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Abstract: Citrus grandis “Tomentosa” (“Huajuhong”) is a famous Traditional Chinese Medicine. In
this study, a total of 18 jumonji C (JMJC) domain-containing proteins were identified from C. grandis.
The 18 CgJMJCs were unevenly located on six chromosomes of C. grandis. Phylogenetic analysis
revealed that they could be classified into five groups, namely KDM3, KDM4, KDM5, JMJC, and
JMJD6. The domain structures and motif architectures in the five groups were diversified. Cis-
acting elements on the promoters of 18 CgJMJC genes were also investigated, and the abscisic
acid-responsive element (ABRE) was distributed on 15 CgJMJC genes. Furthermore, the expression
profiles of 18 CgJMJCs members in the exocarps of three varieties of “Huajuhong”, for different
developmental stages, were examined. The results were validated by quantitative real-time PCR
(qRT-PCR). The present study provides a comprehensive characterization of JMJC domain-containing
proteins in C. grandis and their expression patterns in the exocarps of C. grandis “Tomentosa” for
three varieties with various development stages.

Keywords: Citrus grandis; “Huajuhong”; jumonji C domain (JMJC); histone demethylation; epigenetic
regulation

1. Introduction

In eukaryotes that carry the genetic and regulatory information of organisms, the
structure and conformation of chromatin can directly affect the heritage changes in gene
expression that occur without a change in the DNA sequence [1]. This is known as
“epigenetics”. The basic unit of chromatin is the nucleosome, which consists of 146-bp
double-stranded DNA wrapped around the core histone [2]. DNA methylation, histone
modifications, and RNA interference are distinct but highly interrelated means of regulating
the structure of chromatin, and they further affect the expression of genes [1,3]. During
the past decades, epigenetics has been developed into a new trend in life science research,
especially in human diseases. Nevertheless, with the wide application of methylation-
sensitive amplification polymorphism (MASP) in fruit plants [4–6], special epigenetic
phenomenon will be revealed.

Recently, histone demethylation has attracted the attention of researchers as it is a
reversible process of histone methylation. Previous studies showed that two types of his-
tone lysine demethylases (KDMs) have been identified: KDM1/LSD1-like (lysine-specific
demethylase 1) and jumonji C (JMJC) domain-containing demethylases [7,8]. Studies on
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plants indicate that JMJCs play vital regulatory roles in growth and developmental pro-
cesses [7,9]. After the first histone demethylase, LSD1, was discovered in 2004 [10], the
study of the demethylation of histone in relation to the determination of the epigenetic char-
acteristics of plants has become a research hotspot. LSD1 belongs to the flavin-dependent
amine oxidase family, which is highly specific for the H3 mono/di-methylation of lysine
4 (H3-K4me and H3-K4me2), while the other known major methylation sites of H3 and
H4 do not serve as substrates for this protein [10,11]. Subsequently, the jumonji C (JMJC)
domain-containing protein family was also characterized as being involved in histone
demethylation [12,13]. Increased evidence shows that JMJCs epigenetically regulate vari-
ous biological processes in plants, with their functions including the regulation of flowering
time [14–16], the repression of leaf senescence [17], the control of seed germination [18], and
the regulation of shoot regeneration [19]. There are 21 and 20 JMJC members in Arabidopsis
and Rice, respectively, and these are classified into the subfamilies of KDM5/JARID1,
KDM4/JHDM3, KDM3/JHDM2, KDM3/JHDM2, and JMJC domain-only [20]. Until now,
the JMJC family has been characterized in some other plants, including Glycine max [21],
Zea mays [22], Citrus sinensis [23], and Gossypium hirsutum L. [24].

As an ancient variety of Citrus grandis, “Huajuhong” (C. grandis “Tomentosa”), has
been utilized as famous folk medicine against chronic cough for thousands of years.
C. grandis “Tomentosa” originated from Huazhou town in Guangzhou Province of South-
ern China and also received China GI (Geographical Indication) protection. At present,
there are three major varieties, known as “ZM” (ZhengMao), “FM” (FuMao), and ”GQ”
(GuangQing). The three varieties are different in terms of both fruit appearance and in-
ternal quality. Interestingly, a thick layer of trichomes is covered on the surface of the
“ZM” fruits, and the density of trichomes on the “FM” fruits is lighter than that of “ZM”,
while there is no trichome on the “GQ” fruits. Moreover, we previously reported that
the some secondary metabolites in those varieties of “Huajuhong”, including flavonoid
and volatile compound contents, were different [25]. However, little information has been
reported regarding the regulatory mechanism of the outer morphology and inner quality
of C. grandis “Tomentosa”. In addition, as far as we know, there is limited information
about the epigenetics of C. grandis.

In the present study, the JMJC domain-containing protein family was comprehensively
investigated in the genome of C. grandis. The total JMJC genes were first identified by
blasting using HMMER of JMJC and then chromosomal localization was analyzed. A
phylogenetic analysis combined with the conserved domains was conducted and the
results were compared with those for Arabidopsis. Gene structure, motif composition and
cis-element analysis were performed for all the identified JMJC genes. Expression patterns
of the JMJC family in the exocarps of “Huajuhong” (“ZM”, “FM” and “GQ”) during various
development stages were finally examined. The aim of this study was to provide important
and helpful information for further research on the regulatory mechanisms of the outer
morphology and fruit quality of C. grandis.

2. Materials and Methods
2.1. Identification of JMJC Genes from Citrus grandis

A Hidden Markov Model (HMM) profile of the JMJC domain (Pfam: PF02373) down-
loaded from the Pfam database (http://pfam.xfam.org, accessed on 27 November 2021)
was used for the identification of JMJC genes from the Citrus grandis genome (https:
//www.citrusgenomedb.org/, accessed on 27 November 2021). The cutoff value was 0.01
and the parameter was set to the default value. To confirm the presence of the JMJC domain,
the sequences of all the obtained CgJMJC genes were further identified through the online
SMART (http://smart.embl.de/smart/, accessed on 27 November 2021), NCBI Conserved
Domain Search databases (NCBI CDD) (https://www.ncbi.nlm.nih.gov/cdd/, accessed on
27 November 2021) and PFAM (http://pfam.xfam.org/, accessed on 27 November 2021)
databases. The redundant sequences were eliminated. Protein signatures, such as the
amino acids number (AAs), molecular weights (Mw) and isoelectric points (pI) of the

http://pfam.xfam.org
https://www.citrusgenomedb.org/
https://www.citrusgenomedb.org/
http://smart.embl.de/smart/
https://www.ncbi.nlm.nih.gov/cdd/
http://pfam.xfam.org/
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identified CgJMJC genes, were obtained using the ExPasy website (http://web.expasy.org/
protparam/, accessed on 27 November 2021).

2.2. Chromosomal Localization of CgJMJC Genes

According to the locations of the identified CgJMJC genes in the database, they
were obtained from annotated gff3 files. MapChart software was used to analyze the
chromosomal distribution [26].

2.3. Phylogenetic Analysis of JMJC Genes from Citrus grandis and Arabidopsis

The phylogenetic analysis of the CgJMJC gene family in Citrus grandis and Arabidopsis
thaliana was performed by MEGA X with 1000 bootstrap replicates. The phylogenetic tree
was plotted by employing the neighbor-joining (NJ) method and the pairwise gap deletion
mode [27]. The domain information was obtained from the SMART database (http://smart.
emblheidelberg.de/, accessed on 27 November 2021) and the NCBI Conserved Domain
Search database (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, accessed on
27 November 2021). The conserved domain information was graphically visualized using
DOG 2.0 software [28].

2.4. Gene Structure Analysis

The gene exon/intron structures of the CgJMJC gene family in Citrus grandis were
graphically visualized using the gene structure display server (GSDS2.0) (http://gsds.cbi.
pku.edu.cn/index.php, accessed on 28 November 2021) [29].

2.5. Cis-Element Analysis and Heat Map Construction

For cis-acting element analysis, genomic DNA sequences in the 1500 bp upstream
region of all JMJCs were obtained, and the sequences were identified using the PlantCARE
database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on
28 November 2021) [30]. To further understand the expression patterns of CgJMJCs, RNA-
Seq data were visualized with heat maps using TBtools [31]. FPKM-normalized log2
transformed counts were regarded as thresholds to define significant differences in gene
expression. CgJMJCs expression levels were analyzed in relation to the expression patterns
in exocarp tissue.

2.6. Plant Material and Treatments

The exocarps of “ZM”, “FM” and “GQ” fruits were peeled from fruits of 4, 6, and 8 cm
diameter, which were harvested from an orchard with GAP (Good Agricultural Practice)
certified by the Chinese government in Hexi District, Huazhou, Guangdong province.
After obtaining the exocarps, they were chopped into small pieces and frozen immediately
by liquid nitrogen and stored at −80 ◦C.

2.7. RNA Isolation and RT-PCR Analysis

The total RNA was extracted as described by Asif et al. (2000) [32]. Using gDNA
Eraser (TaKaRa, Tokyo, Japan), the total RNA was treated to eliminate any potential
contamination with DNA. Then, DNA-free total RNA was reverse-transcribed into cDNA
with a reverse transcription kit (TaKaRa, Tokyo, Japan), following the manufacturer’s
instructions. Real-time Quantitative Polymerase Chain Reaction (qRT-PCR) was then
performed as described by Li et al. (2019) [33]. Primer pairs of each JMJC gene were
designed using the online software program Primer 3 (http://primer3.ut.ee/, accessed
on 28 November 2021). The primers are listed in Table 1. Actin was used as a reference
gene. The expression levels were normalized to that of the reference gene and calculated
by the comparative 2−∆∆Ct method [34], and the data are shown as the mean ± standard
deviation of three independent biological replicates.

http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
http://smart.emblheidelberg.de/
http://smart.emblheidelberg.de/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://gsds.cbi.pku.edu.cn/index.php
http://gsds.cbi.pku.edu.cn/index.php
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://primer3.ut.ee/
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Table 1. The primer sequences used for RT-PCR.

Genes Forward Primers Reverse Primers

Actin ATCTGCTGGAAGGTGCTGAG CCAAGCAGCATGAAGATCAA
Cg2g031440 GGGTCTCCTTAATGAAGCTGAAGAG TTTCATTATCTGTTCTTCCCGGCAA
Cg2g038450 GAAGCTTTGGAGGGAGGATTAGATG CCATTGCCCTCCACGATATTTTCTA
Cg2g041150 AAAATAAAAGGCCAAAACCCGTCTG ACAACTTGCACAGCTTCTATGGTAA
Cg3g007850 TGAAGGAAGATGTGGTCAGTTGATG GCTGTCTACTATTCGCTTCCTCATC
Cg3g014720 TCAGAACTCTAGCCAGGAAGAAGAA GAAGAAACCTGGTAGATGTCAAGCA
Cg5g003020 TTACCATGTCTCAGCTTGTTGAACA ATCAATTTGTTCACCATGTCCCTGA
Cg5g005310 ATCTTGCAGCTAACACAGGAATGAA TACAAGATTCAATGCCAAGTGTCGA
Cg5g006280 GTCTTGAACATGCTGTGGAAGTAGA TCTTCTCGTCTTCTTTGGTAGCAAC
Cg5g018250 CAAGCATGGCAAAAGGAGAAGAAAA GTCTCTGATTTTGATGCTTCTTCGC
Cg5g033850 CAAACGGGAATGCAACATATGTCTC ACAGCTGCTTTACATGATTCAGACA
Cg6g013700 TTCAATCCCTTACATGTGAAGTGCA TGTTGGTAGATCAAATTGGGCATCA
Cg7g006840 AAGGTTGGAGGATGTTCTGAAGTTC GCAGTAGTATGATTTTGCAGCTGTG
Cg7g013930 GGTGAAATTGACATGACCAACAGTG GCCACTGGAAATGCTTTAAATCTCC
Cg8g010020 TCCTGTGTTCTACCCTACTGAAGAG CACGCGTAACAAATGTAGAACTGTC
Cg2g045510 AACATGACTGATTGCGAAAAGGTTG TTGCCACAAAGAGTCTCTGATACAC
Cg5g034880 CCTGTTCTCTCCAGTCTTCTTCAAC TGCCATAACAACAAAGACTTCCTGA
Cg2g002200 GTTTTGGTGAAAGAGAAGCTAAGCG AAGTCATTCCAGTTTGTCCTAGCTG

3. Results
3.1. Identification and Chromosomal Localization of JMJC Genes from Citrus grandis

In present study, according to the characteristics of the JMJC domain-containing
proteins (Pfam: PF02373), all 39 JMJC protein sequences were identified from Citrus
grandis and Arabidopsis thaliana using the PFAM (http://pfam.xfam.org/, accessed on
27 November 2021) and SMART (http://smart.embl.de/smart/set_mode.cgi?GENOMIC=
1, accessed on 27 November 2021) online databases. A total of 18 and 21 members were
present in Citrus grandis and Arabidopsis thaliana [20,24], respectively. As illustrated in
Table 2, the number of amino acids (AAs), molecular weight (Mw), and theoretical pI
was varied from 456 (Cg5g005310) to 1849 (Cg5g003020), 53.43 (Cg5g005310) to 189322.74
(Cg2g045510) kDa, and 5.06 (Cg5g005310) to 9.03 (Cg5g012890), respectively.

Table 2. JMJC identified in Citrus grandis.

Annotation Number AAs Mw (kDa) pI

Cg5g033850 789 88.59 6.70
Cg6g013700 1010 118.93 5.38
Cg2g031440 947 107.39 5.46
Cg5g018250 1755 193.70 8.22
Cg3g014720 976 111.60 5.25
Cg8g010020 1259 140.86 7.50
Cg7g013930 1135 128.62 7.30
Cg3g007850 874 98.63 8.18
Cg7g006840 1635 181.41 5.82
Cg5g005310 456 53.43 5.06
Cg5g006280 1666 187.79 8.67
Cg5g012890 926 106.20 9.03
Cg5g003020 1849 210.07 7.64
Cg2g041150 1004 114.88 8.28
Cg2g038450 1048 117.76 5.83
Cg2g045510 1395 189,322.74 8.55
Cg5g034880 518 59,185.24 5.24
Cg2g002200 401 45,456.52 5.23

Genome chromosomal location analyses using the MapChart software showed that
all 18 CgJMJCs were unevenly anchored to six chromosomes of Citrus grandis. Figure 1

http://pfam.xfam.org/
http://smart.embl.de/smart/set_mode.cgi?GENOMIC=1
http://smart.embl.de/smart/set_mode.cgi?GENOMIC=1
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includes the detailed location information. The results revealed that 18 CgJMJCs were
distributed across six chromosomes, including in chr2, chr3, chr5, chr6, chr7, and chr8.
Chromosome 5 (chr5) included the largest number (seven) of CgJMJC genes, followed by
five on chr2. In contrast, only one gene was distributed on chr6 and chr8.

3.2. Phylogenetic Analysis of JMJC Genes in Citrus grandis, Citrus sinensis, and Arabidopsis

To understand the phylogenetic relationships of the JMJC genes from Citrus grandis,
Citrus sinensis, and Arabidopsis thaliana, JMJC domain-containing protein sequences were
obtained to construct a phylogenetic tree (Figure 2). According to previous reported
conserved domains, all JMJC members were divided into five groups of KDM3, KDM4,
KDM5, JMJC, and JMJD6 [7]. As illustrated in Figure 2, the groups of KDM3, KDM4,
KDM5, JMJC, and JMJD6 included 6, 3, 4, 3, and 2 CgJMJC genes, respectively. There is
no doubt that KDM3 and KDM5 were the two largest groups. Different groups contained
different domain structures. In the KDM5 group, the domain architecture was diverse.
Frequently, five different conserved domains were shown in the KDM5 group, including
JMJ-N, JMJ-C, zf-C5HC2, FYRN, and FYRC. In addition, two genes contained additional
ARID, PLU-1, and PHD domains. Nevertheless, KDM3, KDM4, and JMJD6 included some
simple domains, such as Ring, WRC, zf-C5HC2, JMJ-N, JMJ-C, and FBOX. However, the
JMJC group only had a JMJC domain, and thus, could be referred to as the JMJC-domain-
only group. Interestingly, all JMJC members contained a common JMJC domain. It was
reported that the JMJC domain is a unique feature of the JMJC gene family, and is related
to the regulation of histone lysine demethylation [24]. Different domain structures also
performed different functions. For the five groups, the Ring, Zf-C5HC2, PLU-1, ARID,
FYRN, and FYRC domains had DNA binding functions. The DNA-binding domain may
contribute to the functioning of JMJC genes [24].

3.3. Gene Structure Analysis

To investigate and illustrate the gene structure and conserved motif characters of
CgJMJCs, a combined figure is presented in Figure 3, which contains a phylogenetic tree
and the gene structures for each CgJMJC gene. Since the CgJMJC members were divided
into five groups, including KDM3, KDM4, KDM5, JMJC, and JMJD6, the gene structures
of 18 CgJMJCs were also annotated within the phylogenetic context and visualized using
TBtools [31], as shown in Figure 3A. To gain more insight into the structural diversity of
the CgJMJC genes, the exon and intron structures of all CgJMJC genes were examined
by employing Gene Structure Display Server 2.0 [29]. As shown in Figure 3B, the exon
number caused a huge change, which may be associated with the splicing mutation in the
process of post-transcriptional regulation [35].

3.4. Cis-Element Analysis

Cis-acting elements are specific binding targets of transcription factors (TFs), which
can bind with TFs to activate or repress gene transcription. The expression ability and
level of the downstream genes regulated this process. The 1500 bp upstream sequences
from 18 CgJMJC genes were obtained to further elucidate the regulatory mechanisms of
JMJC-containing genes’ expression. Furthermore, the cis-elements were predicted using
PlantCARE (Figure 3, Table S1). In Figure 4, we present 11 cis-elements on the promoters
of 18 CgJMJC genes. Several cis-elements are involved in hormones, such as ABRE (ABA),
CGTCA-motif (MeJA), TCA-element (salicylic acid), TGA-element (auxin), and GARE-
motif (gibberellin). Among these components, all 15 CgJMJC genes included the abscisic
acid-responsive element (ABRE), which could be in response to abscisic acid and other
stresses [36]. These results suggested that CgJMJCs might be involved in the regulation of
metabolism in hormones that may control the fruit quality of “Huajuhong” (Citrus grandis
“Tomentosa”).According to the analysis, TGA-element and GARE-motif were discovered in
10 genes, and these are an auxin-responsive element and gibberellic acid, respectively [37].
Eleven genes contained the CGTCA-motif, which is a MeJA element [37]. In addition,



Horticulturae 2021, 7, 592 6 of 13

19 elements involved in light responsiveness were identified as containing GATA-motif
and G-box (light). Consequently, the cis-elements’ predictions suggested that CgJMJCs
might be involved in the regulation of light responsiveness and metabolism in hormones.

3.5. Expression Patterns in the Exocarps of “Huajuhong” (Citrus grandis “Tomentosa”) during
Various Development Stages

Three major varieties, “ZM” (ZhengMao), “FM” (FuMao), and “GQ” (GuangQing),
were used in this study. The three varieties are different in terms of both fruit appearance
and internal quality. To identify the expression pattern of the CgJMJC genes, the expression
profiles of the JMjC family in the exocarps of “Huajuhong” (“ZM”, “FM”, and “GQ”), with
fruits of 4, 6, 8 cm in diameter, were examined. Transcriptome data for in the exocarps
of “ZM”, “FM”, and “GQ” during various development stages were obtained from the
Illumina RNA-Seq data generated in this study. The heatmap was created based on the
FPKM-normalized log2 transformed values from different samples, which were plotted
to a heatmap employing TBtools. As illustrated in Figure 5 and Table S2, the expression
levels of Cg2g045510 in three varieties were quite high compared with other CgJMJC genes,
while the FPKM value of Cg5g012890 was close to 0, indicating that no gene expression
of Cg5g012890 was observed in these samples. Consequently, the relative expression
levels of 17 CgJMJC genes were determined by qPCR. As shown in Figure 6, the gene
expression patterns measured by qPCR were consistent with the RNA-Seq results. In
addition, we used the first sample (ZME-4, FME-4 and GQE-4) as a control to conduct
statistical analysis. The expression levels of Cg2g038450 and Cg8g010020 significantly
decreased during the fruit development in all three varieties. The expression amounts of
Cg2g031440 and Cg3g007850 also decreased significantly during the fruit development
of “ZM” and “GQ”, while Cg3g007850 first increased then decreased in “FM”. Moreover,
during the development of “FM” and “GQ”, the expression levels of Cg7g006840 and
Cg7g013930 decreased. The Cg2g041150 expression level only reduced in the fruits of
“GQ”. The expression amount of Cg3g014720 first increased and then decreased during the
development of the three fruit varieties. However, the general expression levels of the four
CgJMJC genes (Cg5g003020, Cg5g006280, Cg5g005310, and Cg6g013700) remained stable
for the three varieties.
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4. Discussion

As a famous traditional Chinese medicine, the fruits of Citrus grandis “Tomentosa”
have been utilized as a cure for chronic cough [38,39]. However, little information has been
reported about the epigenetic aspects of C. grandis. Previous studies demonstrated that
epigenetic modification can regulate the expression of genes, but the genetic characteristics
do not change [40], with these including DNA methylation [40], histone methylation [41],
and histone phosphorylation [42]. The JMJC-containing gene family was characterized
as being involved in histone demethylation [34]. The JMJC genes play an important role
in plant growth and development [23]. For instance, they can regulate the flowering
period [43]. In present study, 18 JMJC genes from Citrus grandis were researched in terms of
protein characteristics, chromosome location, phylogenetic relationships, protein domains,
and cis-elements.

Further studies showed that JMJC protein family members not only contained the
JMJC domain in animals, but also exhibited the histone demethylase function in plants [20].
Previous studies demonstrated that the JMJC members from Arabidopsis can be divided
into five subgroups, namely JMJC, JMJD6, KDM3, KDM4, and KDM5 [7]. Different sub-
groups contain different conserved domains. Notwithstanding, in this study, the results
of the analysis of the phylogenetic tree and gene structure showed that all 18 JMJC genes
identified from Citrus grandis were distributed into five subgroups. Therefore, the results
demonstrated that the JMJC members contained similarly conserved domains in one sub-
group, whereas there appeared to be significant differences among different subgroups.
The genes of one subgroup were in the same clade of a phylogenetic tree, which contained
a similar conserved domain and gene structure. However, different motif information and
gene structures were found among different subgroups. Through genome-wide screening
and phylogenetic analysis of the genes encoding JMJC domain proteins in Arabidopsis and
rice, the results found 21 and 20 JMJC protein family members, respectively, to be present in
Arabidopsis and rice [20]. Compared to Arabidopsis and rice, the number of CgJMJC genes
decreased (from 21, to 20, to 18), which indicated that the number of CgJMJC genes shrinks
in the process of evolution [23]. Furthermore, CsJMJs were distributed at chromosomes 2,
3, 5, 6, 7, and 8. Chromosome 5 included six CsJMJs [23]. In the present study, the results
revealed that 18 CgJMJCs were distributed across six chromosomes, including in chr2,
chr3, chr5, chr6, chr7, and chr8. Chromosome 5 (chr5) included the largest number (7) of
CgJMJC genes. The distribution of CgJMJC genes on the chromosomes was identical to
that of CsJMJs.

Previous studies demonstrated that the abscisic acid-responsive element (ABRE) is
related to fruit development in strawberry [44]. In this paper, according to the cis-element
analysis, the promoters of 18 CgJMJC genes contained the ABRE element, which might be
related to the development of Citrus grandis “Tomentosa” in an ABA-dependent manner. In
addition, the expression patterns of 18 CgJMJC genes were identified via RNA-seq and 17 of
them were confirmed using qRT-PCR. The results revealed that, with the exception of four
CgJMJC genes (Cg5g003020, Cg5g006280, Cg5g005310, and Cg6g013700), the expression
levels of the remaining 13 CgJMJCs significantly changed (increased or decreased) during
the fruit development process, indicating that they might be involved in fruit growth. In
addition, some CgJMJC genes (e.g., Cg5g018250, Cg2g031440, Cg3g007850, etc.) exhibited
different expression patterns in the three varieties of C. grandis “Tomentosa”, suggesting
that they might play a role in the formation of unique phenotypes such as fruit appearance
or secondary metabolites synthesis.

The functions of the JMJC family are diverse, and are related to both stress resistance
and fruit development [23]. Moreover, JMJC genes also regulate the expression of related
genes through epigenetic modification to ensure the integrity of genome structure and
function [45]. In summary, the analysis of the characteristics and expression patterns
of the JMJC gene family could provide a basis for further research on the mechanism
underpinning JMJC gene functioning during the developmental regulation of C. grandis
“Tomentosa” fruits.
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5. Conclusions

In conclusion, the JMJC genes from Citrus grandis “Tomentosa” were identified and
compared with the JMJC family members from Arabidopsis, and Citrus sinensis. The phylo-
genetic tree analysis, conserved motifs, and gene structure characterization of the 18 JMJC
genes indicated the conserved nature of these genes when comparing them in terms of
subgroups, while there was also significant divergent in these groups. In addition, the
chromosomal location analyses showed that all 18 CgJMJCs were unevenly anchored to six
chromosomes. Furthermore, RNA sequencing analysis suggested that the JMJC gene family
from Citrus grandis “Tomentosa” may play a role in the fruit’s development, along with the
equilibrating of gene expression, by regulating histone methylation. The comprehensive
characterization of JMJC family from C. grandis may provide a basis for the future research
of CgJMJC genes.
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