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Abstract: Chilling injury (CI) is a physiological disorder resulting from low storage temperatures
that affects the fruit quality and marketing of the ‘Florida Prince’ peach. In this study, the exogenous
application of a mixture of calcium nanoparticles (CaNPs) and ascorbic acid was found to significantly
alleviate the symptoms of CI in peaches during cold storage. Fruits were treated with CaNPs plus
different concentrations of ascorbic acid (AA; 0, 3, 6, and 9 mM). Peaches were immersed in CaNP–
AA for 15 min before being stored at 4 ± 1 ◦C and 95 ± 1% RH for 30 days. We observed that the
9 mM CaNP–AA treatment lowered the values for the CI index, ion leakage, and malondialdehyde
(MDA) content and increased antioxidant enzyme activities (AEAs), such as for ascorbate oxidase
(APX), catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR). Furthermore,
the treatment reduced the accumulation of both H2O2 and O2

•− and increased the level of DPPH
reduction throughout the duration of cold storage. Our results suggest that 9 mM CaNP–AA
treatment suppresses the incidence of CI in peach fruit throughout cold storage, possibly because
9 mM CaNP–AA is at least partly involved in enhancing the antioxidant system via its effect on
antioxidant substances. The results indicate that applying the 9 mM CaNP–AA treatment afforded
peaches with enhanced tolerance against cold storage stress.

Keywords: peach; cold storage; quality; calcium nanoparticles; antioxidant enzymes

1. Introduction

From the genus Prunus, the Prunus persica L. Batsch cv. ‘Florida Prince’ peach is the
first early stone fruit crop to have been cultivated in Egypt. It displays high acclimation to
local ecological conditions. A superior yield and fruit quality in comparison with others are
recorded for this peach cultivar [1]. The area used for peach cultivation in Egypt is about
24,707 ha, corresponding to a total production of 360,723 tons [2]. Peaches decay easily
during marketing processes, losing their value and quality after harvest. This decline occurs
for several reasons, such as the rapid ripening of fruits, their sensitivity to mechanical
injuries that occur throughout various handling processes, and their susceptibility to
rapid infection from fungal diseases [3]. Therefore, for the reasons mentioned above, cold
storage is an important way to reduce the rapid ripening of fruits and control the spread of
diseases [4]. However, prolonged cold storage of peach fruits leads to biophysical changes
in the cell walls that may later manifest as cold injury symptoms [5]. Symptoms of cold
injury in peach fruits include the appearance of brown spots that vary in size and shape as
well as the collapse of the interior tissue [6]. With an increase in storage duration, there is a
tendency for greater development of chilling injury symptoms in fruit, reducing consumer
acceptance [7].
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Numerous studies conducted on CI symptoms have attempted to understand their
prevalence and to mitigate their severity, frequently via treatments. Such studies tested the
effect of cold storage of fruit [8], heat treatment of fruits to activate the action of antioxidants
before cold storage [9], the use of Ultra-Violet (UV-C) [10] or salicylic acid to relieve the
symptoms of cold injury [11], and the treatment of fruits with methyl jasmonate [12]. These
studies aimed to reduce the occurrence of cold injury symptoms and control the quality of
peaches during storage.

Recent research has examined the use of nano-calcium technology in the field of
postharvest treatments for diminishing the phenomenon of CI symptoms during the cold
storage of fruits [13]. Strengthening nano-calcium treatment by including antioxidants such
as ascorbic acid (AA) plays an active role in countering the CI phenomenon. Generally, CI
is directly correlated with the formation of reactive oxygen species (ROS) in fruit tissue
throughout the storage period [14]. However, the AA present in plant cells reacts directly
with ROS produced in cells [15], especially hydroxyl radicals [16]. Therefore, it increases
the tolerance of fruit to the impact of the cold [17]. Furthermore, AA changes the oxidative
state of alpha-tocopheroxyl radicals to normalize the action of plasma membranes on the
plant cell membrane [18]. It also works to efficiently sustain antioxidant enzyme activity,
which creates an equilibrium between the generation of ROS and antioxidants in the cell
under chilling stress [19].

Calcium ions (Ca++) are the main basis of pectin accumulation for supporting the cell
wall and middle lamella to produce calcium pectate gel [20]. Calcium ions also balance the
cell membrane and thus participate in firmness [21]. However, fruit firmness deteriorates
considerably under the highest individually applied calcium chloride doses. Hence, using
the authorized dose of calcium chloride (1%) is important because the application of
high calcium chloride concentrations may cause stress on the tissues and thus a rapid
increase in both the respiration rate and ethylene production [22]. Excessive respiration
and ethylene production are associated with an increase in enzymatic breakdown, which
leads to ripening and senescence [23]. Therefore, the tissues likely become softer than those
of the untreated fruits. To the best of our knowledge, no prior studies have examined the
role of calcium nanoparticles combined with ascorbic acid in protecting peach fruit during
low-temperature storage. Therefore, this paper aims to assess the influence of calcium
nanoparticles blended with ascorbic acid on CI increase in the ‘Florida Prince’ peach
cultivar, and investigate the change model in fruit quality, chilling injury, and antioxidant
enzyme potential throughout long periods of refrigeration.

2. Materials and Methods
2.1. Fruit Materials and Postharvest Treatments

The ‘Florida Prince’ peaches were from a commercial farm in Dakahlia province,
Egypt (30.04◦ N, 31.25◦ E). Fruits were picked at commercial maturity (128 days after the
full bloom stage) and included if they were free from peel defects and were uniform in size
and shape. Fruits (600) were picked and delivered 2 h after harvesting. They were divided
into two main batches. The first batch (300 fruits) was used for physical measurements,
i.e., the chilling injury symptoms index, water loss, and fruit skin color (hue angle). This
batch was divided into five lots of 60 fruits each for treatments, for which there were three
replicates (e.g., 3 × 20 fruits). The second batch was used for the chemical analysis and
had the same fruit distribution among the treatments as previously described.

2.2. Synthesis of Metal Calcium Nanoparticles (CaNPs) with Ascorbic Acid (AA)

Calcium nanoparticles (CaNPs) were prepared according to the procedure reported
by Yugandhar and Savithramma [24]. A slight modification was made by adding AA
at 3, 6, and 9 mM into a solution of CaCl (50 mM). Using distilled water, all weights of
ascorbic acid were blended in a solution of calcium chloride at a concentration of 50 mM.
The reaction mixture was spun on a checker at 5000 revolutions per minute for 1 h and
then allowed to cool to room temperature for 2–3 days.
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UV-vis spectroscopy was used to characterize the nanoparticles. The reduction of
pure Ca++ particles and the subsequent topping of calcium nanoparticles were measured
using ATI Unicom UV-vis spectroscopic analysis vision software ver. 3.20 by comparing
the UV-vis spectra of the response blend at various wavelengths. The combined metal
nanoparticles’ UV-vis spectra were measured between 240–440 nm. The investigation was
successfully conducted at a temperature of 25 ◦C using quartz cuvettes with a 1 cm optical
path (Figure 1).
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Figure 1. The UV-visible absorption spectra of the structure of calcium nanoparticles (CaNPs) mixed
with various combinations of ascorbic acid (0, 3, 6, and 9 mM), displaying a peak at 282 nm.

The Zeta Potential test was used to determine the nanoparticles’ (NPs) surface state
and forecast the nanoparticle solution’s long-term stability. The technique was used to
define the CaNPs blended with ascorbic acid (AA) surface charge at the Central Laboratory,
Electron Microscope Unit, Faculty of Agriculture, Mansoura University, Mansoura, Egypt,
using Malvern Instruments Ltd. and Zeta Potential Ver. 2.3. The CaNP–AA mixture has an
electrical charge on its surface, attracting a thin layer of ions with opposite directions to the
surface. The Zeta Potential of nanoparticles provides information about their properties.
Nanoparticles have two layers of ions that move as the solution diffuses. The electric
potential at the end of the double layer is referred to as the Zeta Potential of the particles,
and it varies between +100 and 100 mV. CaNPs containing AA were synthesized and had
a Zeta Potential of −4.74 mV (higher stability). NPs with Zeta Potentials greater than or
equal to +25 mV had a high degree of stability (Figure 2).
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The nanoparticles’ characterization was determined using transmission electron mi-
croscopy (JEOL TEM-2100) coupled to a CCD camera at a 200 kV acceleration voltage.
Nanoparticles were defined according to size, shape, surface area, particle structure, and
morphological characteristics. The integrated metal nanoparticles were created by sus-
pending them on copper-coated carbon networks and allowing the dissolvable to dissolve
gradually before chronicling the TEM images. TEM measurements were taken at Man-
soura University’s Central Laboratory, Electron Microscope Unit, Faculty of Agriculture,
Mansoura, Egypt (Figure 3).
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2.3. CaNP–AA Application Protocol

CaNPs were applied to the batches via five application approaches. The treatments
were as follows: control, 0 mM CaNP–AA, 3 mM CaNP–AA, 6 mM CaNP–AA, and 9 mM
CaNP–AA. Next, batches were soaked in the CaNP–AA treatments for 15 min at 4 ◦C, then
placed into cold storage (4 ± 1 ◦C and air relative humidity, RH% 95 ± 1) for 30 days.

2.4. Chilling Injury Index, Water Loss%, and Fruit Skin Color

CI symptoms in peaches appear as brown shrunken areas/spots that increase in number
and size as the duration of cold storage increases. The CI symptoms were inspected and
scored on a scale from 0 (no injury) to 5 (very severe injury) based on necrotic spot area and
browning intensity [25]. The CI index was computed according to the following formula:

CI − index =
n

∑
k=5

(CI level) ∗ (Number f ruit at this level)
Total number o f f ruit

Water loss (WL%) was assessed by the following equation: WL% = (Wt=0 − Wt/Wt=0)
× 100; where Wt=0 is the initial weight of each fruit and Wt is their weight after five
days [17]. However, the fruit skin color hue angle measurement was evaluated at intervals
throughout the duration of storage by collecting images. To calculate the hue angle of
peach, RGB signals were obtained using software ImageJ Ver. 1.43u (USA), according to
Khojastehnazhand et al. [26].

2.5. Total Soluble Solid Content (SSC%), Total Acidity (TA%), and SSC/TA Ratio

The SSC% of peach juice was measured with a digital refractometer (PR32 ALAGO
Co., Japan) at room temperature and was represented as a percentage. For TA%, peach
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juice (20 mL) was used for titration with NaOH (0.1 N) [27]. The outcome was presented as
a percentage according to the following formula:

TA% =
[0.1 M NaOH ∗ vol. of NaOH (in liter) ∗ 192.43]

wt of sample
∗ 100

where 192.43 g/mol is the molecular weight of citric acid.
The SSC/TA ratio was computed to judge peach maturity [25].

2.6. Fruit Pigments and Fruit Firmness (N)

The total anthocyanin in the fruit material was extracted using methanol mixed with
1% hydrochloric acid. After grinding in liquid N2, the samples were incubated at room
temperature overnight. The extracts were then centrifuged at 16,000× g for 16 min and their
absorbance at 530 and 657 nm was measured using a spectrophotometer set at 421 nm [28].

The freeze-dried materials were first pulverized in a ball mill to extract the carotene,
then 5 mL of N,N-dimethylformamide (DMF) was added to 0.8 g of this powder. To ensure
a thorough extraction of carotene, the sample powder was immersed in DMF for 16 min at
4 ◦C [29], and then stored at 4 ◦C for 16 h. Finally, 1 mL of the suspension was centrifuged
at 16,000× g for 5 min at 4 ◦C to remove all particles, and the supernatant solution was
measured using a spectrophotometer [30].

Fruit firmness measurements were taken using a Zwick Universal Testing Machine
equipped with a 60◦ conical probe 6.35 mm in diameter. The apparatus determined the
force needed by the mechanical probe to penetrate 8 mm into the tissue of fruits at a speed
of 3 mm s−1 [31].

2.7. Antioxidant Enzyme Activities (AEAs)

To determine catalase (CAT) activity, fruit pulp (2 g) was homogenized with 20 mL of a
solution of 100 mM potassium phosphate (KH2PO4). The mixture was centrifuged (30,000× g)
twice for 25 min at 4 ◦C. The clear extraction quantity was utilized for observations of the
CAT activity in a final volume of 5 mL that contained 1 mL of the catalase extract (400–800 mg
protein). A unit of CAT activity was defined as the amount of the compound that could
oxidize 1 mM H2O2 min−1 at 25 ◦C [32].

Ascorbate peroxidase (APX) was isolated from 2 g of fruit pulp tissue ground with
20 mL of 50 mM potassium phosphate (KH2PO4). Additionally, EDTA, ascorbic acid (AA,
1 mM), and polyvinylpolypyrrolidone (PVPP, 1%) were added at 5 ◦C. The materials were
mixed and centrifuged twice at 35,000× g for 30 min at 4 ◦C, and the clarified supernatant
was utilized to monitor the APX activity in a final quantity of 3 mL. This included 150–300 mL
of the clear fraction (40/240 mg protein). A unit of APX was characterized as the amount
of the compound that oxidized 1 mM of ascorbate min−1 at 25 ◦C [33].

Glutathione reductase (GR) was separated from 1 g of peach pulp tissue ground in
25 mL of a 100 mM KH2PO4 buffer (pH 7.4) containing 0.6 mM EDTA at 5 ◦C. The mixture
was centrifuged twice at 25,000× g for 25 min at 5 ◦C. An aliquot of the clear supernatant
was applied to observe the GR activity in a final volume of 4 mL [34]. It contained 100 mL
of the accelerator extract (40–80 mg protein). Each GR unit was defined as the amount of
accelerator that oxidized 1 mM of NADPH min−1. Moreover, the activity was counted on
the standard curve as reported in [35].

Superoxide dismutase (SOD) was isolated from 1 g of peach pulp tissue ground in 10 mL
of 50 mM KH2PO4 with the addition of 1.33 mM of diethylenetriamine penta-acetic acid
(DTPA, C14H23N3O10) at 4 ◦C, then the mixture was centrifuged twice at 30,000× g for 30 min
at 4 ◦C. The clear supernatant was used to detect SOD activity [36] in a final volume of 4 mL,
which contained 70–80 mL of the mixture concentrate (24–56 mg of protein). A unit of SOD
was described as the quantity of the substances that produced a half-maximal decrease. All
the macromolecules were prepared and examined for calculating the catalyst activity [37].



Horticulturae 2021, 7, 499 6 of 19

2.8. Lipid Peroxidation, Malondialdehyde (MDA) Accumulation, and Ion Leakage%

Peach pulp (3 g) was ground and combined with 30 mL of metaphosphoric acid
(HPO3, 5%) and 500 µL of butylated hydroxytoluene (2%) in ethanol; then, the mixture
was homogenized. 1,1,3,3-Tetra-ethoxy-propane (Sigma-Aldrich, St. Louis, MO, USA) was
used to vary the amount of TBARS from 0 to 20 mM relative to 0–1 mM malondialdehyde
(MDA) as a calibration standard to evaluate MDA accumulation product for the peach
samples. The stoichiometry of MDA was calculated throughout the acid-heating step of
the assay [38].

The ion leakage (IL%) of all peach samples was measured initially (M0) by using
an INE-DDSJ-318 conductivity meter. Later, after 3 h, all samples were heated at 100 ◦C
in a water bath for 30 min to measure the total leakage after the samples reached room
temperature (M1) [39]. The percentage of IL% was calculated by the following formula:

IL% = M0 reding after 3 h − M1 (reading after heating)/M0 × 100

2.9. Ethylene and Respiration Assessment

Ethylene concentrations and CO2 respiration were determined at 5-day intervals in
five peaches. For all experimental treatments, fruits were placed and sealed in 1000 mL
glass jars with a 1-h gap between each interval of cold storage duration (in days). Gas
chromatography techniques were used to extract gas samples from the headspace atmo-
sphere surrounding the fruit and analyze them for ethylene and carbon dioxide (GC).
Ethylene concentrations were determined using a GC-6000 Vega Series from Carlo Erba
Ins., Milano, Italy, while CO2 concentrations were determined using a GC PBI-Dansensor
Checkmate-9900 from Denmark [40].

2.10. H2O2 and O2
•− Production Rate and DPPH Reduction

One gram of fruit tissue was added to 3 mL of a KH2PO4 buffer 50 mM (pH 7.8)
under cooling at 4 ◦C. The reagent was combined with polyvinylpyrrolidone (PVP 1%
w/v) and immediately centrifuged at 10,000 rpm at 4 ◦C for 15 min. The O2

•− production
rate was determined by observing the development of NO2 from hydroxylamine with
the introduction of O2

•− [41]. A linear curve with NO2 was utilized to establish the O2
•−

formation rate from the response of O2
•− with hydroxylamine. O2

•− production was
determined as nmol min−1 g−1 FW.

In the H2O2 assay, 1 g of the fruit pulp sample was added to 6 mL of 100% (CH3)2CO
and immediately centrifuged at 10,000× g for 15 min at 4 ◦C, then 1 mL of the clarified
supernatant was combined with 0.1 mL of 5% Ti(SO4)2 and 0.2 mL of a NH4OH solution.
The hydrogen peroxide sample was accelerated, and the residue was reduced by adding
4 mL of 2 M H2SO4 after centrifugation at 10,000× g for 20 min, then the absorbance was
quantified on a photometer at 415 nm. The H2O2 content was calculated from a standard
curve and the fixation rate was shown as ηmol g−1 FW [42].

The inhibitory activity of DPPH was examined in the peach pulp sample and the
dismutation of radical activity technique was applied. The scavenging results of flavedo
samples of DPPH radicals were given as percentages. In brief, a 2 mL sample of peach
extract (with methanol) was combined with 2 mL of 0.16 mM DPPH methanolic solvent.
Afterward, samples were shaken for 1 min and stored for 30 min at room temperature in
dark conditions. Subsequently, samples were evaluated on a photometer at a wavelength
absorbance of 517 nm. The final amount of the DPPH radical was assumed by applying
the formula of [43].

2.11. Statistical Analysis

The experiment was conducted during two growth seasons (2018–2019) using the Co-
Stat software package (Ver. 6.303; 789 Lighthouse Ave PMB 320, Monterey, CA 93940, USA).
The chilling injury, water loss, and peach skin color profile were analyzed in a randomized
complete block design for the effect of fruit color maturity stages (applied to the same fruit
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throughout the storage period). A factorial analysis displayed the main comparisons and
the interaction effect of storage time and CaNP–AA under refrigeration. The appropriate
significant differences among CaNP–AA treatments were tested by utilizing Duncan’s
multiple range test at the 5% level.

3. Results
3.1. Synthesis of Metal Calcium Nanoparticles (CaNPs)

We observed that the formation of calcium nanoparticles (CaNPs) blended with
ascorbic acid at different concentrations was synthesized, and we confirmed treatments at a
peak at 282 nm by UV-visible absorption spectra (Figure 1). Another technique to prove the
formation of nanoparticles was using the Zeta Potential test for calcium nanoparticles with
added ascorbic acid (Figure 2). To be certain, we used Transmission Electron Microscopy
(TEM) images at 200 nm. The size of the CaNP particles (Figure 3A) was between 27.27 and
45.01 nm. However, after mixing with ascorbic acid, the CaNPs reached about 13.95–26.26 nm
in diameter (Figure 3B).

3.2. CI Index, Water Loss%, and Peach Skin Color

Figure 4 shows the changes in the CI index, water loss, and peach skin color (h◦) as
physical features of peach quality throughout a cold storage period of several weeks. CaNP–
AA treatments had a significant influence when studied as a factor. Regarding the various
CaNP–AA applications, a significantly greater increase in CI incidence and water loss
occurred, while peach skin color declined, in the untreated fruit compared with fruit treated
throughout the 30 days. Nevertheless, fruit subjected to the 9 mM CaNP–AA treatment
presented significantly lower CI incidence and water loss and the highest preservation of
peach skin color (h◦) compared with other CaNP–AA treatments throughout the storage
period. Moreover, the 9 mM CaNP–AA treatment minimized CI incidence over the full
storage period (30 days). This began on the 20th day (1.01), then increased slightly up
until the end of storage (1.19). The outcomes indicated a reduction in the rate of water
loss (19.57%) and a slight decline in the skin color of the fruit (h◦ = 75.31) on the 30th day
of the cold storage period. The change in physical parameters could be due to the cold
temperature stress effects, which enhanced the formation of reactive oxygen species (ROS).

3.3. Total Soluble Solids (SSC%), Total Acidity (TA%), and SSC/TA Ratio

Figure 5 depicts the differentiation in chemical quality, i.e., SSC%, TA%, and SSC/TA
ratio, as a function of storage duration in days for ‘Florida Prince’ peach. Evidently, SSC%
increased significantly in the control fruit during the storage period. However, the CaNP–AA
at 9 mM treatments presented a different trend. We observed the lowest changes in SSC%
compared to untreated and treated fruit. The chemical quality elements revealed a significant
interaction (p < 0.001) when storage time (days) and CaNP–AA treatments were examined.

The chemical quality results for fruit treated with the control treatment showed a
gradual increase in SSC% and the SSC/TA ratio throughout the 30 days. Nevertheless,
reductions in total TA% throughout storage duration in fruit treated with 9 mM CaNP–AA
were seen. This produced the lowest changes in both SSC and the SSC/TA ratio throughout
the cold storage period compared with other treatments and the initial values at harvest
time, with 11.82% SSC and an SSC/TA ratio of 12.23%. However, a stable TA value (0.960%)
was maintained on the 30th day of the storage period compared with the initial value
(1.016%) at harvest time.

3.4. Fruit Pigments (Anthocyanin and Carotene) and Fruit Firmness (N)

Figure 6 displays the variation in fruit pigment (i.e., anthocyanin (peel; mg 100 g−1

FW) and carotene (pulp; µg 100 g−1 FW)) and firmness (N) as a function of storage duration
in days for ‘Florida Prince’ peach. Evidently, both pigments decreased significantly in all
CaNP–AA mixtures and control fruit throughout the storage period, as did fruit firmness.
The 9 mM CaNP–AA treatment significantly reduced the fruit pigment degradation and
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firmness throughout 30 days compared with the initial value at harvest time. Fruit pigments
on the 30th day were 14.06 mg 100 g−1 FW and 1.94 µg 100 g−1 FW compared with the
initial values of 14.67 mg 100 g−1 FW and 2.00 µg 100 g−1 FW, respectively. Furthermore,
fruit firmness was recorded at 61.87 N, compared with an initial value of 63.26 N.
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Figure 5. The total soluble solid content (SSC%) (A), total acidity percentage (TA%) (B), and SSC/TA
ratio (C) of ‘Florida Prince’ peaches immersed in CaNPs mixed with ascorbic acid at different
concentrations (0, 3, 6, and 9 mM) and stored at a low temperature (4 ◦C and 95% RH) for 30 days.
Error bars represent standard errors and different letters indicate significant differences at p ≤ 0.05
among treatments for each storage period.
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3.5. Antioxidant Enzyme Activity (AEA)

Figure 7 displays the antioxidant enzyme activities (AEAs) as a function of storage time
in weeks. Apparently, the AEAs displayed a significant interaction at 5% when the CaNP–AA
treatments and storage time duration (days) were considered as an experimental factor.
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CaNP–AA increased the AEAs in peach. The activity increased (APX, 4.38; CAT, 11.57; 
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declined (34.63 units g−1 protein) until the end of the experiment. 
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Figure 7. The AEAs, such as APX (A), CAT (B), GR (C), and SOD (D), of ‘Florida Prince’ peaches
immersed in CaNPs mixed with ascorbic acid at different concentrations (0, 3, 6, and 9 mM) and
stored at a low temperature (4 ◦C and 95% RH) for 30 days. Error bars represent standard errors and
different letters indicate significant differences at p ≤ 0.05 among treatments for each storage period.
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The AEAs continued to increase differently until the end of the storage period. The
changes in overall levels of AEAs for all treatments increased slightly throughout the first
20 days, then they became different up to the end of the cold storage period for all treatments.

However, the GR activity increased up to the 20th day and then declined in all
treatments until the end of the experiment. Obviously, exogenous treatment with 9 mM
CaNP–AA increased the AEAs in peach. The activity increased (APX, 4.38; CAT, 11.57; SOD
257.68) until the 30th day, but GR (40.40) increased up to the 20th day and then declined
(34.63 units g−1 protein) until the end of the experiment.

3.6. Estimation of Malondialdehyde (MDA), Ion Leakage (IL%), Ethylene Production, and
Respiration Rate

In peach pulp, MDA accumulation and IL% significantly (p > 0.01) and dramatically
increased throughout the duration of storage, dependent on the CaNP–AA treatment
(Figure 8). A significant interaction among storage factors, storage duration (weeks), and
CaNP–AA treatment was considered as an experimental factor. MDA content and IL%
clearly increased in the CaNP–AA treatments compared with the initial values. Further-
more, differences among the CaNP–AA treatments appeared on the 10th day and became
more pronounced during the storage duration until the end of the experiment. Certainly,
the lowest values of MDA and IL% were identified in peaches treated with 9 mM CaNP–AA
(MDA = 0.24 and IL = 23.37%) on the 30th day of the storage period compared with other
treatments. However, the control treatment exhibited the highest accumulation of MDA
(0.44) and IL (44.85%) in the same time interval. Moreover, the ethylene evolution and res-
piration rate in peach increased gradually and independently in the CaNP–AA treatments
up to the maximum peak on the 10th and 5th days of storage. Both then declined until
the end of storage time. However, it can be seen in Figure 5 that respiration showed an
increase in CO2 rate until the end of storage. The increases in CO2 were independent and
based on the CaNP–AA treatments. However, lower ethylene production and CO2 over
the 30 days was observed in the control.
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Figure 8. MDA (A), IL% (B), ethylene (C), and respiration rate (D) of ‘Florida Prince’ peaches
immersed in CaNPs mixed with ascorbic acid at different concentrations (0, 3, 6, and 9 mM) and
stored at a low temperature (4 ◦C and 95% RH) for 30 days. Error bars represent standard errors and
different letters indicate significant differences at p ≤ 0.05 among treatments for each storage period.

3.7. H2O2 and O2
•− Production and DPPH Reduction

Differences in H2O2 and O2
•− generation rates and antioxidant performance (utilizing

the DPPH technique) could be seen as a function of time in days. The parameters produced
a significant effect (p < 0.003) when the storage time and CaNP–AA applications were used
as experimental factors (Figure 9).

H2O2 and O2
•− generation in peach pulp increased continuously from the time of fruit

collection up to the 30th day of the experiment. Consequently, increases and differences
were independently associated with CaNP–AA applications on the 30th day of storage
time. The 9 mM CaNP–AA treatment produced the lowest H2O2 (0.12 mM min−1 g−1

FW) and O2
•− (0.34 mM g−1 FW) amounts throughout the storage period compared with

different CaNP–AA treatments on the 30th day. The assessment of AEAs by utilizing the
DPPH decrease demonstrated that their activity improved spontaneously and slowly in all
CaNP–AA treatments throughout the storage period. In any case, the control displayed the
greatest reduction in DPPH (41.86%) on the 30th day of the trial.
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•− (B) production rates, and DPPH reduction (C) in ‘Florida Prince’ peaches immersed in CaNPs

mixed with ascorbic acid at different concentrations (0, 3, 6, and 9 mM) and stored at a low temperature (4 ◦C and 95%
RH) for 30 days. Error bars represent standard errors and different letters indicate significant differences at p ≤ 0.05 among
treatments for each storage period.
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4. Discussion

This study examined the effectiveness of CaNP–AA treatment for reducing chilling
injury in peaches during cold storage. Chilling injury has been recognized as a physiologi-
cal disorder caused by low temperatures [44]. A variation was observed during 30 days
of cold storage stress in peach fruit. Usually, low temperatures generate reactive oxygen
species (ROS) during long-term cold storage [43]. The most abundant ROS produced
is the hydroxyl radical (·OH), which reacts with lipids and proteins of the plasma cell
membrane [45]. Over a long period of cold storage, malondialdehyde (MDA) and protein
carbonyl groups (PCG) terminate the lipid and protein of the cell membrane [46]. Con-
sequently, cell membrane structure and function are lost [13] and cell death occurs [15].
With cell death, CI symptoms appear [45] via an equilibrium between ROS formation and
antioxidant system activity under low temperatures [15,19]. Our results confirmed that the
most severe symptoms of CI were observed in untreated fruit compared with CaNP–AA
treatments. We observed that the 9 mM CaNP–AA treatment minimized CI symptoms
and water loss. These results were due to the efficacy of AA at 9 mM for quenching ROS
formation and preventing cell damage [15,47]. The reduction in CI incidence was reflected
in fruit color (hue angle) (Figure 4). This may demonstrate that the presence of AA in
combination with CaNP application preserved the water content during cold storage [48].
The results are consistent with other previous studies on peaches [49,50], which confirmed
the positive influence of CaNP–AA treatment on minimizing chilling injury symptoms and
improving fruit quality during cold storage.

In the present study, 9 mM CaNP–AA produced fewer changes in SSC and TA than
other treatments (Figure 5). The SSC and TA remained at the same level as the initial
values, which could be due to the role of AA as an antioxidant that decreased the oxidation
reaction [51]. The SSC/TA ratio is an indicator of the good taste and flavor of peach
fruit [52].

The changes in both SSC% and TA% in stressed peach fruit during cold storage after
CaNP–AA treatment can be attributed to the conversion of organic acids to sugar [53].
Moreover, the highest SSC% seen throughout the storage period may have occurred as a
consequence of decreasing AA and acidity under prolonged storage [17]. Furthermore, it
could be associated with increases in starch enzyme activities that change organic acids to
sugar, as described previously [54]. Similar results were observed in sweet orange fruit [55],
lime [56], and pawpaw [57] stored at low temperatures.

The results revealed that fruit treated with 9 mM CaNP–AA maintained better fruit
pigmentation and fruit firmness than the control (Figure 6). Based on the fruit quality
data, it is clear that with the 9 mM L−1 CaNP–AA treatment, no adverse effects were
observed in the fruit. However, higher AA doses (9 mM L−1) were more effective at
reducing the decline in peach quality. Thus, the 9 mM CaNP–AA application maintained
the fruit pigments and firmness of peach fruit under cold storage. These findings may be
linked to the physiological roles of calcium and AA in the CaNP–AA mixture. Calcium
is essential for maintaining cell wall stability and integrity, as well as determining fruit
quality [58]. Calcium has been demonstrated to be effective at preserving the quality of
fruit [58], increasing antioxidant capacity [59], preventing softening [58], alleviating chilling
injury [60], controlling postharvest decay [61], and delaying the fruit ripening process [62].
Previously, calcium lactate had better textural and sensory properties on peaches than
calcium chloride and calcium propionate [58]. Supplementing CaNPs with AA provided
additional benefits, such as quenching ROS [63], maintaining fruit quality throughout cold
storage [64], delaying fruit ripening, and reducing microbial infection [65]. These results
are in line with the findings of Campos-Vargas et al. [66] on ‘O’Henry’ peaches.

In our study, APX, CAT, GR, and SOD activities were more strongly activated in 9 mM
CaNP–AA-treated fruit. According to several reports, APX donates an electron to free
radicals and converts H2O2 to oxygen and water, thereby mitigating oxidative damage [67].
The activity of the APX enzyme is directly proportional to the amount of AA [68]. Thus,
the increased activity in 9 mM CaNP–AA-treated peaches could be a result of stable AA
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concentrations in the fruit. Additionally, findings have shown that both CAT and SOD are
essential enzymes for reducing ROS damage in litchi fruit [69]. Reduced CAT and SOD
activity are typically associated with increased fruit senescence [70]. The increased CAT
and SOD activity may be attributed to the fruit treated with 9 mM CaNP–AA producing
fewer O2

•− and H2O2 radicals. Their activities were enhanced with CaNP–AA treatments
based on the concentration of AA. Certain differences in AEAs among the CaNP–AA
applications can be revealed. The presence of AA in combination with CaNP mixture at a
high concentration (9 mM) improved AEAs during cold storage. The CaNPs also increased
AA to quench ROS formation throughout storage [71]. However, the AA works indirectly
as a quencher of ROS [27]. Moreover, AA might be forced to balance the production of
ROS and AEAs [19]. Hence, AA can be used as a stabilizer of the network of AEAs [15].
The results are in line with other studies conducted on peach [49,72], persimmon fruit [73],
and banana [44].

Calcium (Ca2+) is an essential mineral for fruit and plays an important role in forming
cell walls and membranes [74]. A second messenger in plant signal transduction, Ca2+

is implicated in stress responses [75]. Furthermore, different calcium-binding proteins
perceive transitory increases in cytosolic Ca2+ under cold stress and trigger varied physi-
ological responses [76]. Calcium in the form of CaCl2 treatment reduced peel browning
caused by freezing injury in pear fruit by inhibiting membrane lipid peroxtion and in-
creasing SOD activity and expression [77]. It reduced chilling injury symptoms in winter
jujube fruit [78]. By modulating SOD, POD, CAT, and the AsA-GSH cycle, CaCl2 increased
chilling tolerance in green peppers [79]. A previous study on loquat fruit found that CaCl2
treatment increased cold tolerance by regulating energy metabolism and accumulating
osmotic substances [72,80].

In this work, MDA accumulation was the most prevalent side effect of lipid peroxi-
dation, a process that can cause cellular membrane damage [81]. Elevated ROS levels can
lead to more lipid peroxidation, leading to damaged membranes and decreased storage
capacity [82]. Due to the reduction in oxidative damage and senescence, 9 mM CaNP–
AA-treated peaches showed reduced MDA and IL% concentrations. CaNPs were paired
with AA to minimize ethylene and respiration. In this context, further investigations are
required to determine how these two methods achieved such positive results.

The results were obtained due to the decline in oxygen-consuming respiration under
cold storage, which diminishes both H2O2 and O2

•− production [83]. Furthermore, the
increase in AEAs (Figure 4) may diminish both the production of H2O2 and O2

•− correlated
with improved SOD activity, as indicated by Lo’ay and El-Khateeb [17]. The relationship
between both CAT and APX in the network, besides other antioxidants [15], could be
strongly connected to the quenching of both H2O2 and O2

•− or the minimization of the
effects of both [41].

5. Conclusions

CI significantly impairs the storage of peach fruits, as measured by fruit loss over
the course of a cold storage period. The 9 mM CaNP–AA treatment clearly ameliorated
CI in peach fruit by improving AEAs and minimizing ion leakage. Thus, treatment with
AA at 9 mM L−1 together with CaNPs suppressed the incidence of CI during cold stress,
particularly in terms of ROS. It also activated antioxidant enzymes, which was reflected
by the low MDA content throughout the cold storage period. Our results suggest that a
mixture of AA with CaNPs could be used as a tool adjuvant to maintain fruit quality traits
under cold storage.
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