 sampling time × 3 replications) for glucosinolates contents and
90 data points (15 treatments of temperature, humidity, and CO2 × 2 sampling time × 3
replications) for anthocyanins contents were obtained.
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Figure 2. Kale growth after different periods of transplantation for (a) 0 day, (b) 2 weeks, and (c) 4 weeks after transplantation.
(d) Selected plant for sampling and (e) harvested leaf sample for reflectance acquisition and functional components analysis.

2.3. Reflectance Spectra Acquisition

Right after the leaf sample collection, the reflected spectra were measured from each
sample leaf using a spectrometer (model: Jaz-Combo-2, Ocean Optics, FL, USA). The
applied wavelength range was 190 to 1130 nm with an interval of 0.37 nm, where one
detector device provided 190 to 890 nm (UV/VIS) and other detector devices provided 470
to 1130 nm (NIR). However, the wavelength range from 300 to 1050 nm was considered
during analysis to avoid excessive noise at the edge of the wavelengths. The received
spectra from the mentioned detectors were joined, centering at about 720 nm. The reflected
spectra were collected in the dark to minimize the noise caused by background effects
and other circumstances. The spectrometer was operated by software provided by the
manufacturer. Following the methodology of the previous studies of [9,37,40], the spectral
reflectance data were measured from 9 sampling points over the blade part of each sampling
leaf, as shown in Figure 3.
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2.4. Extraction of Glucosinolates and Anthocyanins

The freshly harvested leaf samples were freeze-dried using liquid nitrogen for 48 h
and ground into a fine powder using a pestle and mortar. Part of the freeze-dried samples
(100 mg) was separated, and the crude glucosinolates were extracted with 70% boiling
methanol (4.5 mL). The diethyl-aminoethyl (DEAE) anion exchange columns were used
to obtain delsulphated glucosinolates. Distilled water (1.5 mL) was used to eluate del-
sulphated glucosinolates. The prepared eluates were analyzed using an HPLC (model:
1200 series, Agilent Technologies, CA, USA) after filtering the delsulphated glucosinolates
through a 0.45 µm polytetrafluoroethylene (PTFE) syringe filter. HPLC conditions were
set as follows: a C18 column (150 × 3.0 mm, 3 µm, Inertsil ODS-3, GL Sciences, Tokyo,
Japan) was used, the elution solution included ultra-pure water (solvent A) and 100%
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acetonitrile (solvent B), flow rate was 0.4 mL min−1, detector wavelength was set at 227 nm,
and sinigrin was used as an external standard [41]. The results of glucosinolates are given
as mmol g−1 dried weight of the samples.

The content of anthocyanin in the leaf samples was analyzed as mentioned by [42,43].
In brief, anthocyanins were extracted overnight at 22 ◦C. The freeze-dried products
(8–10 mg) were extracted with 1 mL of solvent (MeOH:AcOH:H2O = 80:0.2:19.8). The
extracts were filtered through a 0.45 µm filter before analysis with the HPLC system. HPLC
conditions were set as follows: the normalized collision energy was set to 30%, a C18 col-
umn (150 × 2 m, Imtakt Corporation, Kyoto, Japan) was used, flow rate was 0.3 mL min−1,
the elution solution included 0–100% solvent A (CH3CN:H2O:TFA = 7.5:92.5:0.1) and
solvent B (CH3CN:H2O:TFA = 55:45:0.1) [44,45].

2.5. Statistical Analyses Procedures

A total of 2027 reflectance values (300 to 1050 nm with a 0.37 nm interval) were
obtained from each sampling point by the detectors. Although excessive noise was omitted
by considering 300 to 1050 nm reflectance spectra instead of 190 to 1130 nm (default range),
smoothing (median filter with 21 smoothing points) and 1st derivative methods were
additionally applied to remove outliers and reach the actual spectra, and for resolution
enhancement, respectively. This combined application technique was applied following
the reference [46]. After the preliminary processing, transformation of the raw reflectance
value (Ref) was performed independently to check the non-linear correlation of reflectance
spectra to the functional components. The used transformations of variables were squared
power (Ref2), squared root (

√
Ref), logarithm (Ln(Ref)), exponent (eRef), and inversion

(1/Ref) [47].
Due to the similarity of the wavebands, the diffuse reflectance spectra are highly

correlated. To reduce the multicollinearity effects and overfitting, some reflectance values
were removed using the default procedures of the software. Then, the relationship between
reflectance spectra and the content of functional components was investigated using
several regression procedures, namely principal component regression (PCR), partial least
squares regression (PLSR), and stepwise multiple linear regression (SMLR), to reduce the
multicollinearity effects through MATLAB software (version: vR2013b, The MathWorks Ins,
Natick, MA, USA). A ten-fold cross-validation (CV) process was applied to optimize the
regression results. A total of ten subsets were generated from the dataset. One subset was
used as the testing set, and the rest were used for the training set. The models containing
from one to ten variables were determined for the remaining observations. The prediction
residuals were determined through comparison with the removed subset. This process
was repeated 10 times, with each of the subsets used exactly once as the testing data. Then,
the average performance across all 10 trials was combined to find the validation residual
variance. The coefficient of determination (R2) and root mean square error (RMSE) were
also calculated in order to select the proper regression model [9,48].

The PCR model is generally used for analyzing multiple regression data to avoid
prediction instabilities caused by multicollinearity [49]. The general linear matrix form of
the PCR model is shown in Equation (1) with usual notation.

Ŷ = Xβ̂ (1)

where Ŷ: dependent or response variable, X: independent or controlled variables, and β̂:
regression coefficient. In comparison with PCR, PLSR delivers a better predictive linear-
relationship, and is computed using a selected number of the latent factors from both
datasets [50]. The model is linear for each sample n, and the value Ynj is:

Ynj = Σk
i=0βiXi (2)

where Yj: the p dependent variables, Xi: the k explanatory variables, and βi: the regression
coefficient. Here, i indicates the number of variables. The basic model and notations of
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PCR and PLSR are similar, but the method of βi determination is different. In SMLR,
a multivariate model is constructed for the dependent variable (Y) considering some
selected descriptive parameters (independent variables) [51,52]. The model of SMLR can
be expressed as Equation (3).

Y = β0 + β1X1 + β2X2 + . . . + βiXi (3)

where Y: dependent or response variable, X1~Xi: predictor variables (surface reflectance
bands), β0: constant variable, and β1~βi: estimated weighted regression coefficient of
X1~Xi, respectively. Additionally, the Pearson correlation coefficient was implemented
to assess the relationship between the reflectance spectra and functional components.
Standardized beta coefficient analysis was also performed by the PCR and PLSR models
using the square power of the reflectance data.

3. Results
3.1. Glucosinolate and Anthocyanin Contents

The yield, total glucosinolates, and anthocyanins of kale under the different treat-
ments of each experiment is summarized in Table 2. Besides this, the contents of each
laboratory-analyzed glucosinolate and anthocyanin component are shown in Table 3.
The number of samples were different, as some of the glucosinolate and anthocyanin
components were not identified in all samples due to negligible (nearly zero) content.
The quantity of some functional components was not satisfactory, and these were ig-
nored. The minimum, maximum, and mean (non-normal distribution) concentration
are also shown in Table 3. Depending on the leaf samples, five to eight components of
glucosinolates and four components of anthocyanins were detected. From the results
of HPLC analysis, we found that the highest proportion of glucosinolate content was
represented by progoitrin (38.61 ± 46.46 µmol g−1 DW), and the most abundant glucosi-
nolate component was neoglucobrassicin (0.40 ± 1.03 µmol g−1 DW). Similarly, cyanidin
(134.10 ± 92.91 µg g−1) and pelargonidin (0.14 ± 0.11 µg g−1) represented the highest and
lowest contents of anthocyanin, respectively. However, most of the glucosinolate and
anthocyanin components were below 3 µmol g−1 DW.

3.2. Characteristics of Spectral Data

The pre-processed reflectance spectra of kale leaves showing low and high concentra-
tions of glucosinolates and anthocyanins are presented in Figure 4. A median filter with 21
smoothing points along with a 1st derivative was applied to pre-process the reflectance
spectral data. Data processing with a greater number of smoothing points reduces the
noise of raw data, but valuable information that cannot be identified by visual inspection
could be lost. As shown in Figure 4, peaks appeared at about 530–570 nm due to pigment
variation [53], specifically foliar chlorophyll content [54], while no major difference was
observed from 300 to 500 nm, but a significant difference was found among different
concentrations of glucosinolates and anthocyanins from 700 to 1050 nm for strong absorp-
tion by carotenoids and chlorophylls. Overall, reflectance percentages were lower and
almost similar in the visible region (except the peaks at 550 nm), but higher reflectance was
obtained in the early NIR region (700 to 1050 nm), where low and high concentrations of
glucosinolate and anthocyanins could be distinguished clearly.
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Table 2. Content summary of the glucosinolate and anthocyanin components of the kale sample leaves analyzed in the laboratory using high-performance liquid chromatography (HPLC).

Factors
Treatments

2nd Week after Transplantation 4th Week after Transplantation

Temperature (◦C) 14 17 20 23 26 14 17 20 23 26

Yield (mg) 11.91 ± 1.2 12.59 ± 0.3 13.31 ± 0.2 13.02 ± 0.3 13.24 ± 0.3 21.30 ± 4.1 23.64 ± 6.2 28.29 ± 4.3 25.38 ± 3.2 22.15 ± 4.8
Total GLSs 1

(µmol g−1 DW) 1 86.21 ± 5.9 65.24 ± 13.4 46.32 ± 19.2 29.75 ± 14.1 13.81 ± 7.7 37.12 ± 17.4 33.80 ± 5.1 23.94 ± 5.5 22.42 ± 20.1 12.42 ± 0.5

ATCs2 (µg g−1) 8.9 ± 6.2 47.9 ± 4.3 65.4 ± 2.5 100.5 ± 8.4 90.8 ± 18.2 29.2 ± 23.4 51.1 ± 48.1 126.4 ± 110.9 180.5 ± 57.4 133.6 ± 56.7

Humidity (%) 45 55 65 75 85 45 55 65 75 85

Yield (mg) 5.5 ± 0.1 8.22 ± 1.2 6.33 ± 1.4 7.76 ± 1.1 8.89 ± 1.5 23.42 ± 9.2 29.39 ± 3.5 33.01 ± 4.9 25.67 ± 0.9 34.76 ± 6.8
Total GLSs

(µmol g−1 DW) 1 1.54 ± 1.54 1.62 ± 1.6 1.17 ± 1.2 1.18 ± 1.2 1.17 ± 1.2 0.86 ± 0.3 0.99 ± 0.2 1.12 ± 0.3 0.88 ± 0.1 0.87 ± 0.2

ATCs (µg g−1) 97.1 ± 37.4 116.9 ± 47.2 164.8 ± 40.7 107.1 ± 89.9 146.1 ± 29.6 75.9 ± 67.0 85.7 ± 23.9 174 ± 17.5 133.6 ± 115.7 117 ± 105.9

CO2 (ppm) 400 700 1000 1300 1600 400 700 1000 1300 1600

Yield (mg) 10.01 ± 1.8 11.33 ± 1.7 10.38 ± 1.4 8.91 ± 0.4 7.49 ± 0.6 22.15 ± 4.8 28.38 ± 3.2 18.29 ± 4.3 23.64 ± 6.2 25.30 ± 4.1
Total GLSs

(µmol g−1 DW) 1 3.06 ± 0.3 2.37 ± 0.4 3.71 ± 0.8 8.08 ± 4.1 3.87 ± 0.8 3.64 ± 1.5 2.42 ± 0.9 2.20 ± 0.3 5.08 ± 0.8 4.48 ± 2.5

ATCs (µg g−1) 258.5 ± 96.9 285.7 ± 74.7 249.4 ± 24.4 279.4 ± 124.2 220.1 ± 19.9 224.2 ± 79.8 287.8 ± 18.0 313.16 ± 112.1 322.70 ± 45.1 171.5 ± 47.70

Light source 3 R:B:W R:B R:W F
- R:B:W R:B R:W F

-

Yield (mg) 12.7 ± 0.39 14.1 ± 0.77 11.9 ± 0.16 10.3 ± 0.27
- 23 ± 1.7 21.9 ± 1.7 20.7± 2.4 17.3 ± 2.3

-
Total GLSs

(µmol g−1 DW) 1 49.33 ± 66.80 14.27 ± 5.31 15.42 ± 13.30 63.38 ± 68.02
- 79.05 ± 25.37 118.51 ± 16.33 99.04 ± 63.11 103.14 ± 13.42

-

Intensity (µmol m−2s−1) 100 130 160 190 220 100 130 160 190 220

Yield (mg) 9.45 ± 0.82 8.37 ± 0.2 16.23 ± 0.36 12.72 ± 0.27 8.3 ± 0.25 17.24 ± 2.3 18.5 ± 1.74 24.48 ± 1.6 27.57 ± 0.74 18.07 ± 0.66
Total GLSs

(µmol g−1 DW) 1 9.08 ± 6.8 15.18 ± 0.6 11.16 ± 5.8 10.81 ± 5.1 10.93 ± 7.7 33.39 ± 2.22 93.17 ± 0.9 11.21 ± 3.7 20.54 ± 12.1 24.75 ± 14.9

Photoperiod (h) 12/12 14/10 16/8 18/6 20/4 12/12 14/10 16/8 18/6 20/4

Yield (mg) 9.5 ± 0.91 8.6 ±0.40 12.23 ± 0.36 10.21 ± 0.47 7.6 ± 0.5 28.45 ± 2.18 18.71 ± 0.48 24.48 ± 1.58 19.21 ± 0.49 17.75 ± 0.53
Total GLSs

(µmol g−1 DW) 1 9.22 ± 4.8 9.01 ± 4.0 11.16 ± 5.8 21.21 ± 2.7 6.50 ± 0.9 19.35 ± 9.9 28.23 ± 16.9 11.21 ± 3.7 13.78 ± 12.1 5.46 ± 2.1

EC (µS cm−1) 0.80 1.00 1.20 1.40 1.60 0.80 1.00 1.20 1.40 1.60

Yield (mg) 14.0 ±0.9 16.8 ±1.5 17.4 ± 0.3 15.4 ± 1.6 14.4 ± 1.1 33.0 ± 2.2 45.6 ± 1.5 34.9 ± 0.4 24.0 ± 1.2 30.3 ± 1.8
Total GLSs

(µmol g−1 DW) 1 91.50 ± 30.77 82.89 ± 52.70 166.93 ± 23.98 92.75 ± 11.08 169.99 ± 14.59 88.01 ± 33.40 42.59 ± 23.70 76.03 ± 12.98 96.15 ± 27.35 92.41 ± 33.37

1 GLSc, glucosinolates, 2 ATCs, anthocyanins, 3 R, red; B, blue; W, white.
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Table 3. Content summary of the glucosinolate and anthocyanin components of the kale sample leaves analyzed in the
laboratory using HPLC.

Component No. of Samples Min Max Mean ± STD

Glucosinolates
(µmol g−1 DW) 1

Progoitrin 55 1.43 96.32 64.57 ± 44.06
Sinigrin 157 0.05 14.52 6.62 ± 9.19

Glucoalyssin 22 0.74 6.03 2.77 ± 4.49
Glucobrassicanapin 7 1.85 4.23 2.52 ± 1.20

Glucobrassicin 187 0.05 16.77 8.29 ± 12.63
4-methoxyglucobrassicin 149 0.02 2.58 1.06 ± 1.72

Gluconasturtiin 23 1.26 3.35 0.75 ± 1.05
Neoglucobrassicin 146 0.03 1.56 0.81 ± 1.06

Glucoraphanin 39 0.29 5.2 3.25 ± 5.51
Gluconapin 86 0.13 1.69 0.78 ± 0.90

Anthocyanins (µg g−1)

Cyanidin 72 0.02 217.56 135.98 ± 93.91
Pelargonidin 71 0.02 0.25 0.13 ± 0.11
Delphinidin 33 0.03 0.22 0.07 ± 0.10

Malvidin 68 0.07 11.82 7.39 ± 4.83
1 DW: dry weight.
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Pearson correlation coefficients between reflectance and an example glucosinolate
component (sinigrin) are shown in Figure 5. These correlation coefficients provide transpar-
ent views of the relationships between spectra and functional components. The absolute
values of correlations were higher for some transformations (e.g., raw spectra, square root,
square power, and logarithm) than for exponent and inversion in the near-infrared regions.
Wavelengths above 700 nm were highly correlated (|r| ≥ 0.5) with the concentration of
functional components as functional components were highly sensitive to spectra in the
NIR regions [23,26].
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3.3. Estimation Models of the Functional Components
3.3.1. Performance of PCR, PLSR, and SMLR Using Raw Data

A summary of the raw reflectance data analysis using the PCR, PLSR, and SMLR
models over the wavelength region (from 300 to 1050 nm) is presented in Table 4. The
performance of the PCR model was not satisfactory compared with the PLSR and SMLR
models. The coefficients of determination (R2) of the PCR models were in the range of 0.4 to
0.5 for 4-methoxyglucobrassicin, neoglucobrassicin, malvidin, and pelargonidin, whereas
the other components showed worse results using the PCR model (R2: < 0.4). Using the
PLSR model, a strong correlation (R2: ≥ 0.90, RMSE: ≈1 µmol g−1 DW) was found for
glucobrassicin and malvidin; a fair correlation (R2: ≥ 0.60, RMSE: < 0.5 µmol g−1 DW) was
obtained for sinigrin, 4-methoxyglucobrassicin, neoglucobrassicin, and pelargonidin; and
a poor correlation (R2: ≤ 0.60) was observed for gluconapin and cyanidin contents. The
SMLR model performed well (R2: ≥ 0.80, RMSE: ≈1 µmol g−1 DW) for all glucosinolate
components, whereas poor performance was shown for anthocyanins (R2: 0.14, RMSE:
60 µg g−1) and cyanidin, and fair performance (R2: 0.46, RMSE: 0.04 µg g−1) for pelargoni-
din and malvidin (R2: 0.67, RMSE: 2.09 µg g−1). Although good results were obtained for
some specific functional components, the transformation of spectral reflectance data was
used to include possible non-linear relationships.

Table 4. Summary of raw reflectance data analysis using PCR, PLSR, and SMLR models over the wavelength region (from
300 to 1050 nm).

Components
PCR PLSR SMLR

R2 RMSE R2 RMSE R2 RMSE

Glucosinolates
(µmol g−1 DW)

Sinigrin 0.38 3.02 0.63 2.33 0.84 1.44
Glucobrassicin 0.23 3.69 0.90 1.30 0.92 0.90

4-methoxyglucobrassicin 0.44 0.49 0.62 0.41 0.84 0.24
Neoglucobrassicin 0.46 0.25 0.61 0.21 0.85 0.12

Gluconapin 0.35 0.35 0.53 0.29 0.89 0.12

Anthocyanins
(µg g−1)

Cyanidin 0.28 54.63 0.56 42.54 0.14 60.37
Malvidin 0.44 2.55 0.91 1.04 0.67 2.09

Pelargonidin 0.42 0.04 0.74 0.03 0.46 0.04

3.3.2. Performance of PCR, PLSR, and SMLR Using Transformed Data

A summary of the transformed reflectance data analysis using the PCR, PLSR, and
SMLR models over the wavelength region (from 300 to 1050 nm) is shown in Table 5. The
proper model was identified based on the R2 and RMSE values of each transformation
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of variables, i.e., square (Ref2) square root (
√

Ref), exponent (eRef), inverse (1/Ref), and
base 10 logarithmic scale (Ln(Ref)) of the reflectance data. For the PCR model, a poor
performance was observed (R2: < 0.6) for the glucosinolate and anthocyanin components.
The results ranged from 0.4 to 0.5 for some components such as sinigrin, neoglucobrassicin,
and malvidin using the Ref2, eRef, and Ln(Ref) transformation and 4-methoxyglucobrassicin
using the Ref2,

√
Ref, eRef, and Ln(Ref) transformation. However, the results of the PCR

model were higher than 0.5 for gluconapin (R2: 0.50 using
√

Ref and R2: 0.51 using Ln(Ref)
and pelargonidin (R2: 0.50 with

√
Ref).

Table 5. Summary of transformed reflectance data analysis using PCR, PLSR, and SMLR models over the wavelength region
from 300 to 1050 nm.

Components Transformation
PCR PLSR SMLR

R2 RMSE R2 RMSE R2 RMSE

Glucosinolate
(µmol g−1 DW)

Sinigrin

Ref2 0.35 3.11 0.64 2.30 0.84 1.41√
Ref 0.41 2.95 0.65 2.27 0.85 1.56

eRef 0.40 2.97 0.50 2.72 0.84 1.43
1/Ref 0.01 3.82 0.09 3.66 0.85 1.36

Ln(Ref) 0.41 2.96 0.59 2.45 0.86 1.32

Glucobrassicin

Ref2 0.29 3.55 0.35 3.38 0.91 1.04√
Ref 0.23 3.69 0.96 0.78 0.91 1.06

eRef 0.28 3.56 0.60 2.67 0.88 1.30
1/Ref 0.02 4.18 0.002 4.21 0.92 0.88

Ln(Ref) 0.24 3.67 0.86 1.57 0.92 0.88

4-ethoxyglucobrassicin

Ref2 0.40 0.51 0.60 0.41 0.83 0.25√
Ref 0.46 0.48 0.65 0.39 0.86 0.22

eRef 0.42 0.50 0.62 0.40 0.82 0.26
1/Ref 0.04 0.65 0.04 0.65 0.87 0.21

Ln(Ref) 0.44 0.49 0.80 0.29 0.86 0.23

Neoglucobrassicin

Ref2 0.38 0.27 0.62 0.21 0.86 0.12√
Ref 0.42 0.26 0.63 0.20 0.85 0.12

eRef 0.43 0.25 0.62 0.21 0.82 0.14
1/Ref 0.06 0.33 0.10 0.32 0.86 0.12

Ln(Ref) 0.42 0.26 0.77 0.16 0.87 0.11

Gluconapin

Ref2 0.20 0.38 0.68 0.24 0.88 0.12√
Ref 0.50 0.30 0.86 0.16 0.89 0.12

eRef 0.37 0.34 0.61 0.27 0.89 0.12
1/Ref 0.14 0.40 0.20 0.39 0.88 0.13

Ln(Ref) 0.51 0.30 0.88 0.15 0.89 0.12

Anthocyanins
(µg g−1)

Cyanidin

Ref2 0.02 64.38 0.004 64.26 0.16 60√
Ref 0.24 56.18 0.50 45.54 0.14 60.58

eRef 0.27 54.86 0.46 47.29 0.14 60.78
1/Ref 0.01 64.15 0.01 64.09 0.12 61.29

Ln(Ref) 0.20 57.39 0.68 36.59 0.13 60.81

Malvidin

Ref2 0.03 3.41 0.36 2.73 0.22 3.08√
Ref 0.42 2.60 0.96 0.63 0.71 1.97

eRef 0.42 2.60 0.86 1.30 0.12 3.28
1/Ref 0.02 3.41 0.02 3.38 0.48 2.55

Ln(Ref) 0.41 2.62 0.97 0.61 0.74 1.90

Pelargonidin

Ref2 0.01 0.06 0.002 0.06 0.40 0.04√
Ref 0.50 0.04 0.69 0.03 0.45 0.04

eRef 0.36 0.04 0.66 0.03 0.08 0.05
1/Ref 0.02 0.06 0.03 0.06 0.09 0.05

Ln(Ref) 0.36 0.04 0.91 0.02 0.38 0.04
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During the glucosinolates analysis, good performance of the PLSR method was ob-
served for glucobrassicin (R2: 0.96 using

√
Ref, R2: 0.86 using Ln(Ref)), 4-methoxyglu

cobrassicin (R2: 0.80 using Ln(Ref)) and gluconapin (R2: 0.86 using
√

Ref, R2: 0.88 with
Ln(Ref)). Fair results for the PLSR models (0.60 ≤ R2 ≤ 0.79) were obtained for sin-
igrin (R2: 0.64 using Ref2, R2: 0.65 using

√
Ref), glucobrassicin (R2: 0.60 using eRef),

4-methoxyglucobrassicin (R2: 0.60, 0.65, and 0.62 using Ref2,
√

Ref, and eRef, respectively),
neoglucobrassicin (R2: 0.62, 0.63, 0.62, and 0.77 using Ref2,

√
Ref, eRef, and Ln(Ref), respec-

tively), and gluconapin (R2: 0.68 using Ref2, R2: 0.61 using eRef). Poor performance (R2:
< 0.60) was observed for sinigrin using eRef, 1/Ref, and Ln(Ref); glucobrassicin using Ref2

and 1/Ref; and 4-methoxyglucobrassicin, neoglucobrassicin, and gluconapin using 1/Ref.
For anthocyanins, good performance of the PLSR models (R2: ≥ 0.80) were obtained for
malvidin (R2: 0.86, 0.96, and 0.97 using

√
Ref, eRef, and Ln(Ref)) and pelargonidin (R2: 0.91

using Ln(Ref)). Fair PLSR model results (0.60 ≤ R2 ≤ 0.79) were obtained for cyanidin (R2:
0.68 using Ln(Ref)) and pelargonidin (R2: 0.66 using eRef; R2: 0.69 using the

√
Ref).

The SMLR procedure showed very good performance (R2: ≥ 0.82) for estimating the
glucosinolate components (e.g., sinigrin, glucobrassicin, 4-methoxyglucobrassicin, neoglu-
cobrassicin, gluconapin) with Ref2,

√
Ref, 1/Ref, and Ln(Ref) transformation, whereas only

the malvidin content of anthocyanins was estimated well by the SMLR model (R2: 0.71
using

√
Ref, and R2: 0.74 using Ln(Ref)), and poor performance was observed for the other

components (0.09 ≤ R2 ≤ 0.48).
The B-coefficient values obtained from the PCR and PLSR models reveal impor-

tant wavelengths for the quantification of functional components. Figure 6 shows the
B-coefficient values using square reflectance data for the PCR and PLSR models for gluco-
brassicin calibration. Wavelengths at 761, 890, 933, and 1000 nm were identified by the PCR
model, and the wavelengths determined by the PLSR model were 742, 761, 787, 796, 805,
833, 855, 932, 947, and 1000 nm. The peak in the VIS range at about 579 nm is associated
with the green region due to electronic transition. Thus, the wavelength at 544 nm was
assigned to chlorophyll, while the wavelengths at 742, 761, 787, 796, 805, 833, 855, 932, 947,
and 1000 nm had a strong correlation with glucosinolate content.
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4. Discussion

According to the laboratory (HPLC) analysis, progoitrin was the most dominant
glucosinolate component in kale leaves, and the most abundant components were glu-
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coalyssin, gluconasturtiin, and 4-methoxyglucobrassicin. On the other hand, cyanidin was
the main component of anthocyanins followed by malvidin. The abundant components
were pelargonidin and delphinidin. This variation in functional components depends on
crop species, growth stage, cultivation methods, and ambient environment or climatic con-
ditions [23,38,55–58]. For example, glucoiberin, glucoraphanin, and sinigrin were observed
as dominating components, sequentially, in kale plants cultivated in a closed chamber
and soil-based system [57]. Besides this, glucobrassicin and sinigrin were identified as
dominating components in kale when cultivated in open-field conditions [55]. The authors
of [44] found sinigrin to be a dominant component in green kale and progoitrin in red
kale. A difference in concentrations was also observed among studies based on the culti-
vation period. However, most of the studies identified almost similar types of abundant
components [5,43,44].

The reflected spectra from the kale leaf surface represent the status of leaf photochem-
ical and morphological properties. Minimum reflectance indicates a higher concentration
and maximum reflectance indicates a lower concentration of glucosinolates and antho-
cyanins. In this study, no meaningful variation was observed in the visible region, except
the peak around 530 to 570 nm (Figure 4). This sudden higher reflectance (peak) was ob-
served due to pigment variation [53], specifically in foliar chlorophyll content [54], which
was very familiar in the species of Brassicaceae family and indicates a lower glucosinolate
content level in that region. A significant difference in glucosinolate content was detected
for the 700 to 1050 nm wavelengths. Reflectance variation or overlapping during func-
tional components analysis could occur in different cultivation facilities (i.e., greenhouse,
plant factory, or open field), covering material types, radiation intensities or artificial light
types and even the color or pigment properties of crop species (i.e., red and green kale
or lettuce) [59–61]. The reflectance variation might occur in the visible region or NIR
region based on the cultivation method, such as hydroponic or organic systems. A strong
correlation between the pigment contents of red and green lettuces under different light
intensities was also observed by the authors of [59,60].

Besides this, preprocessing of the reflectance spectral is necessary to minimize un-
wanted background information, along with accentuating the absorption features of the
spectra. It also helps to attain accurate models and reduces the number of latent vari-
ables [53]. Smoothing and 1st derivative methods were applied in this study. Neto et al. [53]
also applied smoothing, as well as the 1st and 2nd derivatives, and observed that the 1st
derivative was the best pretreatment process for predicting anthocyanin content. They
also mentioned that this pretreatment removed the non-chemical effects, resolved the
overlapped bands, and provided a better version of the target data. In addition, PCR, PLSR,
and SMLR models were applied in this study, and a significant correlation between spectral
reflectance and glucosinolate and anthocyanin concentrations was observed in the NIR
region through the SMLR model and Pearson’s correlation coefficients test. A similar result
was observed during functional components analysis on Chinese cabbage leaves in our
previous study [9] and also in the literature [21,62].

Several studies were conducted to identify the variation of crops’ physical, chemi-
cal, and biological properties based on crop species, cultivation methods, environmental
conditions, and fertilization [30,63]. Among these, effects of cultivation systems, such as
plant factory, greenhouse, or open field, and cultivation methods, such as soil-based and
hydroponics, play a vital role in the variation of the glucosinolate and anthocyanin contents
of crops (Table 6). The authors of [30] compared the functional components of kale (Bras-
sica oleracea var. alboglabra) grown in three different conditions and found glucobrassicin,
sinigrin, neoglucobrassicin, and progoitrin to be dominant components, sequentially, and
4-methoxyglucobrassicin to be an abundant component. They reported that the functional
components of kale were higher when grown in the plant factory than in the greenhouse
and open field due to potential cultivation conditions. Glucoiberin, glucoraphanin, sini-
grin, and glucobrassicin were detected as major components of kale (Brassica oleracea var.
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acephala) when cultivated using soil-based methods in a closed chamber and an open field,
respectively [38,55,57].

Table 6. Dominating glucosinolate components of different plants cultivated under different conditions and analyzed by
HPLC and reflectance spectroscopy methods.

Plant Cultivation
Method

Dominating Component
(Analyzed by HPLC)

Dominating Component
(Analyzed by Spectroscopy) Wavelengths (nm)

Kale Aeroponic
(Plant factory) Progoitrin, Sinigrin Sinigrin, Glucobrassicin

742, 761, 787, 796, 805,
833, 855, 932, 947,

1000

Kale Soil-based
(Closed-chamber)

Glucoiberin, Glucoraphanin,
Sinigrin - -

Kale Open field Glucobrassicin, Sinigrin - -

Chinese cabbage Aeroponic
(Plant factory)

Neoglucobrassicin,
4-methoxyglucobrassicin

Glucobrassicin,
4-methoxyglucobrassicin

365, 388, 440, 545, 607,
651, 798, 838, 860, 870,

932, 950

Mustard leaf Open field Sinigrin, Glucoiberverin,
Gluconasturtiin - -

Rocket
Leaf

Soil-based
(Greenhouse) -

Glucoerucin,
Gluconasturtiin,4-

hydroxyglucobrassicin

548, 610, 680, 1432,
1696, 1730, 1920, 2054

5. Conclusions

This study focused on the determination of glucosinolate and anthocyanin contents
in kale leaves using the diffuse reflectance spectroscopy technique, where kale plants
were cultivated in a plant factory under different levels of environmental factors. The
results showed that progoitrin and glucobrassicin, as well as cyanidin and malvidin, were
found to be dominating components in glucosinolates and anthocyanins, respectively,
in laboratory analysis. Among the applied regression methods, SMLR showed better
performance compared with the PCR and PLSR models. Important wavelengths for
estimating glucosinolates and anthocyanins were laid between 700 to 1050 nm. Although a
similar methodology was applied in some studies on other crops, very little research has
been conducted on kale plants. The components of glucosinolates and anthocyanins and
their related reflectance spectrum vary based on the crop species, cultivation methods, and
environmental parameters, so crop-specific accurate model development is essential. The
findings of this study would be useful for designing or improving any multiple-wavelength
property sensor applicable for on-site functional components determination of any crops.
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