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Abstract: Throughout this study, the objective was to determine the most effective carbohydrate (CHO)
sources under different light-emitting diodes (LEDs), and the impact of chlorocholine chloride (CCC),
for the in vitro regeneration of the protocom-like bodies (PLBs) in Phalaenopsis ‘Fmk02010’. We applied
15 LEDs combined with three CHO sources and five CCC concentrations in the study. Organogenesis
of PLBs was very poor in maltose both for the number of PLBs and their fresh weight (FW) compared
to media containing sucrose and trehalose. Sucrose was the best CHO source under the red-white
(RW) LED for the in vitro organogenesis of PLBs (PLBs: 54.13; FW: 0.109 g), while trehalose was best
under the blue-white (BW) LED (PLBs: 36.33, FW: 0.129 g). The red-blue-white (RBW)-trehalose
combination generated a suitable number of PLBs (35.13) with the highest FW (0.167 g). CCC at 0.01,
0.1, and 1 mgL−1CCC had no effect on PLB formation or FW, but 10 mg L−1 reduced both. RW-sucrose,
BW-trehalose, and RBW-trehalose were the best combinations for PLB organogenesis. The addition of
low concentrations of CCC in the plant culture medium are unnecessary.

Keywords: protocorm-like bodies; light-emitting diode; trehalose; maltose; CCC; correlation;
growth retardants

1. Introduction

Phalaenopsis is the most important and valuable commercial orchid in the Orchidaceae family.
It is widely accepted both as cut and pot flowers. Unlike most flowering plants, orchids have a very
unique reproductive system. Propagation of Phalaenopsis, either vegetatively or by seed, is quite
difficult. Tissue culture is the common method due to its successful and rapid propagation. PLB
regeneration is the best and most efficient technique for orchid micropropagation [1], because it has a
rapid proliferation capacity for producing a large number of protocorm-like bodies PLBs within a short
period [2]. They can be induced directly from explants, such as shoot tips [3], flower stalk buds [4], root
tips [5], and leaf segments [6]. The indirect regeneration of PLBs can be done by embryogenic callus
culture using solid [7] or liquid [8] suspension cultures. Proper media compositions with optimum
culture conditions are among the significant factors for fast and high quality plantlet regeneration
through PLBs [9,10]. PLBs are the sole form of somatic embryo that imitates the zygotic embryo in
natural seed, but unlike the zygotic embryo, it can grow continuously without any dormancy [11].

Media ingredients are the key factor for successful PLB regeneration in vitro. Plant tissue culture
media generally have mineral salts, vitamins, growth regulators, and water [12]; another important
component is the carbon source to supply energy [13]. There are many carbon sources like sucrose,
fructose, glucose, trehalose, maltose, and sorbitol [8,14] used for plant tissue culture that might be in
simple or complex forms [15]. It is well known that plants are sensitive to light. Light also affects
PLB regeneration through photosynthetic and phototropic responses and may depend on light quality
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and photoperiod [16]. Fluorescent lights are commonly used. LED lights are currently used for
in vitro cultivation. Power consumption of fluorescent lights is greater, and they produce a wide
range of wavelengths (350–750 nm) that are unnecessary for plant development. Monochromatic
LEDs emit light at specific wavelengths. LEDs are used commercially in plant tissue culture due to
their numerous advantages compared to conventional light systems; such as wavelength specificity,
durability, small size, long operating time, relatively cool emitting surface, and the ability to control
spectral composition [17–19]. Concerning economic viability, the use of LEDs is increasing rapidly
in agriculture due to their huge capacity to save electrical energy. LEDs are more efficient in in vitro
culture than white fluorescent light. It is stipulated that they have the specific wavelengths that fits
plants exact need for morphogenic responses [20]. The wavelength a plant needs varies according to
the species.

LEDs are a unique type of semiconductor diode that have several technical benefits over usual light
sources for photosynthesis [21]. LEDs allow wavelengths to be matched to the plant photoreceptors to
influence plant morphology and metabolic composition [22–24]. Plant pigments absorb red wavelengths
(600–700 nm) efficiently, with the most efficient being660 nm, which is close to the chlorophyll absorption
peak, whereas the blue region includes the visible spectrum (400–500 nm) [25]. It has also been reported
that red light has a significant role in starch accumulation through photosynthesis [26] and blue light
in chloroplast development, chlorophyll formation, and stomatal opening [27]. Red and blue light are
the best to drive photosynthetic metabolism. Green wavelength effects are opposite those of red and
blue wavelengths [28].

A number of in vitro studies have reported vigorous plant growth under LEDs. LED lights have been
previously used for PLB organogenesis in Cymbidium finlaysonianum [29], Dendrobiumkingianum [30,31],
hybrid Cymbidium [32,33], and plantlet regeneration in gerbera [34]. A series of studies have already
been conducted to improve the tissue culture of Phalaenopsis using a number of factors. We previously
used growth regulators and elicitors for the PLB regeneration of Phalaenopsis [35,36]. The effects of light
spectral quality on the photosynthetic ability varied by plant species [37]. Many plant species do not
respond well under a sole LED color, and this limitation can be overcome by combining different colors.
On the other hand, many researchers have reported the long-term effect of growth retardants on in vitro
growth and development [38,39]. Chlorocholine chloride (CCC: (2-chloroethyl) trimethyl-ammonium
chloride) can be used to manipulate plant growth [40–42]; it inhibits gibberellic acid biosynthesis [43,44].
Gibberellic acid reduces adenosine diphosphate-glucose pyrophosphorylase (AGPase) activity, which
is responsible for the reduction of starch synthesis [45]. Application of CCC can counteract this starch
synthesis reduction by blocking gibberellic acid synthesis. CCC may have an impact on plant growth by
altering the hormone content.

The purpose of this study was to determine the best CHO source and LED light combination for
successful PLB regeneration of Phalaenopsis ‘Fmk02010’. In addition, our goals was also to assess the
impact of CCC priming in in vitro PLB propagation of Phalaenopsis.

2. Materials and Methods

2.1. Plant Materials and Culture Conditions

PLBs of Phalaenopsis ‘Fmk02010’ were multiplied in 2.2 gL−1 of PhytagelTM (Sigma-Aldrich®,
Tokyo, Japan) solidified MS medium (modified) [46] at the Lab of Vegetable and Floricultural Science,
Faculty of Agriculture and Marine Science, Kochi University, Japan. We added two major salts,
ammonium nitrate (412.5 mgL−1) and potassium nitrate (950.0 mgL−1), to the MS medium for the
modification. We excised single PLBs to use as explants. The pH was adjusted to 5.5–5.8 using 1 mM
2-(N-morpholino) ethanesulfonic acid sodium salt (MES-Na) prior to autoclaving. We used 30 mL
of culture media in each 250-mL culture bottle (UM culture bottle: AsOne, Japan) and autoclaved
at 121 ◦C for 15 min at 117.1 KPa.
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2.2. CHO Sources and LED Lights

Sucrose, trehalose, and maltose (20 g/L) (Sigma-Aldrich®, Tokyo, Japan) were used as CHO
sources before autoclaving. The PLBs for organogenesis were placed under fourteen different LED
light sources with a control. These were: (1) control (C: white fluorescent light); (2) R (red LED);
(3) G (green LED); (4) B (blue LED); (5) W (white LED); (6) RG (red → green LED); (7) RB (red →
blue LED); (8) RW (red→ white LED); (9) GB (green→ blue LED); (10) GW (green→ white LED);
(11) BW (blue→ white LED); (12) RGB (red→ green→ blue LED); (13) RBW (red→ blue→ white
LED); (14) RGW (red→ green→white LED); and (15) GBW (green→ blue→white LED). All LED
lamps were monochromic. We did not use two different monochromic LEDs together. A monochromic
light supplemented with ≥1 monochromic light had a dissimilar light effect. For example, red LEDs
supplemented with blue fluorescent were equivalent to cool-white fluorescent plus incandescent
lamps [47]. The technique for the sole, double, and triple LED light combinations used in this study is
shown in Scheme 1.
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2.3. CCC Concentrations

Four different CCC concentrations with the control (BioReagent, Sigma-Aldrich®, Tokyo, Japan)
were used. They were 0 (control), 0.01, 0.1, 1, and 10 mgL−1. Sucrose was used in the culture media,
while other culture conditions were similar as described in Section 2.1.

2.4. PLB Culture, Data Collection, and Data Analysis

Experiments were organized in a randomized complete block design. Each bottle contained five
PLBs (with three replications). PLBs were cultured 60 days for the LED-carbon source experiments and
42 days for the CCC-treated PLBs. The explants were cultured at 25 ± 2 ◦C with a 16-h photoperiod
with 54 µmol/m−2 s−1 of irradiance. The number of PLBs (including budding PLBs), shoots, and roots
were counted (Figure 1a). The length of shoots and the fresh weight (FW) of PLBs were measured. The
average numbers and percentages were calculated as follows.

� Average number = Number of cultured explants with new PLBs/Total number of cultured explants
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� Percentage of PLB (%) = (Number of cultured explants with new PLBs/Total number of cultured
explants) × 100

Data are presented as the mean ± the standard error (SE). One-way ANOVA was analyzed by
Minitab®17 (Minitab Inc., Pennsylvania 16801-3008, USA, 2017) using Tukey’s multiple comparisons
test method with the 95% confidence interval.

3. Results

3.1. CHO Sources and LED Lights

RW-sucrose and the control did not significantly differ (Table 1). However, all other LED-sucrose
combinations produced a significantly lower number of PLBs than the RW-sucrose, some significantly
lower than the control as well. Within trehalose treatments, BW-trehalose performed well for the
mean number of PLBs (36.33), which was closely followed by RBW-trehalose (35.13) (Table 1). Maltose
showed the worst overall performance for PLB regeneration with all LED combinations (Table 1). PLBs
under different LEDs showed statistically identical fresh weights for mediums with sucrose and most
with trehalose. However, the medium with maltose showed significant differences among the different
LEDs. Maximum mean fresh weight was found for RBW-trehalose (0.167 g), RBW-maltose (0.112 g),
and RW-sucrose (0.109 g) (Table 1). The RBW-trehalose combination also produced a satisfactory
number of PLBs (35.13) (Table 1). The CHO source-LED combinations with the first, second, and third
highest values for the number of PLBs within each CHO source group (Figure 2) and fresh weight
(Figure 3) are shown. Sucrose produced the highest and second highest numbers of PLBs, and trehalose
was best for the fresh weight as the CHO source in the culture medium (Figures 2 and 3).

After 60 days of culture, some treatments tended to produce shoots. Trehalose had a greater
tendency for shoot growth under LED lights except GW, RGB, RBW, RGW, and GBW (Table 2). There
were no shoots for trehalose under white fluorescent light (control). Shoots were produced with
W-sucrose and RGW-sucrose, as well as with RG-maltose. Root formation was not observed in any of
the treatment combinations except trehalose-RG (number: 0.03; length: 0.03 cm; data are not shown).

3.2. CCC Concentrations

The number of PLBs, PLB formation rate, and fresh weight of Phalaenopsis ‘Fmk02010’ with
different concentrations of CCC in the culture medium are shown in Table 3. The number of PLBs
and fresh weight were significantly lower at 10 mgL−1CCC. The maximum number of PLBs were
produced in the culture medium treated with 0.01 mgL−1 of CCC. In this treatment, there was a
100% PLB formation rate. The PLB formation rates were 93.33%, 93.33%, 80.00%, and 33.33% at
0, 0.01, 1, and 10 mgL−1 of CCC, respectively. The maximum fresh weight was from the culture
media having 0.01 mgL−1 of CCC, whereas the minimum fresh weight was found at 10 mgL−1 of
CCC (Table 3). CCC at 0.01, 0.1, and 1 mg L−1 did not differ from the control values for number of
PLBs or fresh weight. In the scatter plot (Figure 4), the relationship between PLB organogenesis and
CCC concentration are shown. The R2 of the correlation was high for both number of PLBs (R2 = 0.915)
and fresh weight (R2 = 0.747) to the different CCC concentrations. There was a negative relationship
in both cases, suggesting that the number of PLBs and fresh weight would decrease with increasing
CCC concentration in the culture medium.



Horticulturae 2019, 5, 34 5 of 12

Table 1. Mean number of PLBs and fresh weight of Phalaenopsis ‘Fmk02010’withdifferent CHO sources and LED lights.

Light z
Mean Number of PLBs Fresh Weight (g)

Sucrose Trehalose Maltose Sucrose Trehalose Maltose

Control 37.73 ± 4.40 y ab 28.13 ± 4.87 abcd 1.60 ± 0.53 b 0.098 ± 0.057 a 0.059 ± 0.033 ab 0.043 ± 0.023 ab
R 26.20 ± 3.38 bc 15.87 ± 2.89 bcde 2.73 ± 0.97 b 0.062 ± 0.042 a 0.059 ± 0.032 ab 0.033 ± 0.019 b
G 21.93 ± 3.76 bcd 8.87 ± 1.55 de 6.00 ± 1.35 b 0.066 ± 0.045 a 0.041 ± 0.022 ab 0.033 ± 0.018 b
B 20.47 ± 3.92 bcd 27.67 ± 3.21 abcd 2.27 ± 0.76 b 0.043 ± 0.024 a 0.137 ± 0.074 ab 0.017 ± 0.009 b
W 24.80 ± 4.49 bcd 22.80 ± 2.92 abcde 3.60 ± 0.67 b 0.071 ± 0.039 a 0.079 ± 0.042 ab 0.028 ± 0.017 b
RG 11.07 ± 3.97 cd 19.33 ± 3.44 abcde 4.47 ± 1.04 b 0.029 ± 0.022 a 0.063 ± 0.034 ab 0.043 ± 0.023 ab
RB 11.60 ± 3.11 cd 15.33 ± 5.55 bcde 1.47 ± 0.45 b 0.026 ± 0.020 a 0.091 ± 0.065 ab 0.024 ± 0.013 b
RW 54.13 ± 8.85 a 12.13 ± 2.82 cde 14.47 ± 3.39 a 0.109 ± 0.063 a 0.027 ± 0.020 b 0.066 ± 0.041 ab
GB 19.93 ± 4.83 bcd 22.73 ± 3.67 abcde 2.27 ± 1.03 b 0.061 ± 0.035 a 0.117 ± 0.062 ab 0.020 ± 0.011 b
GW 26.40 ± 3.60 bc 8.73 ± 2.19 de 4.80 ± 1.11 b 0.080 ± 00.047 a 0.047 ± 0.026 ab 0.051 ± 0.027 ab
BW 10.67 ± 4.11 cd 36.33 ± 5.08 a 3.80 ± 1.76 b 0.020 ± 0.020 a 0.129 ± 0.071 ab 0.045 ± 0.024 ab
RGB 5.47 ± 1.98 d 5.00 ± 1.70 e 8.40 ± 1.85 a 0.015 ± 0.015 a 0.066 ± 0.048 ab 0.079 ± 0.047 ab
RBW 13.53 ± 2.88 cd 35.13 ± 4.36 ab 13.73 ± 2.09 a 0.034 ± 0.024 a 0.167 ± 0.098 a 0.112 ± 0.068 a
RGW 19.07 ± 2.60 bcd 29.40 ± 4.45 abc 1.47 ± 0.35 b 0.030 ± 0.021 a 0.090 ± 0.048 ab 0.022 ± 0.013 b
GBW 12.20 ± 2.79 cd 32.00 ± 7.77 ab 4.73 ± 1.27 b 0.056 ± 0.038 a 0.088 ± 0.063 ab 0.030 ± 0.017 b

z Control (C: white fluorescent light); R (red LED); G (green LED); B (blue LED); W (white LED); RG (red→ green LED); RB (red→ blue LED); RW (red→ white LED); GB (green→ blue
LED); GW (green→ white LED); BW (blue→ white LED); RGB (red→ green→ blue LED); RBW (red→ blue→ white LED); RGW (red→ green→ white LED); and GBW (green→ blue
→white LED). y Mean± SE values that do not share a letter are significantly different within each column, and those sharing a letter are statistically similar at P ≤ 0.05.
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Table 2. Shoot growth withdifferent CHO sources and LED lights during PLB organogenesis of
Phalaenopsis ‘Fmk02010’.

Light z
Number of Shoots Mean Shoot Length

Sucrose Trehalose Maltose Sucrose Trehalose Maltose

Control 0 0 0 0 0 0
R 0 0.38 ± 0.14 0 0 0.26 ± 0.10 0
G 0 0.38 ± 0.14 0 0 0.04 ± 0.02 0
B 0 0.75 ± 0.29 0 0 0.11 ± 0.05 0
W 0.13 ± 0.07 0.25 ± 0.09 0 0.05 ± 0.05 0.08 ± 0.03 0
RG 0 0.13 ± 0.07 0.13 ± 0.13 0 0.08 ± 0.04 0.03 ± 0.03
RB 0 0.25 ± 0.13 0 0 0.05 ± 0.03 0
RW 0 0.13 ± 0.07 0 0 0.03 ± 0.01 0
GB 0 0.13 ± 0.07 0 0 0.05 ± 0.03 0
GW 0 0 0 0 0 0
BW 0 0.38 ± 0.14 0 0 0.12 ± 0.04 0
RGB 0 0 0 0 0 0
RBW 0 0 0 0 0 0
RGW 0.25 ± 0.13 0 0 0.03 ± 0.03 0 0
GBW 0 0 0 0 0 0

z Control (C: white fluorescent light); R (red LED); G (green LED); B (blue LED); W (white LED); RG (red→ green
LED); RB (red→ blue LED); RW (red→white LED); GB (green→ blue LED); GW (green→white LED); BW (blue→
white LED); RGB (red→ green→ blue LED); RBW (red→ blue→ white LED); RGW (red→ green→ white LED);
and GBW (green→ blue→white LED).

Table 3. Role of CCC concentrations forthe in vitro PLB production of Phalaenopsis ‘Fmk02010’.

CCC (mgL−1) Number of PLBs PLB Formation (%) Fresh Weight (g)

0 12.53 ± 1.71 z a 93.33 0.175 ± 0.028 a
0.01 15.67 ± 1.01 a 100.00 0.211 ± 0.018 a
0.1 13.73 ± 1.62 a 93.33 0.191 ± 0.022 a
1 11.07 ± 2.08 ab 80.00 0.182 ± 0.027 a
10 4.40 ± 1.74 b 33.33 0.049 ± 0.019 b

z Mean ± SE values that do not share a letter within each column are significantly different at P ≤ 0.05.
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Figure 4. Correlation between the number of PLBs (left) and fresh weight (right) with CCC
concentrations of the culture medium. Mean data were used for these analyses.

4. Discussion

Among the combinations, RW-sucrose produced the maximum number of PLBs, but the fresh
weight not the highest (Table 1). On the other hand, the BW-trehalose combination produced
comparatively fewer PLBs than that of RW-sucrose, but the fresh weight was higher. Sucrose was
the best CHO source for number of PLBs (Figure 2), whereas trehalose was the best regarding the
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fresh weight (Figure 3). Both number of PLBs and fresh weight are very important for successful and
healthy PLB regeneration. Using trehalose in culture media was more effective than sucrose for friable
callus formation in Phalaenopsis [48]. RW-sucrose, BW-trehalose, and RBW-trehalose combinations
may be better for PLB organogenesis of Phalaenopsis considering both the number of PLBs and fresh
weight. These three combinations were cultured in the white LED on the last 20 or 30 days; the first
20 or 30 days they were cultured under red, or blue, or red and blue LEDs. Results suggested that a
white LED was important for rapid and healthy PLB growth, because the plant may have the ability to
produce more chlorophyll under white light [49]. PLBs cultured under red LEDs for the early period
showed a tendency to generate more PLBs. Plant growth was fragile under red light [50,51], and it
stimulated endogenous gibberellins that cause cell proliferation and mitosis [52]. Red light increased
multiplication rate [53], and our study also confirmed the increased multiplication of PLBs under red
light. The red wavelengths (between 600 and 700 nm) were absorbed by plant pigments [23]. Hormones
responsible for inflorescence formation, inflorescence elongation, and bud breakage were stimulated
by red light [54]. PLBs cultured under blue LEDs in the early period produced a higher fresh weight.
Trehalose-BW produced the maximum fresh weight of PLBs, and blue LEDs robustly encouraged PLB
growth. Tanaka et al. [55] found blue LEDs to be effective for PLB formation in Phalaenopsis.

LEDs are an effective light source for plants [52,56], and light quality plays apart in the vital
function of photosynthesis. The mechanism is that in which light is absorbed by chlorophyll [57]. Blue
light plays an important role in chlorophyll biosynthesis [58–60] that may affect both the number of
PLBs and fresh weight with a white LED. Chlorophyll contents are correlated with plant species or
cultivar when grown under different light qualities [61]. Anuchai and Hsieh [62] found significantly
higher chlorophyll (both a and b) and carotenoid content under blue light in Phalaenopsis. They also
found a higher number of stems, fresh weight, and leaf length under red LEDs and higher RuBisCO
enzyme activity. PLBs cultured under red LEDs in the early period, and then shifted to blue LEDs
and white LEDs, showed significantly better results both for number of PLBs and fresh weight. The
results suggested that red, or blue, or red and blue LEDs should be used initially, and then shifted
to white LEDs for successful and healthier PLB regeneration of Phalaenopsis ‘Fmk02010’, but their
effects also depend on the CHO sources in the culture medium. In our study, trehalose was better for
available CHO for PLB organogenesis with BW LEDs (i.e., 30 days under a blue LED→ 30 days under
a white LED). Similarly, sucrose was better for available CHO under RW LEDs (i.e., 30 days under a red
LED→ 30 days under a white LED). Conversely, BW-trehalose produced the second largest number of
shoots (Table 2). LEDs have been successfully applied in vitro in various plant species [20,29–33]. The
ideal light stipulation for each plant species is unique. The response to the spectral composition of one
plant species in vitro may not be similar for another plant species [63].

In our previous study, we used a number of growth regulators for PLB regeneration [35,36],
so included the growth retardant CCC in the current study. The concentration of CCC played an
important role in PLB organogenesis of Phalaenopsis “Fmk02010” ‘Fmk02010’. Growth retardants
were extensively used in vivo to improve floricultural characteristics, especially to control plant
height. Application of CCC seemed to be effective with a very low concentration. PLB formation
was very sensitive to a high concentration (>0.01 mgL−1). Plant growth retardants like CCC could
improve carbohydrate accumulation by increasing photosynthetic capacity and altering endogenous
hormones [64,65]. CCC treatment can promote nutrient uptake, water balance, and protein synthesis
in growing organs [66]. An increasing concentration of CCC resulted in a decreased number and
percentage of PLB formation. The addition of CCC to the in vitro medium enhanced tuberization [67–69].
We found an effect of a higher concentration CCC on PLB organogenesis in culture media through the
investigation of the relationship between CCC with PLB organogenesis. Similar relationships have
also been studied previously [70–72]. CCC is an anti-gibberellin growth regulator that inhibits an early
step in gibberellic acid (GA) biosynthesis [43]. Treatments with CCC counteract the reduction in starch
synthesis by blocking GA synthesis. Plant growth retardants like CCC and paclobutrazol are able to
inhibit gibberellin biosynthesis or action [73,74], and can control excessive vegetative growth [75,76]
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which ultimately increases quality attributes such as dry matter content [77]. CCC treatment is mostly
effective for tuberous and bulbous pants. PLBs are tuber-like bodies. We observed that the addition of
the growth retardant CCC had no effect on PLB formation or fresh weight except for a reduction at the
highest concentration (Table 3).

5. Conclusions

Sucrose and trehalose can be used as excellent CHO sources in the culture media for PLB
regeneration of Phalaenopsis. RW-sucrose was the best combination to produce the maximum number
of PLBs. However, the combination of BW-trehalose also produced a large number with healthier PLBs;
it also had a tendency to produce a greater number of shoots that would need immediate subculture for
future preservation. RBW-trehalose generated a satisfactory number of PLBs with a higher fresh weight
and did not generate any shoots. An excessive concentration of CCC (10 mgL−1) caused enormous
reduction in the number of PLBs, the percentage of PLB formation, as well as fresh weight.
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