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Abstract: In this study, we determined the germination response in the seeds of the rare plant
Pseudolysimachion pusanensis (Y. N. Lee) Y. N. Lee to different temperatures. P. pusanensis seeds
were collected from the Baekdudaegan National Arboretum, South Korea, in November 2019, and
dried. Dry seeds were placed at constant and alternating temperatures (5 ◦C, 10 ◦C, 15 ◦C, 20 ◦C,
25 ◦C, 30 ◦C, and 35 ◦C) to determine their germination percentage (GP). The seeds were exposed
to 59 temperature combinations ranging from 5 ◦C to 43 ◦C using a thermal gradient plate. The
photoperiod was set at 12:12 h (light:dark) and germination assays were performed five times a week.
Subsequently, the seed GP and the number of days required to reach 50% of the germination (T50)
were determined. The highest final GP was 94.38%, with a T50 value of 9.26 d at 15 ◦C. However,
the mean germination time was 12.5 d at 15 ◦C, and linear regression using 1/T50 revealed that the
base temperature ranged from 2.69 ◦C to 4.68 ◦C. These results for P. pusanensis seeds stored in a
seed bank provide useful data for the native plants horticulture industry and can also be utilized for
storage management.

Keywords: seed germination; thermal gradient plate; seedbank; Pseudolysimachion pusanensis; base
temperature; storage management

1. Introduction

Species in the genus Veronica represent a large group of annual or perennial herbs [1]
that are distributed across Eurasia in the northern hemisphere through to the southern
hemisphere (Australia, New Zealand, New Guinea) [2,3]. The Veronica subgenus Pseudolysi-
machium comprises approximately 450 species and is used for ornamental horticulture
in gardening, including V. spicata and V. longifolia [4,5]. This subgenus is particularly
popular in horticulture because the flowers bloom from spring to autumn, resulting in
a long flowering period. Moreover, these species are easy to manage when planted in a
garden. In addition, this subgenus has gained attention in recent years due to the ease of
hybridization, and the addition of various flower colors and new cultivars [6].

Veronica pusanensis Y. N. Lee [7] was first identified in Gijang-gun, Busan, Republic
of Korea, and exhibits several morphological differences compared to other species of the
genus. Therefore, Y. N. Lee renamed V. pusanensis as Pseudolysimachion pusanensis (Y.‘N.
Lee). Y. N. Lee [8]. P. pusanensis is a rare plant that is classified as data-deficient [9] and
is distributed only in Busan [10]. P. pusanensis is characterized by purple racemes and
is of dwarf type, and grows by crawling along the ground. To maintain P. pusanensis
horticulturally with different traits and to conserve the genetic resources of this rare plant,
it is important to investigate its optimal conditions for growth.

In Korea, basic growth research has been carried out for enhancing the develop-
ment of new ornamental plants and cultivating excellent varieties of 20 plant species in
the genus Veronica [11] in order to understand the flowering and light conditions of the
genus [12], along with plant propagation research through stem cutting using various
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types of auxins [13]. Although this research is actively conducted to secure the breeding
material of native genera, the primary method to protect and preserve original species
remains seed storage. Internationally, seeds are stored in seed vaults and seed banks. In
2008, the Svalbard Global Seed Vault in the frozen Norwegian island of Spitsbergen was
commissioned for the storage of crop seeds, and the Baekdudaegan Global Seed Vault
(BGSV) was instituted at the Baekdudaegan National Arboretum to store the seeds of wild
plants [14]. Seed bank collections of wild species contribute to habitat restoration and
species reintroductions [15–17]. Therefore, further investigations on seed germination and
seedling growth are necessary to effectively use the seeds of wild species and maintain the
processes in seed banks.

Additionally, wild plant seeds show different types of dormancy and dormancy
depths [18]. Dormancy is a crucial plant trait to prevent germination during unfavorable
conditions, and serves as insurance for seed survival [19,20]. Among the genus Veronica,
V. parnkalliana seeds show morphophysiological dormancy (MPD) due to undeveloped
embryos and the inhibition of the physiological mechanism in the embryo [18,21], and
V. kiusiana seeds show non-deep simple MPD according to the physiological dormancy
depth [10]. Conversely, V. pusanensis, V.‘dahurica, V. rotunda, V. nakaiana, V. pyrethrina, and
V. kiusiana show morphological dormancy (MD) due to undeveloped embryos [10].

The base temperature refers to the basic temperature requirements of herbaceous
species for seed germination and emergence. The estimation of the base temperature
can help to predict seed germination and determine the suitable sowing time based on
the local temperature [22]. Germination processes are regulated by the accumulated
temperature above the base temperature [23]. Further, the seed germination index indicates
the dynamics of the germination process, allowing for a comparison of species with similar
germination [24].

With the aim of contributing to the horticulture industry using native plants, in
this study, we investigated the most basic morphology of P. pusanensis seeds and further
estimated the base temperature, according to the germination index, for the germination of
dry P. pusanensis seeds.

2. Materials and Methods
2.1. Material Collection and Seed Processing

P. pusanensis seeds were collected from the exhibition garden of the Baekdudaegan
National Arboretum (Bonghwa-gun, 37◦00′31.3′′ N 128◦49′49.0′′ E). In Bonghwa-gun, the
average annual temperature ranges from −3 ◦C to 22.5 ◦C and the annual rainfall is
>1229 mm.

P. pusanensis plants exhibit indeterminate inflorescence; therefore, they produce differ-
entially matured seeds. The basal flowers of the inflorescence used in this study bloomed at
the end of August, whereas the uppermost flowers bloomed in mid-October. Plants, with
seeds just before their release from the inflorescence, and free from insects, were collected
on 20 November 2019. Subsequently, they were dried under the tree canopy, and then were
passed through various sieves and winnowed to extricate the filled seeds. Filled seeds
were then dried in a drying room [temperature: 15 ◦C; relative humidity (RH): 15%] and
sealed in aluminum packages for storage in a short-term storage room (temperature: 4 ◦C;
RH: 15%) in December 2019 until further experiments. During the experiments, the seeds
were stored with silica gel over the short term.

2.2. Seed Morphology

Ten seeds and a seedling were photographed using a digital microscope (Leica Mi-
crosystems DVM6-Leica PlanApo; Leica, Wetzlar, Germany) to determine their morphol-
ogy. Seed size was measured from digital images captured using the DVM6 microscope
equipped with the Leica Application Suite X (LAS X) software. Seed images were captured,
and the seed length, width, and cross-sectional area, along with the length of the embryo
at dispersal and just before germination, were measured using the digital microscope and
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associated software. Subsequently, embryo:seed (E:S) ratios at seed dispersal and just
before germination were assessed using paired t-tests.

2.3. Estimation of 1000-Seed Weight

Ten replicates with 100 seeds were weighed and used to calculate the mean 1000-seed weight.

2.4. Estimation of Initial Seed Moisture Content (MC)

Seed MC (%, fresh-weight basis) was determined before storage in sealed containers
at the Baekdudaegan seed bank. In the drying room, seeds were equilibrated for 1–2 weeks
to reach the equilibrium point (RH: 15%) to measure their equilibrium relative humidity
(ERH) using a Rotronic hygrometer (HC2-AW; Rotronic Instruments UK Ltd., Crawley, UK)
connected to HW4-E software V3.9.0 [25]. Seed MC was then determined using the low-
temperature oven drying method, as detailed by the International Seed Testing Association
(ISTA) [26].

Briefly, samples were ground and placed on aluminum foil dishes, with each ground
seed weighing 1 g. Seeds were dried at 103 ± 2 ◦C for 17 ± 1 h [26] and cooled in a
desiccator. After cooling, seeds were weighed to determine weight loss. All samples were
assessed in quadruplicates.

Seed MC was calculated using the following formula and expressed as a percentage
of the fresh seed weight:

MC = [(weight of fresh seeds − weight of dried seeds)/weight of fresh seeds] × 100 (1)

2.5. Estimation of Total Protein Content

Seeds were ground and their protein content was determined via the standard Kjeldahl
method [27] using a Kjeltec analyzer (Kjeltec 8400; FOSS Ltd., Hillerød, Denmark). Protein
content estimation was performed in triplicates, and a factor of 6.25 was used with the N
content [27]. The values obtained were then averaged.

2.6. Total Crude Fat Extraction Using the Soxhlet Method

Total crude fat was extracted from the seeds using a Soxhlet extractor, which was
developed by Franz von Soxhlet in 1879 for the extraction of lipids from a solid material
(seeds) to determine the percentage of crude fat.

Seeds were ground to a particle size of <0.1 mm in liquid nitrogen using a mortar
and pestle. Approximately 1 g of crushed seeds were weighed and transferred to a
28 mm × 100 mm cellulose thimble (No. 84; Advante Corp., Tokyo, Japan). Subsequently,
approximately 100 mL of diethyl ether (boiling point: 60–80 ◦C) was boiled in a Soxhlet
apparatus (100 mL round-bottomed flask) fitted with a condenser, using an electrothermal
heater (EAM 9202-06; Tops Misung Scientific Co., Seoul, Korea), and crude fat was extracted
under reflux with petroleum ether for 16 h (3–4 cycles/h) according to the International
Official Methods of Analysis (AOAC) section 920.39 [27]. The water cooler (HB-207M;
Hanbaek Corp., Bucheon, Korea) was maintained at 3–4 ◦C using a solvent mixture of
methanol:water (1:9). Upon completion of extraction, the defatted sample was removed.
The distillation flask containing the total crude fat was then oven-dried at 50 ◦C for 15 min
and cooled in a desiccator. The flask and its contents were then weighed.

All extractions were performed in quadruplicates, and the mean crude fat content was
calculated using the following formula and expressed as a percentage of seed weight.

Total crude fat content (%) = [W3 −W2/W1] × 100 (2)

where W1 is original weight of the sample, W2 is weight of the empty flask, and W3 is
weight of the flask and fat.
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2.7. Germination Test and Index

Germination test under different temperature regimes as described in Section 2.8 were
performed on 14 April 2020. Four replicates with ten seeds each per condition were sown
on the surface of 1% agar (Sigma-Aldrich, St. Louis, MO, USA) in 60 mm × 15 mm plastic
Petri dishes (SPL Life Sciences Co. Ltd., Pocheon, Korea). The number of germinated
seeds was counted on weekdays for five weeks. Germinated seeds, with radicle length
of 0.5–1 mm, were then observed under the digital microscope. The experiments were
terminated when no further germination was observed for over one week.

Final viability of non-germinated seeds was verified using the triphenyltetrazolium
chloride (TTC) test. The non-germinated seeds were immersed in a 1% aqueous solution of
2,3,5-triphenyl-2H-tetrazolium chloride at 30 ◦C overnight (12 h). We identified the viable
and nonviable seeds using a microscope; pink- or red-stained embryos were considered
viable, whereas unstained embryos were considered nonviable [18].

The germination index was calculated based on the germination percentage (GP),
mean germination time (MGT), and 50% of the final germination (T50). GP was calculated
using the following formula [26]:

GP = (N/S) × 100, (3)

where N is the sum of the number of seeds germinated until the end of the germination
test and S is the total number of seeds.

The final germination percentage (FGP) was calculated using the total number of sow
seeds, excluding dead seeds (unstained embryos), as the parameter.

MGT was estimated using the following formula [28]:

MGT = Σ(Ti × Ni)/N, (4)

where Ti is the number of days from the beginning of germination until day T and Ni is the
number of seeds germinated on day T.

T50 was determined using the formula given below [29]:

T50 = ti + [{(N + 1)/2 − ni} × (tj − ti)]/(nj − ni), (5)

where ti is time period before reaching 50% of the final germination, ni is the number of
seeds that emerged at ti, tj is the time after ti, and nj is the number of seeds that emerged
at tj.

2.8. Temperature Regimes
2.8.1. Experiment 1: Seven Constant Temperature Regimes

Each plastic Petri dish was placed in a transparent plastic box and kept in a germi-
nation chamber (TGL-1S; Espec Mic Corp., Aichi, Japan) and then in a growth chamber
(TGC-130H; Espec Mic Corp., Aichi, Japan) at 5 ◦C, 10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C, and
35 ◦C, with 12:12 h (light:dark) cycles for all temperature regimes. The seeds were sown in
agar medium and examined for germination, as described in Section 2.7.

2.8.2. Experiment 2: Fifty-Nine Different Temperature Regimes

The base temperature (Tb) was defined using a linear model of development rate
against temperature. To determine the base temperature, the seeds were incubated in a
microthermal gradient plate (ONSOL Corp., Suwon, Korea) with a 12:12 h (light:dark)
photoperiod (white fluorescent light: 40 ± 10 µmol·m−2·s−1). The thermal gradient plate
(TGP) was based on 60 temperature combinations of 10 × 6 (horizontal × vertical) with
a temperature range of 7–43 ◦C at 4 ◦C intervals and 5–30 ◦C at 5 ◦C intervals. However,
during the evaluation process, an abnormal temperature occurred in one cell, and it was
recorded in the data logger. It was excluded because the data were not reliable outside
the evaluation temperature range (±1 ◦C). Therefore, only 59 conditions were used for
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data analysis. The Petri dishes were placed in a completely randomized design on the TGP.
There are instructions found in 2.7 for agar medium conditions, germination checking, etc.

2.9. Statistical Analysis

Data were analyzed using SPSS 23.0 (SPSS Inc., Chicago, IL, USA). Statistically signifi-
cant differences between the variables were determined using one-way analysis of variance
with Tukey’s multiple range tests assessed at p < 0.05. Linear regression plots and graphs
were generated using SigmaPlot 12.5 software (Systat Software Inc., San Jose, CA, USA).

3. Results
3.1. Seed Morphology

P. pusanensis plants exhibit indefinite inflorescences (Figure 1a). The flowers have
inferior ovaries (Figure 1b) with ovules inside. When the ovaries mature, their color changes
from green to reddish brown, and they become dry and release seeds (Figure 1c,d). The
seeds were glossy, flat and round, and 1.05 ± 0.21 mm (length) × 0.96 ± 0.17 mm (width)
in size, with light or dark brown testae (Figure 1e,f) and undeveloped embryos at dispersal
(Figure 1g). The E:S ratios at dispersal and just before germination were 0.44 ± 0.05 and
0.69 ± 0.08, respectively, indicating an increase of 56.0 ± 2% during germination. After the
embryo developed, the radicle emerged through the hilum of the seed (Figure 1h).

3.2. Seed Characteristics

When the seeds reached an ERH of 17.58%, the seed MC and 1000-seed weight were
4.32 ± 0.05% and 0.1188 ± 0.0011 g, respectively. Additionally, the total crude fat and
protein contents of the seeds with a FGP ≥ 85% were 22.43 ± 3.32% and 15.94 ± 0.09%,
respectively.

3.3. Constant Temperature Regimes

The cumulative germination in P. pusanensis seeds was not affected at 35 ◦C. However,
the GP varied from 0.0 to 90.0 ± 7.07% for temperature regimes ranging from 5 ◦C to 35 ◦C.
Further, the GP increased from 5 ◦C to 15 ◦C, but began to decrease with a further increase
in temperature (Figure 2). The TTC test was used to determine the number of viable and
non-viable seeds, and it reflected the average FGP. The highest FGP (94.38 ± 3.29%) was
observed five weeks after sowing at 15 ◦C.

The germination index of the seeds was determined using the MGT and the inverse
of the time required to reach 20%, 50%, and 80% of the FGP (1/T(FGP), d−1). Moreover,
1/T(FGP) was plotted as a function of temperature and was analyzed using linear regression.
When 1/T(GP) = 0, we estimated the base temperature (Tb).

P. pusanensis seeds exhibited the fastest response time, with T20 = 4.50 days, T50 = 5.38 days,
and T80 = 7.80 days at 25 ◦C, and inverse values of 0.222, 0.186, and 0.128, respectively (Figure 3).
Similar values were obtained for the germination index of MGT. However, at 5 ◦C and 25 ◦C,
the germination index could not be determined because of a low GP. By contrast, the slowest
response was observed at 10 ◦C (0.0432) in the sub-optimal range. A Tb value of 3.98 ± 0.65 ◦C
was obtained when linear regression plots were fitted with 1/T(FGP). These results demon-
strated that a constant temperature of 15 ◦C affected germination in P. pusanensis. Furthermore,
the initial GP and T50 were at 5 days after sowing (data not shown) and 9.2 days, respectively.



Horticulturae 2021, 7, 577 6 of 12Horticulturae 2021, 7, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 1. Morphology of Pseudolysimachion pusanensis (Y. N. Lee) Y. N. Lee. (a) A field of P. pusanen-
sis at Bonghwa-gun. (b) Flowers on the basal inflorescence bloomed on 3 August, 2019. (c) Flowers 
on the distal inflorescence bloomed on September 30, 2019. (d) The seed color in the ovaries varied 
from green to brown on October 20, 2019. (e) Seeds at dispersal. (f) Digital image of a seed. Cross-
section of a seed showing (g) an undeveloped embryo and (h) radicle emergence; scale bar = 1 mm 
(applies to (e–h)). 

Figure 1. Morphology of Pseudolysimachion pusanensis (Y. N. Lee) Y. N. Lee. (a) A field of P. pusanensis
at Bonghwa-gun. (b) Flowers on the basal inflorescence bloomed on 3 August, 2019. (c) Flowers on
the distal inflorescence bloomed on September 30, 2019. (d) The seed color in the ovaries varied from
green to brown on October 20, 2019. (e) Seeds at dispersal. (f) Digital image of a seed. Cross-section
of a seed showing (g) an undeveloped embryo and (h) radicle emergence; scale bar = 1 mm (applies
to (e–h)).
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linear relationships between 1/T(FGP) and temperature in the sub-optimal range. The dotted line, solid 
line, and short dashed line indicate the linear regression for 1/T20, 1/T50, and 1/T80, respectively, pass-
ing through the base temperature (Tb). The Tb values were 4.56 °C, 4.68 °C, and 2.69 °C for 1/T20, 
1/T50, and 1/T80, respectively. Vertical bars indicate standard errors (n = 4). Same lowercase letters 
indicate no significant difference (p < 0.001). 

3.4. Alternating Temperature Regimes 
To verify whether constant temperature regimes affect germination, a TGP was used 

to conduct different temperature experiments, with 58 alternating and constant (15 °C) 
temperature conditions. The highest FGP (86.6%) was observed at 15 °C in the tempera-
ture regime (Figure 4a), with a T50 value of 9–10 d (1/T50: 0.10–0.11 d−1) (Figure 4b). Most 
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5 ◦C to 35 ◦C. Bars represent mean ± SE (n = 4). Same lowercase letters above columns indicate no
significant difference (p < 0.001).
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Figure 3. Effect of constant temperature regimes (5 ◦C, 10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C, and
35 ◦C) on the inverse of the time required to reach the FGP (1/T(FGP)) and mean germination time,
revealing linear relationships between 1/T(FGP) and temperature in the sub-optimal range. The
dotted line, solid line, and short dashed line indicate the linear regression for 1/T20, 1/T50, and
1/T80, respectively, passing through the base temperature (Tb). The Tb values were 4.56 ◦C, 4.68 ◦C,
and 2.69 ◦C for 1/T20, 1/T50, and 1/T80, respectively. Vertical bars indicate standard errors (n = 4).
Same lowercase letters indicate no significant difference (p < 0.001).

3.4. Alternating Temperature Regimes

To verify whether constant temperature regimes affect germination, a TGP was used
to conduct different temperature experiments, with 58 alternating and constant (15 ◦C)
temperature conditions. The highest FGP (86.6%) was observed at 15 ◦C in the temperature
regime (Figure 4a), with a T50 value of 9–10 d (1/T50: 0.10–0.11 d−1) (Figure 4b). Most
seeds germinated up to 50% until the temperature reached 23 ◦C, but the FGP markedly



Horticulturae 2021, 7, 577 8 of 12

decreased above 27 ◦C. Furthermore, the greater the temperature difference between light
(day) and dark (night) periods, the lower the FGP (Figure 5).
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Figure 5. Relationship between the amplitude of temperature alternation (◦C) and FGP (%) deter-
mined using the thermal gradient plate, with the temperatures during the light period being higher
than those during the dark period.

4. Discussion
4.1. Seed Morphology and Characteristics

P. pusanensis, a rare species due to its small population, is classified as a protected
species. It grows lying on the ground at short heights and has light blue flowers in
racemes. The flowers at the end of the inflorescences stick together. The seeds in this
study were collected one month after the inflorescences bloomed and all ovaries turned
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from green to brown. At this time, some seeds were released from the basal flowers of an
inflorescence. The shape of the seeds was as flat and round as a coin, and their average
size was 1.05 × 0.96 mm (L ×W). The E:S ratio during dispersal was 0.44. If the E:S ratio
is 0.5 or less, the dormancy type is morphological dormancy (MD) and MPD [30]. Song
et al. [10] found that the average length of V. pusanensis seeds collected from Pocheon
on 23 September 2016 was 1.14 mm. Additionally, the seeds were of dwarf type (size:
0.3–2.0 mm) with an axile embryo [31]. Physiological dormancy in the embryo or tissue
surrounding the embryo, which secretes a growth inhibitory agent to inhibit germination,
was not observed, and because the E:S ratio increased, the dormancy was judged as
morphological dormancy. The analysis results of the internal and external morphology
showed that there was no visible structural difference, but the time of seed collection and
the environmental conditions of the collection area (climate, precipitation, etc.) contributed
to seed formation. Further, P. pusanensis had a high germination percentage at 15 ◦C due
to the effect of breaking MD. During seed production, the environment has a significant
impact on the behavior of progeny seeds [32]. The environmental conditions (temperature)
near the parent tree can affect the germination percentage of their offspring, and can even
affect later generations [33,34]. This has been demonstrated in wild and cultivated species.
Further, the temperature difference in the parental environment can affect the degree of
dormancy and germination behavior [35]. In addition to temperature changes, the altitude
and season have been found to affect seed dormancy and offspring seed characteristics [32].

In this study, the MC of dried P. pusanensis seeds after collection was 4.32%, and the
1000 seed weight was 0.1188 g; these parameters were used to determine the number
of seeds to be stored in the seed bank. MC is the most important factor responsible for
maintaining seed viability in seed banks, and plays critical roles in determining the seed
longevity [36]. Even small changes in the MC have remarkable effects on the shelf life of
seeds [37]. Orthodox seeds are suitable for long-term storage if they have an MC of less
than 8% at a 15% RH [38]. Furthermore, seeds stored at 4–5% MC are unaffected by seed
storage fungi [39]. According to the present study, the MC of P. pusanensis seeds was less
than 8%, which is suitable for long-term storage. According to the Kew seed information
database [30], the storage behavior of 76 species of the Veronica genus was revealed. Among
the 76 species, 98.68% were orthodox seeds, which could be stored in the seed bank for
more than one year, while the storage of the remaining 1.32% was uncertain. Therefore,
P. pusanensis seeds were considered orthodox.

In this study, for the first time, the fat and protein contents of P. pusanensis seeds were
reported. The Kew seed information database has not reported any information about
P. pusanensis in the genera Veronica and Pseudolysimachion. In the genus Veronica, 116 species
were investigated for their storage behavior, mean 1000-seed weight, germination infor-
mation, and oil and protein content. In the genus Pseudolysimachion, two species were
investigated for their storage behavior and germination information. Of these, only three
had information on their total crude fat and protein contents. The species with the highest
total crude fat content were Veronica spicata L. (31.0%), Veronica longifolia L. (18.5%), and
Veronica salina Schur (15.8%). The total crude protein content decreased in the following
order: Veronica longifolia L. (27.5%) > Veronica spicata L. (26.2%) > Veronica salina Schur
(21.4%). The total crude fat content of P. pusanensis was intermediate (22.4%), while its total
crude protein content was the lowest, at 15.9%.

Information of seed characteristics is essential for the germination of stored seeds
and is necessary to manage seed banks. This is because storage lipids are metabolized in
seeds that require high energy for germination [40]. Furthermore, seed storage proteins are
synthesized to serve as sources of carbon, nitrogen, and sulfur for the next generation of
plants [41]. Additionally, the components of a seed (proteins, lipids, and starch) are related
to seed longevity. When fat is oxidized due to aging during storage [42], the total crude fat
content varies, thereby reducing the seed viability Therefore, to continuously maintain the
viability of P. pusanensis seeds in the seed bank, seed characteristics that affect the lifespan
and germination of seeds must be continuously monitored; additionally, the renewal cycle
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should be determined to maintain viability. Seeds stored in the seed bank will lose their
viability and longevity during storage. Since the longevity of seeds and the time it takes
for the viability to decrease by 50% differ for each species, it is necessary to establish a
renewal cycle for each species so that seeds in a seed bank can be efficiently managed. We
are currently conducting follow-up studies to reveal the lifespan and renewal cycle for the
species conservation of P. pusanensis.

4.2. Temperature Regimes

During condition 7 of the constant temperature experiment (5 ◦C, 10 ◦C, 15 ◦C, 20 ◦C,
25 ◦C, 30 ◦C, 35 ◦C), the seeds showed 94.38% of FGP at 15 ◦C, suggesting that the
appropriate germination temperature for the seeds of P. pusanensis was 15 ◦C. In addition,
it is considered to promote germination by breaking morphological dormancy. According
to a previous study, V. pusanensis seeds showed >80% FGP in the temperature range of
15–25 ◦C. Comparing the germination response, P. pusanensis seeds exhibited a similar
trend in GP, which increased with a certain increase in temperature and then decreased.
However, at 25 ◦C, the temperature reactions were different from the previous study.
Further, at 15 ◦C, 20 ◦C, and 25 ◦C, P. pusanensis showed a FGP of 94.38%, 74.44%, and
37.5% and MGT of 12.8 d, 3.9 d, and 1.2 d, respectively. However, previous studies did
not report the exact value, and the range was inferred graphically [10]. At 15 ◦C, 20 ◦C,
and 25 ◦C, the GP was reported to be 80–94.0%, more than 94.0%, and more than 94.0%,
and the MGT was less than 10 d, 4.6 d, and 4.8 d, respectively. Although the two studies
differed in the number of collection areas and the type of medium, it can be inferred that
the germination response, such as germination (%) and germination rate (MGT, T50), was
observed at 15 ◦C in both studies. Further, there was a difference in the treatment at
20 ◦C and 25 ◦C, and, in particular, the opposite response was shown at 25 ◦C. Based on
the results of the constant temperature experiment in the two studies, the most suitable
temperature for breaking morphological dormancy and germination was judged to be
15–20 ◦C. These differences may be associated with differences in the GP across sampling
areas. The percentage of seed germination for a species has been reported to be associated
with specific environmental characteristics, including the total amount of precipitation
and the variation in annual precipitation in the distributional range of the species [43–45].
Heteropappus arenarius Kitam., a species native to Korea, collected from different latitudes
and longitudes, exhibited a different GP with temperature [45]. A Korean endemic species,
Abies koreana Wilson, exhibited significantly different germination percentages and rates
among populations [46].

Differences in the FGP of P. pusanensis may be related because of different distribution
areas, and its indeterminate inflorescence. P. pusanensis seeds used for this study were
collected from ovaries, except the basal flowers of the inflorescence of the mother plants.
Furthermore, seeds produced at different heights of the parent plant exhibit differences in
the level of dormancy and seed size, resulting in differences in dormancy breaking and
germination requirements [47,48]. Seeds harvested from inflorescences at three different
positions at the same time revealed that those collected from the bottom of the inflorescence
(first seeds) exhibited a higher GP and fewer abnormalities than those collected from the
second and third positions, which may exhibit different germination characteristics [49].
Chelidonium majus subsp. asiaticum Hara and 39 species have been reported to exhibit
different germination characteristics depending on their location [18].

During condition 59 of the temperature experiment using TGP, the dormancy break
and amplitude of temperature difference were negatively correlated. In the alternate
temperature experiment, the lower the amplitude of temperature, the greater the dormancy
breaks and the higher the possibility of germination (60.0%). Among the 59 conditions, in
11 conditions, P. pusanensis seeds had an FGP of 0–10%, and the night temperature had
no effect.
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5. Conclusions

In summary, according to the two temperature regime results, 15–20 ◦C was rede-
fined as the optimum germination temperature range for P. pusanensis seeds, and it can
be concluded that the smaller the amplitude of temperature alternation, the greater the
morphological dormancy break, thereby increasing the possibility of germination. Addi-
tionally, theoretical conclusions were acquired on the basic characteristics and germination
of P. pusanensis seeds. These results for P. pusanensis seeds stored in a seed bank provide
useful data for ecological restoration and can also be applied for storage management. The
findings will also be significant for the native plant horticulture industries.
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