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Abstract: Although many studies have investigated foodborne pathogen prevalence in conventional
produce production environments, relatively few have investigated prevalence in aquaponics and
hydroponics systems. This study sought to address this knowledge gap by enumerating total coliform
and generic E. coli levels, and testing for Salmonella presence in circulating water samples collected
from five hydroponic systems and three aquaponic systems (No. of samples = 79). While total
coliform levels ranged between 6.3 Most Probable Number (MPN)/100-mL and the upper limit of
detection (2496 MPN/100-mL), only three samples had detectable levels of E. coli and no samples had
detectable levels of Salmonella. Of the three E. coli positive samples, two samples had just one MPN
of E. coli/100-mL while the third had 53.9 MPN of E. coli/100-mL. While the sample size reported
here was small and site selection was not randomized, this study adds key data on the microbial
quality of aquaponics and hydroponics systems to the literature. Moreover, these data suggest that
contamination in these systems occurs at relatively low-levels, and that future studies are needed to
more fully explore when and how microbial contamination of aquaponics and hydroponic systems is
likely to occur.
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1. Introduction

Multiple foodborne disease outbreaks and recalls have been traced back to preharvest
contamination of fresh produce (e.g., [1–3]). For example, several recent Escherichia coli (E. coli)
O157:H7 outbreaks linked to romaine lettuce have been traced back to the use of contaminated
irrigation water [4,5]; the 2018 outbreak linked to lettuce grown in Yuma, AZ resulted in 210 illnesses,
96 hospitalizations, and 5 deaths across 36 states [5]. Due to the substantial public health and
economic burden of produce-associated outbreaks, preventing preharvest contamination is a priority
for academic, government, and industry stakeholders [6,7]. Indeed, multiple studies have been
conducted to investigate the prevalence, distribution, and dispersal of foodborne pathogens in and
between farm and farm-adjacent environments [8–10]. For instance, a series of studies conducted
in California and New York examined the transfer of E. coli from wildlife feces to preharvest lettuce
via splash during irrigation [11–14]. Similar field studies have been conducted to examine pathogen
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survival in and transfer to produce from soil, irrigation water, and other environmental sources [15–21].
However, the majority of research has focused on soil-based field and greenhouse environments,
and there is limited data on food safety hazards in soil-free production environments, such as
hydroponics (i.e., production of plants in a liquid media instead of soil) and aquaponics (i.e., system
that combines aquaculture [raising of fish or other seafood] with hydroponics) systems. Indeed,
a recent topical summit that gathered academic, industry and government experts identified the need
for additional data on hazards in hydroponic and aquaponics systems, and specialized resources for
growers who utilize these systems [22].

Although relatively few studies have investigated the prevalence and distribution of food safety
hazards in aquaponics systems, these systems are of increasing interest as a way to address food
sustainability and security needs. Studies conducted in conventional and greenhouse production
environments, and fish supply chains indicate that multiple pathways exist for the introduction of
foodborne pathogens into hydroponic and aquaponic systems, including, but not limited to, fish feed,
fish waste, the system’s water, and the vegetable seeds [3,23–32]. Due to the limited number of studies
that investigated food safety hazards in aquaponics or hydroponics systems [27,32–35], additional
prevalence data are needed to fully characterize and manage food safety hazards associated with various
aquaponics and hydroponics inputs. This need is particularly pressing, since the data that currently
exist vary substantially between studies. For example, a study that surveyed pathogen levels in six
experimental systems isolated Shiga-toxin producing E. coli but not Listeria monocytogenes or Salmonella
from water, fish feces, and produce root samples [27]. Conversely, a study that sampled commercial and
backyard aquaponics systems in Hawaii failed to detect E. coli O157:H7 or Salmonella in 510 fish feed,
fish, and produce samples [36]. However, an unpublished study from the University of Minnesota did
detect Listeria in aquaponically, and hydroponically-grown lettuce at retail [37]. The present study was
conducted to generate data on the levels and prevalence of microbial contaminants in three aquaponics
and five hydroponics systems in New York, to help address this knowledge gap and to generate
preliminary data on which future studies can build. Since past studies have shown that water is a key
pathway for the introduction of foodborne pathogens into production environments, and can, directly
and indirectly, transfer pathogens to produce [11,13,38–42], the current study specifically focused on
characterizing microbial contamination of water in the eight aquaponics and hydroponics systems
sampled here.

2. Methods

Systems. Water samples were collected from eight experimental systems in Ithaca, New York,
including 3 aquaponics and 5 hydroponic systems (Table 1). While all systems were essentially similar
in overall design (e.g., use of municipal water), systems differed in size, temperature, and potential for
food safety contamination (e.g., presence of foot traffic; open-air; Table 1). Four of the experimental
systems (three hydroponic and one koi-based aquaponic system at Location C) were located in a
greenhouse with temperature maintained at 16–29 ◦C, and with limited public access and no food
safety protocols (e.g., regarding handwashing prior to interacting with the systems). The fifth system
(hydroponics system at Location T) was an open-air system in a large dining establishment providing
several hundred individuals access to the system on a daily basis, and resulting in temperature
staying at approximately 21–25 ◦C. The sixth system (a catfish-based aquaponics system) was in
an un-insulated greenhouse with minimal foot traffic (air temperature ranged between −1 and 37;
Location H), while the remaining aquaponics (tilapia-based) and hydroponics systems were in a heated
greenhouse (air temperature approximately 19–23 ◦C), utilized water heaters (approximately 19–27 ◦C),
and had limited public access.
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Table 1. Characteristics of the eight systems sampled here.

Location
System Public Access Temperature Range (◦C)

Crop Fish
ID Type a Who Frequency Air Water

C

A Hydroponic Researchers, Students Frequent 16–29 16–29 Strawberries -
B Hydroponic Researchers, Students Frequent 16–29 60–29 Strawberries -
C Hydroponic Researchers, Students Frequent 16–29 16–29 Strawberries -
D Aquaponic Researchers, Students Frequent 16–29 16–29 Strawberries 50 Koi

H A Aquaponic None Infrequent −1–37 4–32 Variable 30 Catfish

L
A Hydroponic Researchers, Students Frequent 19–23 19–23 Basil, Lettuce -
B Aquaponic Researchers, Students Frequent 19–23 26–27 Basil, Lettuce 20 Tilapia

T A Hydroponic Public-Access Constant 21–25 21–25 Basil -
a Hydroponics refers to a system that produces plants in a liquid media instead of soil. Aquaponics refers to a system that combines aquaculture [raising of fish or other seafood]
with hydroponics.
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Sampling and Bacterial Assays. Water samples were collected weekly from seven systems for ten
weeks, and from one system for nine weeks; the latter was enrolled after the first set of samples
were collected (No. of samples total = 79). Samples were collected between January and March 2018.
At each sampling 100-mL of water was collected from the reservoir used to collect water prior to
recirculation. Samples were collected by submerging the sampling bottle 15 cm below the water surface.
Samples were held on ice and processed within 1 h of sample collection. Total coliform and E. coli
(a fecal indicator bacteria [FIB]) concentrations were enumerated in 100-mL of the sample using the
IDEXX Colilert Quanti-tray 2000 per manufacturer’s instructions and as previously described [43,44].
While there are limitations to this method (e.g., inability to detect viable but non-culturable [VBNC]
bacteria), this approach is consistent with current produce safety water quality standards in the United
States. Indeed, the IDEXX Colilert Quanti-tray 2000 is an approved method for conducting E. coli
testing as proscribed in Food Safety Modernization Act’s Produce Safety Rule [45]. Gloves were
changed between each sample collection, and all sampling equipment, including the gloved hands,
were sterilized with 70% ethanol. Positive (B-strain E. coli) and negative (sterile water plus Colilert
reagent) controls were run in parallel with each sampling set; all negative samples had <1 most
probable number (MPN) per 100-mL (this was the lower limit of detection [LOD]), while all positive
samples had >2419.6 MPN/100-mL (the upper LOD). For one system per week, an additional 25-mL
was used for Salmonella detection (i.e., 9 samples were tested for Salmonella in the study reported here).
The 25-mL samples collected from systems with detectable levels of E. coli were preferentially selected
for Salmonella testing. During weeks when all samples were below the lower limit of detection for
E. coli, one sample was randomly selected for Salmonella detection. Random selection was performed to
ensure that at least one sample per system was sent for Salmonella testing. Samples were shipped on ice
to Eurofins Scientific Laboratories, who performed the analyses for Salmonella detection using AOAC
method 2003.09 [46]. This method uses the BAX assay as a PCR-screen followed by culture-confirmation
of any PCR-positive samples [46]; past studies have used similar methods for detecting Salmonella
in water [43,44]. Since a PCR-screen is performed before culture-confirmation, the presence of dead
and viable but non-culturable (VBNC) Salmonella is possible using this method. However, dead and
VBNC cannot be distinguished using this approach. All E. coli and coliforms data are available in
Supplemental Materials-Raw Data.

3. Results and Discussion

Of the 79 samples collected, 100% tested positive for coliforms. Specifically, 61 samples
were above the upper LOD for the IDEXX Colilert Quanti-Tray 2000 (2419.6 MPN/100-mL). The
16 samples below the upper LOD ranged between 6.3 and 1986.3 MPN of total coliforms/100-mL
(mean = 1024.7 MPN/100-mL). The five samples with the lowest total coliform levels all came from
H-A (Table 2). H-A thus had the lowest level of total coliforms of the eight systems sampled and was
also the only site without public access or foot traffic. Ninety-six percent (76/79) of samples were below
the LOD for generic E. coli (Supplemental Materials-Raw Data; 95% Confidence Interval [95% CI] =

0–3.7 MPN/100-mL; Table 2). Of the three samples that were above the LOD (1 MPN/100-mL) for
generic E. coli, two samples had 1 MPN of E. coli/100-mL (95% CI = 0.1–5.5 MPN of E. coli/100-mL) and
were collected from systems T-A and C-B. The third sample that was above the LOD was collected
from system C-C and had 53.9 MPN of E. coli/100-mL (95% CI = 40.5–69.7 MPN of E. coli/100-mL;
Table 2). Of the three samples that were above the LOD, each came from separate systems indicating
low-level contamination in multiple systems (Table 2). All nine samples sent for Salmonella testing
were below the limit of detection for the test (LOD = 1/25-mL), indicating the probable absence of
Salmonella in the system at the time of sample collection.
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Table 2. Summary of microbial results for each of the eight systems samples.

Location

System
Microbial a

Total Coliforms E. coli

ID Type No. of
Samples

No. Below Upper
LOD b

Mean (95% CI c)
MPN/100-mL in Samples

Below Upper LOD

No. Above Lower
LOD d

Mean (95% CI c)
MPN/100-mL in Samples

Above Lower LOD

C

A Hydroponic 10 1 437.1 (337.2, 555.5) 0 -
B Hydroponic 10 1 1986.3 (1222.0, 3300.2) 1 1.0 (0.1, 5.5)
C Hydroponic 10 1 1986.3 (1222.0, 3300.2) 1 53.9 (40.5, 69.7)
D Aquaponic 10 1 1732.9 (1167.7, 2709.5) 0 -

H A Aquaponic 9 7 354.0 (247.0, 524.7) 0 -

L
A Hydroponic 10 1 1553.1 (1016.2, 2353.1) 0 -
B Aquaponic 10 2 1986.3 (1222.0, 3300.2) 0 -

T A Hydroponic 10 2 1124.6 (788.1, 1678.9) 1 1.0 (0.1, 5.5)
a One 25-mL sample per system was tested for Salmonella presence (No. of Samples = 9), and none were positive. b Upper limit of detection (LOD) = 2419.6 MPN/100-mL. c 95% confidence
interval. If all samples were above or below the LOD then–was entered. d Lower LOD = 1 MPN/100-mL.
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Due to the limited number of samples positive for generic E. coli or Salmonella, and below the
upper LOD for total coliforms no statistical analyses could be performed here. While the limited
sample size (N = 79 for samples where FIBs were enumerated, and N = 9 for samples where pathogen
testing was performed) is a limitation of the study reported here, preliminary studies, including
negative results, provide key data on which future studies can build. Indeed, despite the presence
of potential risk factors for microbial contamination (e.g., public access, absence of handwashing
protocols), fecal contamination (as indicated by E. coli, a fecal indicator bacteria) was detected in 4% of
samples. Future research on pathogen prevalence in aquaponics and hydroponics systems can use
these data to guide sample size calculations for their studies. For instance, based on the 4% prevalence
found here, a future study that wanted to estimate E. coli prevalence in aquaponics and hydroponics
systems with 95% confidence and 2% precision, would need to collect 188 samples (sample size
estimation performed using formula in [47]). If a higher precision or confidence is desired then the
necessary sample size would increase (1% precision increases sample size to 753, 97.5% confidence
increases sample size to 224).

Despite the small sample size of the study reported here, the results are consistent with the
findings of several past studies [32–34]. For example, a study that collected basil, lettuce, barramundi
and water from 6 laboratory aquaponics-systems over 118 days failed to detect generic E. coli, E. coli
O157:H7, or Salmonella in any of the samples [34]. This previous study, like the study reported here,
found similar levels of coliforms (between 13 and 1820 CFU/100-g; calculated using data reported in
the study; [34]). Also similar to the study reported here, a study that assessed microbial contamination
on lettuce and water samples collected from two Puerto Rican hydroponic facilities failed to detect
Salmonella [32].

Interestingly, the low levels of microbial contamination reported here and in previous aquaponics
and hydroponics studies, contrasts to the substantially higher levels of microbial contamination reported
by studies conducted in conventional production environments. For example, all 181 agricultural
water samples collected from conventional produce farm environments in New York in a 2017 study
had detectable levels E. coli (Mean = 181.5 MPN/100-mL; Range = 18.5 to >2419.6 MPN/100-mL),
while 44% (80/181) of samples were Salmonella-positive. The two agricultural water studies are not
unique as multiple studies conducted in Arizona [44], Belgium [10], Florida [48], New York [40,43],
South Africa [49], Spain [50], and Virginia [51] also reported higher fecal indicator bacterial levels and
higher pathogen prevalence than the present study. While this may suggest a lower likelihood of food
safety hazards in aquaponic and hydroponic systems compared to conventional agriculture, additional
studies are needed to directly compare food safety hazards in these to conventional environments.
Despite this need for additional research, the results of this and other aquaponics/hydroponics
food safety studies indicate that contamination in aquaponics/hydroponics systems occurs at
low-levels [32–34], and that large sample sizes are needed in future observational studies to fully
characterize pathogen prevalence in these systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2311-7524/6/3/42/s1,
Table: Raw Data.
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