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Abstract: As emerging essential regulators in plant development, long non-coding RNAs (lncRNAs)
have been extensively investigated in multiple horticultural crops, as well as in different tissues
of plants. Tomato fruits are an indispensable part of people’s diet and are consumed as fruits and
vegetables. Meanwhile, tomato is widely used as a model to study the ripening mechanism in fleshy
fruit. Although increasing evidence shows that lncRNAs are involved in lots of biological processes
in tomato plants, the comprehensive identification of lncRNAs in tomato fruit during its expansion
and ripening and their functions are partially known. Here, we performed strand-specific paired-end
RNA sequencing (ssRNA-seq) of tomato Heinz1706 fruits at five different developmental stages,
as well as flowers and leaves. We identified 17,674 putative lncRNAs by referencing the recently
released SL4.0 and annotation ITAG4.0 in tomato plants. Many lncRNAs show different expression
patterns in fleshy fruit at different developmental stages compared with leaves or flowers. Our
results indicate that lncRNAs play an important role in the regulation of tomato fruit expansion and
ripening, providing informative lncRNA candidates for further studies in tomato fruits. In addition,
we also summarize the recent advanced progress in lncRNAs mediated regulation on horticultural
fruits. Hence, our study updates the understanding of lncRNAs in horticultural plants and provides
resources for future studies relating to the expansion and ripening of tomato fruits.

Keywords: fruit ripening; fruit expansion; lncRNAs; horticultural crop; ssRNA-seq

1. Introduction

Non-coding RNAs (ncRNAs) belong to a subclass of eukaryotic transcripts that do
not encode proteins [1–3]. The ncRNAs have emerged as the major products of the eu-
karyotic transcriptome with regulatory importance and function in various biological
processes in both mammals and plants [4,5]. According to the regulatory roles, ncRNA
can be divided into housekeeping ncRNAs and regulatory ncRNAs [6]. Housekeeping
ncRNAs are abundantly and ubiquitously expressed in cells, which primarily regulate
generic cellular processes. In contrast, regulatory ncRNAs are generally considered as
crucial regulatory RNA molecules, regulating gene expression at epigenetic, transcriptional,
and post-transcriptional levels [6]. Housekeeping ncRNAs include rRNAs, tRNAs, small
nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and telomerase RNAs. In ad-
dition, regulatory ncRNAs contain microRNA (miRNA), small interfering RNAs (siRNAs),
piwi-interacting RNAs (piRNAs), promoter-associated transcripts (PATs), enhancer RNAs
(eRNAs), circular RNAs (circRNAs), Y RNAs, and long noncoding RNAs (lncRNAs) [7–9].
LncRNAs longer than 200 nucleotides are a wide-spread subset of ncRNAs in the eukary-
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ote, emerging as essential regulators in plant growth and development [10–13], stress
response [13–16], multiple metabolic pathways [17–20], and fruit ripening [21–23].

According to the genomic origins of lncRNAs, they are further divided into three
categories in plants: (i) long intergenic ncRNAs (lincRNAs), (ii) intronic ncRNAs, and
(iii) natural antisense transcripts (NATs) transcribed from complementary DNA strands of
their associated genes [24]. At the beginning of studying lncRNAs, the differential display
reverse transcription PCR (DDRT-PCR) was used to analyze the expression of the CsM10
gene in cucumber [25]. Later, a pollen-specific gene Zm401, which also functions as a
short open reading-frame mRNA (sORF mRNA) and/or noncoding RNA (ncRNA), was
found to regulate other development [26]. With the development and advancement of
sequencing technologies, lncRNAs have been widely identified and studied in both model
and crop plants, such as Arabidopsis thaliana [27,28], Oryza sativa [29], Zea mays [30], Solanum
lycopersicum [31], Triticum aestivum [32], Glycine max [33], Solanum tuberosum [34], Medicago
truncatula [35], and Cucumis sativus [36]. For example, more than two thousand rice lncRNAs
were identified through strand-specific RNA sequencing (ssRNA-seq) of rice anthers, pistils,
seeds, and shoots, indicating their tissue-specific and stage-specific characteristics [37].
Similarly, wheat lncRNAs are also tissue-specific and are induced mainly by powdery
mildew and heat stress [38]. In Arabidopsis, thousands of long lincRNAs are dynamically
regulated after various stress treatments [27]. About 584 lncRNAs were identified and
responded to simulated drought stress in Setaria italic [39]. In addition, lncRNAs are essential
to reproductive growth in plants as well. For instance, a long-day-specific male-fertility-
associated lincRNA, LDMAR, is crucial to rice fertility under long-day conditions [40].
Moreover, in Arabidopsis, two different classes of lncRNAs transcribed from FLC, COLDAIR,
and COOLAIR are involved in the epigenetic modification of the floral repressor gene
FLC [41,42]. In early-flowering Arabidopsis ecotypes, the antisense long (ASL) transcript
physically associates with the FLC locus and H3K27me3, indicating that ASL and COOLAIR
play different roles in FLC silencing [43]. In rice and Arabidopsis, lncRNAs are involved in
phosphate homeostasis [44,45]. These studies suggest that lncRNAs have multiple roles in
plants, and lncRNAs could be diversely regulated to facilitate plant adaptation to changed
environmental conditions and to deal with the internal response signals of plants as well.

The tomato (Solanum lycopersicum) fruit is a model used to understand the biology of
fleshy fruit development and ripening [46]. The changes in color, flavor, aroma, texture,
and nutrition of pulp during growth are emerging as important indexes of tomato fruit
quality [47], and the molecular mechanism of fruit ripening is a group of closely coordi-
nated and regulated physiological and biochemical processes [48]. Intensive studies of
lncRNAs have shown their importance in the regulation of tomato fruit ripening and de-
velopment. Tomato lncRNAs have been widely studied in recent years (Table 1). Generally,
tomato lncRNAs have been identified and reported to be involved in tomato fruit ripening,
coloration, pigment accumulation, ethylene pathway, chilling injury on fruits, Phytophthora
infestans infection in tomato, acting as signaling in the interaction between plants and
microbiomes, and association/interaction with DNA methylation (Table 1). Specifically,
several lncRNAs were identified in tomato plants infected with tomato yellow leaf curl
virus (TYLCV). For instance, the expression of slylnc0049 and slylnc0761 could inhibit the
infection of TYLCV in tomatoes [49,50], and blocking expression of lncRNA 1459 could
inhibit fruit ripening in tomatoes and induce the expression of numerous ripening-related
genes [22]. Flowering is an essential stage of plant development, which influences fruit
formation and production. A total of 10,919 lncRNAs, including 248 novel lncRNAs, were
identified, of which 65 novel lncRNAs were significantly differentially expressed in the
flowers, leaves, and roots [51]. These studies indicate that the emerging lncRNAs play es-
sential regulatory roles in various developmental processes and stress responses in tomato
plants and fruits. This concept could be further supported by the fact that lncRNAs have
been widely studied in multiple horticultural crops, including strawberry, mango, walnut,
kiwifruit, orange, pepper, gnetum luofuense, apple, sweet cherry, grapevine, pineapple,
sea buckthorn, eucommia ulmoides, mulberry, and Cucumis melo (Table 2).
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Table 1. Summary of progress of lncRNAs on tomato plants and fruits.

Num. Biological Function/Main Finding References

1 Identification of lncRNAs by strand-specific paired-end RNA sequencing of
tomato leaves, flowers, and roots [51]

2 Integration and relationships between DNA methylation, lncRNAs, mRNAs,
and metabolites in ripening tomato fruit [20]

3 The connection between lncRNAs and transposable elements, and between
lncRNAs and DNA CG methylation [52,53]

4 Regulating tomato fruit ripening [20,22,31,54,55]

5 Function in trans-splicing event SlPsy1-ACoS-AS1, and generation of yellow
fruit in tomatoes [56]

6 LncRNA regulates tomato fruit cracking [57]

7 LncRNA is involved in rhizobacterial strain-induced systemic resistance (ISR)
to the foliar pathogen Botrytis cinerea in leaves [58]

8 LncRNAs regulate rhizosphere bacteria-induced tomato resistance to
Meloidogyne incognita in roots [13]

9 Function in regulating the resistance to Phytophthora infestans in tomato plants [12,15,59–62]

10 In response to tomato yellow leaf curl virus (TYLCV) interaction [49,50]

11 Regulation in tomato multicellular trichome formation [63]

12 In response to drought stress in tomato leaves [64]

13 In response to chilling injury in tomato fruits [65]

Table 2. Summary of studies on lncRNAs in horticultural crops.

Num. Species Biological Function References

1 Strawberry Fruit ripening; anthocyanin accumulation [23,66]
2 Mango Abiotic stress [16]
3 Walnut Biotic stress [67]
4 Kiwifruit Fruit ripening [21]
5 Orange Fruit granulation [19]
6 Pepper Fruit ripening [68]
7 Gnetum luofuense Seed development [11]
8 Apple Fruit anthocyanin accumulation [69,70]
9 Sweet cherry Pollen development [71]

10 Grapevine Different developmental stages of leaf, inflorescence, and berry tissues [10]
11 Pineapple Crassulacean acid metabolism photosynthesis pathway in leaves [17]
12 Sea buckthorn Fruit ripening [72,73]
13 Eucommia ulmoides Rubber biosynthesis [74]
14 Mulberry Abiotic stress [14]
15 Banana Biotic stress [75]
16 Cucumis melo Fruit ripening [76]

Although numbers of lncRNAs have been identified in ripe tomato fruit and/or
predicted mainly through the analysis of non-strand specific mRNA-seq data, the compre-
hensive characterization and identification of lncRNAs in tomato fruit during its expansion
and ripening is not fully known, especially when building on SL4.0 and annotation ITAG4.0.
Thus, to fully understand the lncRNA-mediated transcriptional regulation during tomato
fruit expansion and ripening, the differentially expressed long non-coding genes were
identified by strand-specific paired-end RNA sequencing (ssRNA-seq) and bioinformatics
analysis in this study. In total, we identified 17,674 putative lncRNAs in our datasets during
tomato fruit expansion and ripening. Compared with leaves and flowers, many lncRNAs
showed differential expression patterns in the different developmental stages of fleshy
tomato fruits. Our results indicate that lncRNAs play a prominent role in the regulation
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of tomato fruit expansion and ripening. Our findings provide informative resources for
further studies to characterize the function of lncRNAs in tomato fruits.

2. Materials and Methods
2.1. Plant Growth Conditions

The seeds of tomato cultivar Heinz1706 were germinated at 25 ◦C. Plants were grown
in the greenhouse, and the conditions in the greenhouse were set at 25 ◦C during the day
(16 h) and 22 ◦C at night (8 h). Relative humidity in the greenhouse was set at about 70%. To
collect samples from different developmental stages of tomato fruit, the date of flowering
was marked, and the flowers on the day of blooming were sampled as the flowers sample
in this study. Fruits at 5 dpa (days after pollination), 15 dpa, 35 dpa, 40 dpa, and 45 dpa
were harvested, respectively. The leaves were also sampled as the control group. Ten
tissues from at least 5 independent plants were combined to form one biological replicate.
All the sampled tissues were frozen immediately in liquid nitrogen and stored at −80 ◦C
for further detection.

2.2. RNA Isolation and Quality Control

Total RNA was extracted from sampled tissues stored at −80 ◦C via TRIzol (Thermo
Fisher, Waltham, MA, USA). The RNA was first checked on 1% agarose gel. In addition,
the RNA purity was checked using a NanoPhotometer® spectrophotometer (IMPLEN, Los
Angeles, CA, USA). Finally, the RNA integrity was assessed using an RNA Nano 6000
Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA).

2.3. Library Preparation and Sequencing

RNA-seq libraries made from rRNA depleted RNA and poly(A)-depleted RNA was
prepared according to a previously published paper [77]. A total amount of 1 µg of RNA
per sample was used as input material for the RNA library construction. In brief, rRNA
was first removed from total RNA, and then the RNA was fragmented by sonication into
250–300 bp short fragments. The first strand of cDNA was synthesized with fragmented
RNA as a template with random oligonucleotides as primers. Then, the RNA strand was
degraded with RNase H, and the second strand of cDNA was synthesized with dNTPs
(dUTP, dATP, dGTP, and DCTP) as directed by DNA polymerase I. The purified double-
strand cDNAs were repaired, added with a tail and sequencing adaptor. The cDNA lengths
between 350–400 bp were screened by AMPure XP beads. The second strand of cDNA was
degraded, and PCR finally amplified the first strand of cDNAs to obtain the library, and
was then sequenced on the Illumina HiSeq 2500 platform. The PE150 (paired-end 150 nt)
sequencing was performed to obtain 12 G raw data.

2.4. Data Analysis

Raw reads of FASTQ format were first processed through in-house perl scripts. Clean
data (clean reads) were obtained after removing reads containing adapters, reads containing
poly-N sequences, and reads of low quality from the raw data. Paired-end clean reads were
aligned to the reference genome (Tomato genome version SL4.0) using HISAT2 v2.0.5 [78].
Novel transcript prediction: The mapped reads of each sample were assembled by StringTie
(v1.3.3b) [79] by a reference-based approach. The tool of featureCounts v1.5.0-p3 was used
to calculate the number of reads that were mapped to each gene [80]. The FPKM of each gene
was then calculated based on the length of the gene and read count mapped to that gene [81].

2.5. LncRNAs Calling

Reference genome and gene model annotation files were downloaded from the
genome website directly. All the transcripts were merged using Cuffmerge software
(v2.2.1). The lncRNA expression was quantified using the Cuffquant and Cuffnorm mod-
ules. LncRNAs were then identified from the assembled transcripts following four steps:
(1) removal of lowly expressed transcripts with FPKM < 0.5; (2) removal of short transcripts
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<200 bp and <2 exons; (3) removal of the transcripts with protein-coding capability using
CNCI, Pfam (Pfam scan, V3.2.0), and CPC2 database; (4) removal of the transcripts mapped
within the 1 kb flanking regions of an annotated gene using Cuffcompare. Novel lncRNAs
were named following the rules of HGNC (The HUGO Gene Nomenclature Committee).
The characteristics of novel lncRNAs were compared with the known lncRNAs and mRNAs
in the tomato genome.

2.6. Differential Expression Analysis

The transcripts and genes were quantified using StringTie software and reads per
kilobase of transcript per million mapped reads (RPKM) was obtained. The edgeR was used
for differential expression analysis. The resulting p-values were adjusted using Benjamini
and Hochberg’s approach for controlling the false discovery rate. Genes with |log2 (Fold
Change)| > 1 and padj < 0.05 were assigned as differentially expressed.

3. Results
3.1. Genome-Wide Identification of lncRNAs in Tomato Fruit at Different Developmental Stages

The ssRNA-seq has become a powerful tool for discovering lncRNA, which facilitates
the confirmation of the orientation of transcripts. We performed high-throughput strand-
specific RNA-seq in the tomato line Heinz1706 at five developmental stages of tomato fruit:
5 dpa (days after pollination), 15 dpa, 35 dpa, 40 dpa, and 45 dpa to systematically identify
lncRNAs related to tomato fruit expansion and ripening. Additionally, samples from
flowers and mature leaves were also taken as the controls (Figure S1, Tables S1 and S2).
We evaluated the coding potential of the remaining transcripts using a coding potential
calculator (CPC) and coding-non-coding index (CNCI) and employed BLASTX against
protein database PFAM to exclude those transcripts that might encode proteins. Finally,
17,674 transcripts were obtained in tomato fruits, flowers, and leaves, and defined as lncR-
NAs in tomatoes (Figure 1A and Table S3). It should be noted that there were 544 novel
mRNA transcripts identified in this study according to the recently released tomato refer-
ence genome (SL4.0, Table S4).
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Figure 1. Characterization of all the lncRNAs identified in this study. (A) Venn diagram of lncRNA
candidates. The coding transcripts were excluded by using the CPC (coding potential calculator),
CNCI (coding-non-coding index), and Pfam database. The 17,674 was the number of lncRNAs that
were commonly predicted by CPC, CNCI, and Pfam database. (B) Classification of the identified
lncRNAs. Among 17,674 lncRNAs, 57.78%, 35.62%, and 6.96% are intergenic, natural antisense
transcriptional, and intronic lncRNAs, respectively.
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3.2. Genome-Wide lncRNAs Expression Pattern and Their Distribution on Tomato Chromosomes

We found that there were 10,212 (57.78%) long intergenic ncRNAs (lincRNAs), 1230 (6.96%)
intronic ncRNAs, and 6232 (35.26%) natural antisense transcripts (Figure 1B). Generally, we
found 12,896, 9961, 12,007, 10,256, 10,014, 9431, and 8036 lncRNAs in flowers, 5 dap fruits,
15 dpa fruits, 35 dpa fruits, 40 dpa fruits, 45 dpa fruits, and leaves, respectively; among
which there were 1492, 888, 979, 861, 801, 986, and 608 considered as expressed lncRNAs
(FPKM > 1) [82] (Figure 2A).
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Figure 2. Tissue specific expression pattern and expression level of lncRNAs in tomato fruits at
different stages. (A) The number of lncRNAs identified in different tissues and in different stages
of tomato fruits. (B) The boxplot representation showing the expression level of transcripts in the
indicated samples. (C)The heatmap representation of all of the identified lncRNAs in this study. The
expression patterns were varied among flowers, fruits, and leaves.

Our identified lncRNAs were distributed over all the chromosomes as shown in the
detailed physical position in Table S3. All the transcripts in fruits displayed a decreased
trend with the increasing days after pollination (Figure 2B), consistent with our previous
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study [82]. As shown in Figure 2C, we found that the expression patterns differed among
flowers, fruits, and leaves.

3.3. Characterization of lncRNA Identified in the Tomato Genome

We first analyzed the structure of the lncRNAs identified in this study. As shown in
Figure 3A, the exon numbers of most known lncRNAs (annotated lncRNAs) are primarily
enriched in the region from 0 to 5, while the number of exons for the mRNA ranged from
0 to 20. Unlike mRNA, we found that tomato annotated lncRNAs were mainly located at
the length region size of 200 to 2000 nt (Figure 3B). Figure 3C showed that the ORF lengths
of lncRNAs were mainly enriched in the region from 0 to 300 nt. Compared to the known
annotated lncRNAs in the tomato genome, the lengths of identified novel lncRNAs in our
study were much shorter, and the number of exons were fewer (Figure 3A,B). However,
the lengths of ORFs between the annotated and novel lncRNAs were similar (Figure 3C).
These results were consistent with previous studies in plants and animals that lncRNAs
are shorter and have fewer exons than protein-coding genes [83,84].
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Figure 3. Analysis of lengths, exons, and ORFs of tomato lncRNAs identified in this study when
by referencing SL4.0 and annotation ITAG4.0 in tomato. The density representation of number of
exons (A), length (B), and length of ORFs (C) of identified lncRNAs. ORF, open reading frame. Anno-
tated_lncRNA indicates the lncRNA already identified based on the public datasets. Novel_lncRNA
indicates the lncRNA newly identified in this study.

3.4. Analysis of Tomato Tissue- and Stage-Dependent lncRNAs during Fruit Expansion and Ripening

The ssRNA-seq datasets were further used to explore the tissue- and stage-dependent
lncRNAs expressed in Heinz1706 tomato fruits at five developmental stages, as well
as flowers and mature leaves. Overall, our analysis showed a massive transcriptional
reprogramming in response to fruit expansion and ripening (Figure 2B and Figure S2), as
well as lncRNAs (Figure 2C). Compared to flowers, there were 1223, 2688, 1960, 2224, and
2251 up-regulated lncRNAs, and 3770, 3362, 3580, 3943, and 4295 down-regulated lncRNAs
expressed at the 5 dpa, 15 dpa, 35 dpa, 40 dpa, and 45 dpa, respectively (Figure 4A). Finally,
126 up-regulated and 1530 down-regulated lncRNAs were shared by comparing 5 dpa vs.
flowers, 15 dpa vs. flowers, 35 dpa vs. flowers, 40 dpa vs. flowers, and 45 dpa vs. flowers
(Figure 4B,C). The heatmap presentations show that the transcript levels of commonly
up-regulated lncRNAs were increased in fruits compared to flowers but not in leaves
(Figure 4D). Transcript levels of commonly down-regulated lncRNAs were decreased in
fruits compared to flowers, as well as in leaves (Figure 4E).
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Figure 4. Characterization of differentially expressed lncRNAs between indicated comparisons. (A) The number of up-
regulated and down-regulated lncRNAs in indicated fruit samples compared to flowers. Flowers were sampled at the day
of flowering. (B,C) Venn diagram shows the commonly up-regulated (B) and down-regulated (C) lncRNA in tomato fruits
at different developmental stages compared to flowers. (D) Heatmap representation of the 126 lncRNA levels of commonly
up-regulated in (C). (E) Heatmap representation of the lncRNA levels of commonly down-regulated in (D). The lncRNAs
with PFKM value more than 1 in flowers were collected to do the heatmap representation in (E).

3.5. Specific lncRNA Candidates in Regulating Tomato Fruit Expansion and Ripening

To isolate the lncRNA candidates that may be essential in regulating the fruit ex-
pansion and ripening, we found 18 lncRNAs (names of lncRNAs marked with purple)
whose expression levels were consistently increased (Figure 5A) and 14 lncRNAs (names
of lncRNAs marked with blue) were consistently decreased (Figure 5B) during the whole
developmental cycle of fruits. The fruits at 35 dpa were fully expanded and were then
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starting the ripening process [82]. We also displayed the cluster of lncRNAs that increased
during fruit expansion stages but decreased in the following ripening stages. We observed
that 33 lncRNAs were abundantly expressed at 35 dpa compared to other stages (Figure 5C).
The expression patterns of those lncRNAs, whose detailed information is shown in Tables
S3 and S5, were different in tomato fruits, unlike that in flowers and leaves, suggesting that
multiple lncRNAs are essential for fruit development and ripening, and that expression
patterns of lncRNAs are tissue-dependent in tomato.
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purple indicates whose expression were increased in 45 dpa fruits compared to 40 dpa fruits. The
names marked with black indicates no changes, and with blue indicated the expression levels were
decreased in 45 dpa fruits compared to 40 dpa fruits. (C) Heatmap representation of the subset
lncRNAs whose expression levels were consistently increased to reach the peak at 35 dpa and then
consistently decreased in fruits from 35dpa to 45 dpa. All the lncRNAs are selected based on the
foldchange more than 2 in the comparison between the two adjact developmental stages. The levels
of lncRNAs in flowers and leaves were displayed as the control.
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3.6. Biological Function Analysis of lncRNAs in Regulating Tomato Fruit Expansion and Ripening
To understand the function of specific lncRNAs that were isolated with tomato fruit

expansion and ripening, Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were
performed in genes co-localized and co-expressed with the lncRNAs shown in Figure 5.
By KEGG analysis, we found that multiple pathways were enriched in the co-expressed
genes (Figure 6A,C,E) and co-localized genes (Figure 6B,D,F) of the lncRNAs that were
varied at different tomato fruit developmental stages. Among these, pathways enriched in
genes co-expressed with those lncRNAs with consistently increased levels in fruits at the
stages from 5 dpa to 40 dpa, pathways corresponding to “endocytosis” and “regulation of
autophagy” were significantly enriched (Figure 6A), while pathways of “photosynthesis-
antenna proteins” and “glutathione metabolism” were enriched in the co-localized genes
with the same lncRNAs (Figure 6B). Pathways related to “ribosome”, “DNA replication”,
“homologous recombination”, and “plant-pathogen interaction” were significantly enriched
in genes co-expressed with those lncRNAs with consistently decreased levels in fruits at the
stages from 5 dpa to 40 dpa (Figure 6C), while no pathway was significantly enriched in the
genes co-localized with the same lncRNAs (Figure 6D). In addition, we found that “plant-
pathogen interaction”, “phenylalanine metabolism”, and “phenylpropanoid biosynthesis”
were significantly enriched with the genes co-expressed with the subset of lncRNAs whose
expression levels were consistently increased at the fruit expansion stages but consistently
decreased at the ripening stages (Figure 6E), but no pathways were significantly enriched
in the genes co-localized with the same lncRNAs (Figure 6F).
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of genes co-expressed (A) and co-localized (B) with lncRNAs whose expression levels consistently increased in fruits from
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p-value of significantly enriched pathway was marked accordingly.

4. Discussion

It has been known that lncRNAs play essential roles in diverse biological processes in
plants. In tomatoes, thousands of lncRNAs have been identified in flower and fruit tissues
based on RNA-seq datasets [51]. However, the identification of lncRNAs in fruit ripening is
still partial. This study identified a surprisingly large number (17,674) of lncRNAs by ssRNA
sequencing in tomato fruits, flowers, and leaves. A set of lncRNAs exhibit temporal expres-
sion specificity (Figure 5), implying that specific roles for lncRNAs are essential at multiple
stages of tomato fruit development, such as manipulating fruit expansion and ripening.

Horticultural fruits are an important energy source providing humans with essential
nutrients. Recent studies have extensively discovered a large number of lncRNAs from
various horticultural crops (Table 2). LncRNAs are involved in the layer regulation of
gene expression, as well as in epigenetic modification. Epigenetic modifications could
enhance the phenotypic plasticity of plants and diversity of foods and the stability of crops
in response to the increasing requirements for the daily nutritious diet [47]. Hence, the
lncRNAs identified in tomato plants building on the recently released SL4.0 genome in our
study could be further used to uncover the epigenetic mechanisms in regulating the quality
and yield of tomato fruits. Tomato fruit ripening is a genetically programmed process
that includes the initiation, maintenance, and reorganization of multiple pathways at the
transcriptional level to further drive ethylene signals and ripening-related events. These
various responses during fruit ripening are directly regulated by gene expression, which is
plausibly affected by lncRNAs. LncRNAs containing binding sites of miRNAs could act as
a noncanonical target mimic to modulate gene expression. In this study, several lncRNAs
were isolated in the stages of tomato fruit expansion and ripening, providing valuable
candidates to uncover the multiple roles of lncRNAs in fruit development. It should
be noted that those candidate lncRNAs potentially regulating tomato fruit ripening and
expansion need to be further tested in the future. With the wide application of gene editing
by CRISPR, it’s possible to investigate the detailed genetic function of these candidate
lncRNAs in the signaling pathway in response to fruit quality regulation and metabolism
of the carbohydrates in further study. Our ssRNA-seq results show that the lncRNAs
pattern in flowers, fruits, and leaves are different, suggesting that the lncRNAs in tomatoes
are tissue-dependent, consistent with the observation in the rice [37]. Interestingly, the
number of identified lncRNAs in flowers is higher than that of fruits and leaves in our
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ssRNA-seq results, implying that lncRNAs are more active in flower tissue. Considering
that in rice and Arabidopsis lncRNAs have been reported to influence fertility [40] and FLC-
mediating flowering through histone methylation modification [43], it is meaningful to test
the biological functions of those tomato lncRNAs that are uniquely expressed in flowers in
the future, thus to enhance the layers of reproductive mechanisms in horticultural plants.

The KEGG analysis is performed in co-expressed and co-localized genes with those
lncRNAs displayed specific expression patterns during the expansion and ripening of
tomato fruits, which suggest that endocytosis and autophagy may be the potential targeted
process by lncRNAs in tomato fruits. Moreover, our KEGG analysis result indicates that
fruit expansion- and ripening-dependent lncRNAs function in the interaction between
plant and pathogen. Our results suggest that the lncRNAs also regulate the metabolism of
glutathione during the ripening, similar to the previous result that cell redox and reactive
oxygen species (ROS) are regulated by histone variant H2A.Z in tomato fruit [82]. The roles
of epigenetic modification mediated cell redox in fruit ripening need to be tested in further
studies. In conclusion, we have characterized and identified several specific lncRNAs in the
regulation of tomato fruit expansion and ripening. We consider that lncRNAs screened in
this study may provide a valuable resource for manipulating the gene regulatory network
responding to fruit expansion and ripening in the tomato.
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