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Abstract: Autonomous mobile robots play a vital role in the mechanized production of orchards,
where human-following is a crucial collaborative function. In unstructured orchard environments,
obstacles often obscure the path, and personnel may overlap, leading to significant disruptions to
human-following. This paper introduces the KCF-YOLO fusion visual tracking method to ensure
stable tracking in interference environments. The YOLO algorithm provides the main framework, and
the KCF algorithm intervenes in assistant tracking. A three-dimensional binocular-vision reconstruc-
tion method was used to acquire personnel positions, achieving stabilized visual tracking in disturbed
environments. The robot was guided by fitting the personnel’s trajectory using an unscented Kalman
filter algorithm. The experimental results show that, with 30 trials in multi-person scenarios, the
average tracking success rate is 96.66%, with an average frame rate of 8 FPS. Additionally, the mobile
robot is capable of maintaining a stable following speed with the target individuals. Across three
human-following experiments, the horizontal offset Error Y does not exceed 1.03 m. The proposed
KCF-YOLO tracking method significantly bolsters the stability and robustness of the mobile robot for
human-following in intricate orchard scenarios, offering an effective solution for tracking tasks.

Keywords: orchard scene; mobile robot; KCF-YOLO; human-following; visual tracking

1. Introduction

The increasing use of autonomous mobile robots in collaborative transportation tasks
has positioned this field as a rapidly advancing research area [1–7]. Over the past two
decades, significant advancements in sensor technology, robotic hardware, and software
have driven the widespread adoption of mobile robots in diverse industries [8–13]. In agri-
culture, collaborative mobile robots have emerged as key replacements for labor-intensive
tasks, highlighting their potential as essential servo technologies. Human-following technol-
ogy has attracted considerable attention in structured environments, such as factory logis-
tics, transportation, and airport operations, and has seen partial commercialization [14–16].
However, this technology is still experimental in complex orchard environments. The com-
plex nature of an orchard environment, coupled with numerous obstacles and occlusions,
makes the human tracking process susceptible to recognition failure, target loss, and other
problems. These challenges lead to the failure of the mobile tracking function of robots,
which is a significant obstacle to the successful operation of mobile robots.

To handle the aforementioned challenges, this paper proposes a human-following
strategy for an orchard mobile robot based on KCF-YOLO. The method includes two main
components: personnel detection and tracking, and human-following. The KCF algorithm,
as a traditional visual tracking method, mainly achieves target tracking by adopting a
histogram of oriented gradients (HOG) features, which results in higher tracking accuracy
compared to grayscale or color feature methods. The YOLO v5s algorithm, as an efficient
object detection algorithm, boasts excellent detection speed and accuracy. Therefore, this
method combines the strengths of both the KCF and YOLO v5s algorithms, achieving
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continuous and stable tracking of target individuals in orchard environments (Section 3.3).
Building upon stable visual tracking, spatial information of individuals is obtained through
binocular stereo vision methods and transformed into coordinates in the vehicle’s frame.
Due to the potential positional oscillations in the three-dimensional spatial information
acquired through cameras, dynamic modeling of target trajectories is implemented. The
unscented Kalman filter (UKF) is introduced to predict the trajectories of individuals
(Section 3.4), thereby enhancing the stability of following. Simultaneously, multi-person
interference experiments are conducted on the KCF-YOLO algorithm to evaluate its ro-
bustness. Furthermore, the integration of the KCF-YOLO algorithm onto a mobile robot is
performed to assess its performance in real orchard environments (Section 4.2).

This study aimed to devise a method for accurately recognizing and tracking a target
within a complex scene, thereby achieving stable mobile robots in such intricate environ-
ments. The main contributions of this paper are summarized as follows:

1. A visual tracking algorithm is proposed in the paper, with the YOLO algorithm as the
main framework and the KCF algorithm introduced for auxiliary tracking, aiming to
achieve continuous and stable tracking of targets in orchard environments.

2. A KCF-YOLO human-following framework has been constructed in the paper, which
can be employed for human-following based on visual mobile robots in real
orchard scenarios.

The remainder of this paper is organized as follows: In Section 2, related works are
discussed. Section 3 provides a detailed description of the proposed KCF-YOLO visual
tracking algorithm, along with the human-following method. Section 4 describes the experi-
mental validation of the proposed algorithm and discusses the experimental results. Finally,
Section 5 concludes the paper with a summary and outlook on the proposed methodology.

2. Related Works

With the rapid development of computer vision technology, human-following methods
based on machine vision have received widespread attention [17–19]. These methods
involve two crucial steps: the first is target detection and tracking, and the second is
human-following. For target detection and visual tracking, Bolme et al. [20] proposed a
minimum output sum of squares of error filter that generates a stable correlation filter
via single-frame initialization to enhance the tracking robustness against rotation, scale
variation, and partial occlusion. However, this method is sensitive to changes in the target
color and brightness, making it prone to tracking errors when the target moves rapidly
or closely resembles the background. Henriques et al. [21] proposed a high-speed kernel
correlation factor (KCF) algorithm that uses a cyclically shifted ridge regression method to
reduce memory and computation significantly, thereby improving the execution speed of
the algorithm. When encountering changes in the appearance of non-rigid targets, such as
the human body, adaptation through the online updating of the tracking model is essential.

Nonetheless, online updating can lead to drifts in tracking. To solve the drift problem,
Liu et al. proposed a real-time target response-adaptive and scale-adaptive KCF tracker
that can detect and recover from drifts [22]. Despite this, drift errors persist in long-term
target tracking, impacting the system robustness owing to frequent changes in the target
attitude and appearance. To mitigate the error caused by tracking drift and enhance system
robustness, Huan et al. proposed a tracking method using a structured support vector
machine and the KCF algorithm [23]. This approach optimizes the search strategy for
tracking the motion characteristics of a target, thereby reducing the search time for dense
sampling. Consequently, it improves the search efficiency and classifier accuracy compared
with the traditional KCF algorithm in the setting of a dense sample. Search efficiency
and classifier accuracy in dense sampling improve computational efficiency and target
tracking performance in complex environments, solving the problem of failing to accurately
track the target owing to the drift caused by changes in target size and rapid movement.
Nevertheless, the KCF algorithm faces the significant drawback of poor tracking robustness
owing to obstacle occlusion. Bai et al. introduced the KCF-AO algorithm to solve the
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tracking failure problem caused by occlusion in the KCF algorithm [24]. This algorithm
employs the confidence level of the response map to assess the tracking result of each
frame. In cases where the target disappearance is detected, it employs the A-KAZE feature
point matching algorithm and the normalized correlation coefficient matching algorithm
to complete the redetection of the target. The position information is then fed back to
KCF to resume tracking, which improves the robustness of the tracking performance of
the KCF algorithm. Mbelwa et al. proposed a tracker based on object proposals and
co-kernelized correlation filters (Co-KCF) [25]. This tracker utilizes object proposals and
global predictions estimated using a kernelized correlation filter scheme. Through a spatial
weight strategy, it selects the optimal proposal as prior information to enhance tracking
performance in scenarios involving fast motion and motion blur. Moreover, it effectively
handles target occlusions, overcoming issues such as drift caused by illumination variations
and deformations. The studies mentioned underscore researchers’ substantial contributions
to overcome challenges related to obstacle occlusion, target size variation, and the rapid
movement faced by the KCF algorithm in mobile robot tracking. These findings pave the
way for novel advancements in visually guided human-following techniques. However, the
KCF target-tracking algorithm is computationally complex, and detection accuracy based
on artificially designed features is unsatisfactory for partially occluded human bodies.

In contrast, deep learning methods offer innovative approaches in the realm of peo-
ple detection and following. Gupta et al. proposed the use of the mask region-based
convolutional neural network (mask RCNN) and YOLO v2-based CNN architectures for
personnel localization, along with speed-controlled tracking algorithms [26]. Boudjit et al.
introduced a target-detecting unmanned aerial vehicle (UAV) following a method based
on the YOLO-v2 architecture and achieved UAV target tracking by combining detection
algorithms with proportional–integral–derivative control [27]. Additionally, the single-shot
multi-box detector (SSD) target detection algorithm proposed by Liu et al. is even faster
than the so-called faster RCNN detection method. It offers a significant advantage in the
mean average precision achieved compared with YOLO [28]. Algabri et al. presented a
framework combining an SSD detection algorithm and state-machine control to identify a
target person by extracting color features from video sequences using H-S histograms [29].
This framework enables a mobile robot to effectively identify and track a target person.
The aforementioned methods involve integrating deep learning with traditional computer
vision techniques for fine-grained target detection and tracking.

Stably following a target person in complex scenarios poses a significant challenge
in human-following. In the following problem, effectively avoiding obstacles while con-
tinuously following a target and keeping the target within the robot’s field of view is an
important part of realizing a human-following task. Han et al. utilized the correlation
filter tracking algorithm to track the target individual [30]. In instances of tracking failure,
they introduced facial matching technology for re-tracking, achieving continuous tracking
of the target person in indoor environments and improving the stability of the tracking
process. Cheng-An et al. obtained obstacle and human features using an RGB-D camera
and estimated the next moment state of pedestrians using the extended Kalman filter
(EKF) algorithm to achieve stable human-following in indoor environments [31]. However,
outdoor environments are more complex than indoor environments. Human stability is
affected by various factors, including diverse terrains, unstructured obstacles, and dynamic
pedestrian movements. Gong et al. proposed a point cloud-based algorithm, employing a
particle filter to continuously track the target’s position. This enables the robot to detect
and track the target individual in outdoor environments [32]. Tsai et al. achieved human-
following in outdoor scenes using depth sensors to determine the distance between the
tracking target and obstacles [33]. A Kalman filter predicts the target person’s position
based on the relative distance between the mobile robot and the target person. However,
the applicability of this method is limited to relatively simple scenes, making it unstable in
complex orchard environments.
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Human-following techniques for orchard environments face a lack of effective solu-
tions. The traditional KCF algorithm exhibits instability when confronted with challenges,
such as obstacle occlusion, variations in target size, and rapid movements. Consequently,
they lack persistent tracking capabilities for specific individuals or targets, which restricts
their effectiveness in orchards. Although the YOLO target detection algorithm demon-
strated high accuracy in orchards, its role as a detection tool limited its ability to track
specific individuals, limiting its applicability in complex scenarios. Ensuring stability
and devising effective strategies for robots are paramount in an unstructured orchard
environment. The absence of state estimation and prediction capabilities in robots op-
erating in uncertain and complex environments results in a lack of stability in target
following. Therefore, a novel human-following strategy is proposed to enhance the robust-
ness of target tracking and improve the adaptability and stability of robot movements in
orchard scenarios.

3. Algorithm

Based on the KCF and the YOLO v5s algorithms, this paper proposes a comprehensive
human-following system framework. This framework utilizes camera sensors to acquire
three-dimensional spatial information of individuals, which is then transformed into the
coordinate system of a mobile robot. The unscented Kalman filter (UKF) algorithm is em-
ployed to predict the trajectory of individuals based on their three-dimensional information.
When the target individual moves out of the robot’s field of view, the KCF-YOLO algo-
rithm is used to retrack the target individual upon re-entry into the field of view, enabling
continuous tracking of individuals. The overall framework of the human-following system
is illustrated in Figure 1.
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3.1. Kernel Correlation Filter (KCF)

The KCF is a target-tracking algorithm based on online learning that encompasses three
key steps: feature extraction, online learning, and template updating. Initially, the algorithm
extracts HOG features from the target, generating a Fourier response. Subsequently, the
correlation of the Fourier response is computed to estimate the target location. Following
that, the classifier is trained by cyclically shifting image blocks around the target location
and adjusting the weights of the KCFs through a ridge regression formulation. Continuous
target tracking is achieved through online learning and updating, leveraging the real-time
detected target position and adjusted filter weights. The flow of the KCF algorithm is
illustrated in Figure 2.
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In Step 1, the HOG feature extraction process is illustrated. In Step 2, F (u, v), a
complex-valued spectrum in the frequency domain, represents information regarding the
frequency component (u, v). f (x, y) denotes the pixel intensity value at coordinates (x, y) in
the image, and R (x, y) signifies the response at position (x, y) in the image. In Step 3, the
template update process in the KCF algorithm is elucidated, where FFT represents the fast
Fourier transform, and IFFT represents the inverse Fourier transform. The Gaussian kernel
function in the KCF algorithm plays a crucial role in modeling the similarity between the
target and candidate regions. The sigma value, an essential parameter of the Gaussian
kernel function, determines the bandwidth of the Gaussian kernel function, thereby directly
affecting the stability of the KCF algorithm. The Gaussian kernel function in the frequency
domain is typically represented as shown in Equation (1).

K(u, v) = e−2π2σ2(u2+v2) (1)

The KCF algorithm demonstrates robust real-time capabilities and accuracy in practi-
cal applications, particularly in real-time video target tracking, and effectively addresses
the challenges associated with target deformation and scale changes. However, in complex
orchard environments, the robustness of the tracking performance of the KCF algorithm
diminishes because of factors such as occlusions between trees. Therefore, the integra-
tion of additional techniques is essential to enhance the tracking performance in specific
application scenarios.

3.2. YOLO

The YOLO series of algorithms is a fast and efficient object detection algorithm that
can perform object detection and classification directly in the entire image. It provides
both the position and category probability for each detected object box [34]. The network
structure of the YOLO v5s algorithm was categorized into four modules: input, backbone,
neck, and prediction. The network architecture is shown in Figure 3.
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Initially, the preprocessed image undergoes characterization and a series of convolu-
tional processes in the backbone layer. Subsequently, the neck layer integrates the feature
pyramid network and path aggregation network to construct multi-scale feature informa-
tion. Finally, the prediction layer utilizes three feature maps to predict the target class and
generate information regarding the target box location.

The algorithm proposed in this paper serves as a framework, not limited to a specific
version of YOLO. The YOLOv5s algorithm strikes a balance between performance and
speed, catering to specific scenarios and the requirements of existing hardware. Simulta-
neously, its deployment is more straightforward on mobile robots. While higher versions
may offer additional features, they demand increased computational resources. In the
context of mobile robot tracking tasks, real-time information is crucial for system stability.
Therefore, this study harnesses the advantages of YOLO v5s regarding target detection
accuracy, coupled with its real-time capabilities and adaptability to the continuous tracking
of KCF. A target detection algorithm that integrates the strengths of both approaches to
enhance the stability and reliability of target visual tracking is proposed.

3.3. Proposed KCF-YOLO Algorithm

The KCF algorithm is known for its high efficiency and accuracy in real-time tracking,
excelling when the target size remains relatively constant and there are no occlusions.
However, in intricate orchard environments characterized by occlusions, such as trees and
overlapping pedestrians, the KCF algorithm faces challenges that lead to failures in target
tracking. Conversely, the YOLO v5s algorithm demonstrates a rapid and accurate response
in target recognition yet encounters difficulties in distinguishing and localizing specific
objects among similar targets. To address the limitations of both algorithms in specific
target tracking, this section introduces the KCF-YOLO fusion visual tracking algorithm.
The implementation of this algorithm is illustrated in Figure 4.

The KCF-YOLO algorithm leverages the YOLO v5s algorithm for target detection. The
algorithm identifies the target detection box and determines the position of the target center
in the image. Through the continuous calculation of the range between the real-time target
center and the edges of the field of view, the algorithm evaluates whether the detected
target is on the verge of leaving the field of view. Based on this evaluation, the algorithm
determines whether the KCF algorithm should intervene to provide auxiliary tracking.
Suppose the algorithm determines that the tracked target is positioned at the edge of the
field-of-view window. In that case, the KCF-YOLO algorithm utilizes the target detection
frame obtained by the YOLO v5s algorithm as the region of interest to initialize the KCF
algorithm for auxiliary tracking. Notably, the parameters distance serves as the trigger
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region for the KCF algorithm, denoted as dis, which represents a certain distance from the
left or right boundary of the image to the image center, as shown in Figure 5. It is primarily
used to determine whether the target individual is about to leave the frame and initiate
the KCF algorithm for auxiliary tracking, directly impacting the detection efficiency of the
KCF-YOLO algorithm. This study experimentally validated the KCF-YOLO algorithm
using different dis and sigma values as test variables.
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There are two common target-loss scenarios during personnel visual tracking. Tracking
loss occurs when the target is positioned at the edge of the image. To address this problem,
the KCF algorithm calculates the response value by performing correlation operations in
the region surrounding the region of interest. If the peak response value exceeds a preset
threshold, the KCF-YOLO algorithm considers the position as a new tracking position. It
continuously updates the tracking region of the target until the personnel exit the edge of
the image. Second, in the complex environment of an orchard, the target is prone to tracking
loss owing to obscuration and other circumstances. The system captures the frame of the
image before the target leaves its field of view and performs a response value calculation.
When the target-tracking frame is at the edge of the image, waiting for the target to re-enter
the tracking area, the system waits for and monitors the target. If the target re-enters the
image field of view area and the peak response value exceeds the set threshold, the system
recognizes it as a specific target that has previously lost its field of view. The KCF is used to
accomplish assisted visual tracking. Once a specific target returns to the field of view and
retracing is confirmed, the system turns to the YOLO algorithm to complete the detection
and tracking of that target. The process is illustrated in Figure 6.
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In complex orchard environments, the KCF algorithm may encounter difficulties in
tracking owing to obstructions, such as bushes and fruit trees, or issues with pedestrian
overlap. In contrast, the YOLO v5s algorithm struggles to determine whether the target re-
entering the field of view after being lost is the original target. However, the KCF algorithm
supports target tracking under specific conditions. When the target is lost and re-enters
the field of view, YOLO v5s, as the primary tracker, can identify and continue tracking
the previously lost target by combining it with the KCF. This addresses the deficiency of
YOLO v5, which cannot confirm the original target when it re-enters the field of view.
Consequently, this integration improves the stability and robustness of visual tracking in a
complex orchard environment.

3.4. Human-Following Control Strategy

To maintain personnel within the field of view of the robot’s camera, appropriate
control commands must be generated based on the personnel’s positional information.
The human-following control strategy includes personnel moving trajectory acquisition,
offset calculation of the personnel positions, and subsequent control. The process is
described below.

3.4.1. Obtaining Personnel Trajectory

Human-following requires acquiring the position information of the target person
and executing the corresponding behavior based on that person’s spatial information.
This study utilizes the software development kit (SDK) provided by the camera, version
ZED 3.8.2, to extract 3D spatial information from two-dimensional (2D) image data, as
illustrated in Figure 7a. This process stabilizes the tracking of the target person through
the KCF-YOLO fusion algorithm, producing a target-tracking detection box, as shown in
Figure 7b. The geometric center of the detection box is calculated based on its four corners.
The coordinates of this geometric center in the 2D plane image are defined as the mapped
3D spatial information of the person in the camera coordinate system. After obtaining
the geometric center of the person in the 2D plane image, a stereo-matching algorithm is
used to find the corresponding feature points in the image, establishing the relationship
between the feature points in the 2D image and the actual positions in the 3D space. Finally,
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the spatial position of the tracking target in the camera coordinate system is determined
based on the binocular disparity parameters. The spatial position of the person is shown in
Figure 7c.
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3.4.2. Personnel Trajectory Calculation

The task of human-following involves the processing of multiple coordinate systems.
These encompass the world coordinate system W, the vehicle coordinate system V of the
mobile robot, and the camera coordinate system C of the binocular camera, as illustrated in
Figure 8.
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The origins of the camera and vehicle coordinate systems are defined as the geo-
metric centers of the stereoscopic camera and mobile robot structure, respectively. The
rotation relationship R and translation relationship T of the two coordinate systems are
known. The spatial information of the individuals in the camera coordinate system can
be transformed into the vehicle coordinate system through coordinate transformation, as
expressed in Equation (2). The mobile robot can then acquire the spatial information of the
dynamic personnel.

PV =

[
R T
0T 1

]
PC (2)

Owing to the uncertainty in the personnel trajectory, relying solely on the spatial
position obtained from the stereo camera is prone to result in positional oscillations, making
real-time human-following tasks challenging. The UKF algorithm proves to be effective
in predicting the trajectory of a target person. Even if the target exits the field of view of
the camera, the mobile robot can track the target based on the predicted trajectory, guiding
it back into the field of view. This significantly enhances the stability and robustness of
human-following in uncertain environments. The trajectory of a target person’s movement
can be conceptualized as a combination of multiple curves and straight-line trajectories.
For simplicity, the target person is assumed to travel along a straight line and move at a
fixed turning rate. This motion model is defined as a constant turn rate and velocity (CTRV)
motion model, as shown in Figure 9.
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In the CTRV model, the state of the target person can be defined using Equation (3),

X = [px py ν θ ω ]T (3)

where px and py are the coordinates of the target person in the vehicle coordinate system, v
is the linear velocity of the target, θ is the heading angle of the target moving in the vehicle
coordinate system, and ω is the angular velocity of the target heading.

In real-world scenarios, achieving a uniform speed state for the target person is
challenging. Therefore, it becomes necessary to introduce perturbations in the target
person’s motion model through noise simulation. The line acceleration α and angular
acceleration

.
ω are considered to be process noise. The two are assumed to follow Gaussian

distributions with a mean of 0 and variances of σ2
a and σ2.

ω
, respectively. In other words, there

exist a ∼ N(0, σ2
a ) and a ∼ N(0, σ2.

ω
) such that the state transfer process noise is denoted

as W =
[
a

.
ω
]T , and the covariance of W can be expressed as shown in Equation (4).

Q =

[
σ2

a
0

0
σ2.

ω

]
(4)
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The human-following motion model can be expressed as Xk = f (Xk−1, Wk), as shown
in Equation (5).

Xk =



Xk−1 +



v
ω [sin(ωk−1 · ∆t + θk−1)]− sin(θk−1)

− v
ω [cos(ωk−1 · ∆t + θk−1)]− cos(θk−1)

0
ωk−1 · ∆t

0

+



1
2 ∆t2 cos(θk−1)ak
1
2 ∆t2 sin(θk−1)ak

∆t · ak
1
2 ∆t2 · .

ωk

∆t · .
ωk

 ω ̸= 0

Xk−1 +


v cos(θk−1)

v sin(θk−1)

0
ωk−1 · ∆t

0

+



1
2 ∆t2 cos(θk−1)ak
1
2 ∆t2 sin(θk−1)ak

∆t · ak
1
2 ∆t2 · .

ωk

∆t · .
ωk

 ω = 0

(5)

The observation equation for the stereo camera of the target pedestrian is given by
Equation (6):

Zk =

[
px
py

]
= HXk + Vk =

[
1 0 0 0 0
0 1 0 0 0

]
px
py
v
θ
ω

+

[
rk
ry

]
k

(6)

where Vk =
[
rx ry

]T is the observation noise satisfying rx ∼ N(0, σ2
rx ) and ry ∼ N(0, σ2

ry).

Therefore, Vk ∼ N(0, R), R =

[
σ2

rx 0
0 σ2

ry

]
.

In this paper, the Q and R matrices are set according to default parameters, with a
value of 0.8 for σa, 0.55 for σ .

ω , and 0.15 for both σrx and σry . In this process, the system state
X0 is first initialized, and a set of sigma points χi is generated based on the personnel k − 1
moment states. The corresponding weights Wi for χi are constructed, and a nonlinear state
function is used to predict the k-moment sigma points. The mean and covariance of the state
at moment k are calculated. Subsequently, the means and covariances of the measurements
are predicted. Finally, the Kalman filter gain Kk is derived from the measurements at
moment k to estimate the state and variance at moment k. A flowchart of the process is
shown in Figure 10.
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3.4.3. Human-Following Control

After obtaining the predicted value of the personnel space, the x-axis of the robot is
defined as the positive forward direction of the mobile robot. The angular offset between
the personnel position and the robot is then calculated using Equation (7). pv

x and pv
y

represent the personnel distances along the x- and y-axes, respectively, in the mobile-robot
coordinate system.

θp = arctan(
pv

y

pv
x
) (7)

The mobile robot controls the steering angle according to the offset, thus keeping the
target person in the field of view and following it at a safe distance. The strategy for the
mobile robot is shown in Figure 11.

During the human-following process, the deviation angle from the robot when the
target person is on one side of the field of view of the camera is θp, where there exists a
heading-angle error threshold θ between the target and the robot. The robot does not need
to execute steering commands within this threshold range. When the deviation angle θp
exceeds a certain heading-angle error threshold, the robot controls the steering angle based
on the magnitude of the deviation angle, which is denoted as θp. Simultaneously, the safe
distance between the target person and the robot is defined as Xsa f e. When the distance
pv

z between the person being followed and the robot is larger than the predefined Xsa f e,
the mobile robot continues to follow. Steering commands are executed to adjust the body
position, ensuring the personnel returns to the center of the field of view of the camera.
When the personnel stops moving and the distance pv

z is less than or equal to Xsa f e, the
mobile robot brakes slowly until it stops. By this process, a mobile robot can automatically
track the target person.
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4. Experiments and Discussions
4.1. Experimental Platform and Equipment

This study is based on an experimental design executed by a self-developed mobile
robot in an orchard. The robot achieves intelligent autonomous following by integrating
environmental sensors and an underlying control module. The overall test platform is
illustrated in Figure 12. The key parameters are listed in Table 1. In addition, the mobile
robot is outfitted with a binocular stereo camera with a resolution of 1920 × 1080 pixels and
a frame rate of 30 FPS. Table 2 shows the main parameters of the binocular stereo camera.
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Table 1. Main parameters of the test platform.

Parameter Value

Length 160 mm
Width 80 mm
Height 120 mm
Maximum grade 20◦

Running speed 0–3.6 km/h

Table 2. Main parameters of the binocular stereo camera.

Parameter Value

Resolution 1920 × 1080 px
Frame rate 30 FPS
Baseline 12 cm (4.72 in)
Field of view (H × V × D) Max. 72◦ (H) × 44◦ (V) × 81◦ (D)

To assess the robustness and stability of the proposed method, an experiment was
conducted in a complex orchard environment. The ground in the orchard exhibits a firm
texture, and simultaneously, it is covered with a dense layer of grass, comprising both
herbaceous species and other low vegetation, as illustrated in Figure 13. The robot operating
system platform was used for data processing. The evaluation of the tracking robustness
of the KCF-YOLO algorithm and the stability of the mobile robot are discussed in the
following subsections.
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4.2. Experimental Results

To assess the recognition effectiveness of the KCF-YOLO algorithm in an orchard
setting, experiments were conducted on two major modules: visual tracking and human-
following. In the visual tracking section, we conducted three sets of experiments: tracking
experiments under multi-person interference, investigations of the effects of different dis
and sigma values on the efficiency of the KCF-YOLO algorithm, and comparisons between
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the KCF-YOLO algorithm and other algorithms. The evaluation indices for the algorithm
performance included the average frame rate and recognition success rate. The reason
for choosing the average frame rate as a quality metric is because it directly reflects the
real-time performance evaluation of the system and its responsiveness. The average frame
rate represents the average number of image frames displayed per second during the
KCF-assisted tracking. When the algorithm fails to track a person, the FPS is recorded as
0 and is not included in the calculation of the average frame rate. This metric serves as a
crucial indicator for measuring system real-time performance. A higher frame rate implies
a more timely system response, consequently enhancing the robot’s tracking performance
of personnel. The recognition success rate is the ratio of the successful tracking of the target
person when entering and leaving the field of view of the camera to the total number of
entries and exits. The human-following experiment evaluates the stability of following
through two different paths.

4.2.1. Visual Tracking Experiments under Multiple Interferences

In practical applications of human-following in orchard environments, encountering
situations with multiple people simultaneously is common. To evaluate the impact of
personnel interference on the recognition accuracy of the KCF-YOLO algorithm, tests were
conducted in orchard scenarios with different numbers of individuals. Four sets of experi-
ments were carried out with varying numbers of individuals: 1, 2, and 3, respectively. One
of the experiments focused on visual tracking under different environmental conditions,
potentially affecting detection stability and other factors. Tests were conducted in overcast
weather conditions. The dis of the KCF-YOLO algorithm is set to 200 pixels, along with
a sigma value of 0.2 for the Gaussian kernel function. Each set of experiments comprised
30 tests.

At the onset of the experiment, the personnel are positioned at the center of the field
of view of the camera. Subsequently, the personnel gradually shift from the center to the
edge of the field of view. As the target person approaches the edge of the frame, the KCF
algorithm assists in tracking. The target person continues to move leftward, eventually
exiting the field of view of the image. Once out of sight, the system enters a waiting state
for the target person’s re-entry into the field of view. Upon re-entry, the system re-identifies
the target person. Finally, the system reverts to the YOLO algorithm to resume tracking
the target person. The entire process is deemed as successful tracking by the KCF-YOLO
algorithm. The detection effect of the algorithm on the target person is shown in Figure 14.
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Figure 14. Detection effect for different numbers of people. (a) An individual positioned within the
field of view. (b) Two individuals positioned within the field of view. (c) Three individuals positioned
within the field of view. (d) Visual tracking in overcast weather conditions. Person A is the tracking
target. At the beginning, only person A and person B are in the field of view. When person A leaves
the field of view, person C enters the field of view and will not be misidentified as person A by the
system. When person A re-enters the field of view, it is considered that the tracking is successful if it
is re-tracked by the system.
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As shown in Table 3, the average frame rate for the four sets of trials reaches 9 FPS,
9 FPS, 8 FPS, and 6 FPS, respectively. The recognition success rates are 100%, 96.667%,
96.667%, and 93.333%, respectively. These data indicate that the KCF-YOLO algorithm
can reliably and accurately recognize a target despite personnel interference. Additionally,
it exhibits good recognition speed with minimal impact from the interfering individu-
als. Meanwhile, the tracking performance of the algorithm is minimally affected under
overcast conditions.

Table 3. Performance of the algorithm with different numbers of persons.

Number of Persons FPS Success Rate/%

1 9 100
2 9 96.667
3 8 96.667

3 (overcast) 6 93.333

4.2.2. Effects of Different dis and sigma Values on the Efficiency of the
KCF-YOLO Algorithm

In the KCF-YOLO algorithm, the dis and sigma values are crucial parameters that
substantially influence the detection efficiency and stability of the algorithm. To validate
the efficiency and stability of the KCF-YOLO algorithm, experiments were conducted using
various dis and sigma values. The experiment includes a total of three participants, with
each group conducting 30 trials.

During the experiment, setting the dis value to 175 pixels while maintaining the
sigma value at 0.1 resulted in the relatively low effectiveness of the KCF-YOLO algorithm,
with a recognition success rate of only 86.667%. The small dis value prompted the early
intervention of the KCF algorithm for tracking assistance, causing the peak response value
in the region of interest (ROI) calculation correlation to fall below the set threshold, resulting
in the failure of the mobile robot to track the target. In addition, with a sigma value of
0.1, the Gaussian kernel function proved to be excessively sensitive to the input samples,
affecting the stability of the algorithm. The recognition success rate of the KCF-YOLO
algorithm reached 100% when the dis value was set to 200 pixels, and the sigma values were
taken as 0.1 and 0.2, respectively. A higher recognition speed was observed when the sigma
value was set to 0.2. However, at a sigma value of 0.3, the recognition success rate of the
KCF-YOLO algorithm is only 86.667%. Owing to the large sigma value, the discriminative
ability of the KCF-YOLO algorithm toward target details decreased, thereby affecting the
recognition accuracy. Efficient recognition efficiency was achieved by setting the dis value
to 225 pixels and using sigma values of 0.1, 0.2, and 0.3 for optimal performance of the
KCF-YOLO algorithm. The experimental results are presented in Table 4.

Table 4. Algorithm performance for different dis and sigma values.

dis/Pixel sigma FPS Success Rate/%

175
0.1 9 86.667
0.2 9 90
0.3 11 93.33

200
0.1 11 100
0.2 9 100
0.3 8 86.667

225
0.1 8 96.667
0.2 9 96.667
0.3 12 96.667

The experimental results demonstrate that the KCF-YOLO algorithm performs well
in recognition and tracking. Specifically, when the dis is set to 200 pixels and sigma is set
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to 0.1, the tracking performance is optimal, with an average frame rate of 11 FPS and a
recognition success rate of 100%.

4.2.3. A Comparative Experiment with Other Algorithms

To compare the performance of different algorithms, experiments were conducted to
compare the YOLO v5s algorithm, the KCF algorithm, and the KCF-YOLO algorithm in
similar scenarios. In this study, the YOLO v5s algorithm utilizes the official provided code.
The KCF algorithm employed the official version provided by OpenCV. Simultaneously, the
KCF-YOLO algorithm utilized the optimal parameters obtained from the aforementioned
experiments, with a dis set to 200 pixels and sigma set to 0.1.

In the YOLO experiment, targets were detected using a pre-trained YOLO v5s model.
Subsequently, attempts were made to track the targets based on the detected target position
information in consecutive frames. In the KCF experiment, person A was set as the target for
tracking and designated as the initial target. Afterwards, the scenario was simulated where
individual A moved out of the camera’s field of view, representing the target leaving the
view. After a certain period, individual A re-entered the camera’s field of view, simulating
the target reappearing. The tracking performance of the KCF algorithm was recorded and
analyzed. The KCF-YOLO experiment process was similar to that under multiple person
interference. The experimental process is illustrated in Figure 15.

Horticulturae 2024, 10, 348 17 of 24 
 

 

 
(a) 

 
(b) (c) 

Figure 15. The process of comparative experiments among the three algorithms. (a) The YOLOv5s 
algorithm. (b) The KCF algorithm. (c) The KCF-YOLO algorithm. 

The experimental results indicate that the YOLOv5s algorithm only performs target 
detection on individuals. However, due to its inherent design characteristics, it lacks the 
capability for continuous target tracking. While the KCF algorithm is capable of tracking 
target individuals, it suffers from issues such as target bounding box loss and drifting, 
resulting in poor stability. In contrast, the KCF-YOLO algorithm combines the strengths 
of the YOLOv5s and KCF algorithms. It not only leverages the precise target detection 
capability of YOLOv5s but also effectively tracks targets using the KCF algorithm. It 
demonstrates excellent performance in terms of tracking stability and resistance to inter-
ference. 

4.2.4. Human-Following Experiment 
In intricate orchard scenarios, challenges arise because of factors such as the varying 

heights of fruit trees, narrow passages, and randomly distributed obstacles, which inten-
sify the complexity of human-following tasks. Consequently, this study integrates the hu-
man-following function into a test scenario by synergizing the KCF-YOLO algorithm with 
a mobile robot control chassis. This study explored human-following performance when 
personnel were in a dynamic state. In the experiment, the safe following distance between 
personnel and the robot was set to 3 m. When the mobile robot detected a distance less 
than 3 m from the personnel, it would cease following. The human-following experiment 

Figure 15. The process of comparative experiments among the three algorithms. (a) The YOLOv5s
algorithm. (b) The KCF algorithm. (c) The KCF-YOLO algorithm.



Horticulturae 2024, 10, 348 17 of 24

The experimental results indicate that the YOLOv5s algorithm only performs target
detection on individuals. However, due to its inherent design characteristics, it lacks the
capability for continuous target tracking. While the KCF algorithm is capable of tracking
target individuals, it suffers from issues such as target bounding box loss and drifting,
resulting in poor stability. In contrast, the KCF-YOLO algorithm combines the strengths of
the YOLOv5s and KCF algorithms. It not only leverages the precise target detection capabil-
ity of YOLOv5s but also effectively tracks targets using the KCF algorithm. It demonstrates
excellent performance in terms of tracking stability and resistance to interference.

4.2.4. Human-Following Experiment

In intricate orchard scenarios, challenges arise because of factors such as the varying
heights of fruit trees, narrow passages, and randomly distributed obstacles, which intensify
the complexity of human-following tasks. Consequently, this study integrates the human-
following function into a test scenario by synergizing the KCF-YOLO algorithm with a
mobile robot control chassis. This study explored human-following performance when
personnel were in a dynamic state. In the experiment, the safe following distance between
personnel and the robot was set to 3 m. When the mobile robot detected a distance less
than 3 m from the personnel, it would cease following. The human-following experiment
involved two participants and included following scenarios under target loss, occlusion,
and overcast weather conditions.

In the first scenario, when the target person A exits the robot’s field of view, the robot
temporarily halts following target A. Concurrently, the robot activates the KCF-YOLO
algorithm for assisted localization of the target person A. Upon the target person A’s re-
entry into the robot’s field of view and recognition as the previously tracked target, the
robot resumes its tracking program to continue following the movement trajectory of the
target person A, as shown in Figure 16.
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In the second scenario, even when the target individual is occluded by fruit trees, the
system can still identify the person using the YOLO v5s algorithm, as shown in Figure 17a.
When the distance between the target individuals falls below the safety threshold, the
mobile robot stops following them. When a person appears from the side, the mobile robot
resumes following, as illustrated in Figure 17b.
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Furthermore, in addressing the issue of human-following effectiveness in different
environments, the stability of mobile robot following was further evaluated under overcast
weather conditions. The experimental process is illustrated in Figure 18.
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(b) Following from the real-world perspective.

The mobile robot is equipped with a SLAM module to record its own position. Based
on this module, after the stereo camera captures the spatial coordinates of the personnel, the
personnel’s spatial information is transformed into the world coordinate system through
the static spatial relationship between the stereo camera and the robot, as well as the
rotation matrix of the robot in the world coordinate system. Consequently, the complete
trajectory of the personnel in the spatial environment is obtained. Figure 19 shows the
motion trajectories of the target and robot in the human-following experiment. The red line
segment denotes the following trajectory of the mobile robot, and the blue line segment
illustrates the actual movement trajectory of the personnel.
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Figure 19. Mobile robots and target personnel movement trajectories. (a) Under the condition of
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Figure 20 illustrates the distribution of the spatial positional offsets for the X- and
Y-components in the motion trajectories of the follower and mobile robot. Error X represents
the variance in the vertical distance between the personnel and the mobile robot, whereas
Error Y indicates the degree of deviation in the horizontal distance during the mobile
human-following process.
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To ensure the stability of human-following in an orchard environment, the UKF
algorithm predicts the trajectories of personnel. This prediction allows the mobile robot
to stabilize the movement trend of the personnel during the following process, thereby
minimizing the lateral swaying of the robot. The average angular velocity of the steering
joint of the robot is shown in Figure 21. The dense part of the illustration represents the
robot executing steering commands. However, owing to the complexity of the orchard
terrain, the angular velocity of the steering joint is affected by the landscape during the
following phase, resulting in some noise. Overall, the steering joint of the robot maintains
a relatively stable angular acceleration during the following process. Figure 22 shows the
linear acceleration situations during the following processes of the mobile robot in three
groups. The illustration indicates that the linear acceleration of the robot remains within a
certain range, suggesting stable following at a consistent average speed.
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In all three different human-following experiments under varying conditions, the
maximum horizontal distance Error Y does not exceed 1.03 m. The robot’s following
trajectory is relatively smooth, allowing it to follow the target at a steady pace until the end
of the follow-up task, demonstrating good reliability and stability.

4.3. Results Analysis and Discussion

In the above-mentioned experiments, this study primarily validates the stability and
feasibility of the KCF-YOLO algorithm from experiments conducted in two major modules:
visual tracking and human-following. In the multi-person interference experiments, when
the number of subjects is two or three, during the recognition process, the fluctuation
in the scale of the target individuals and the similarity between the features identified
from interfering persons and those of the target individuals affect the algorithm’s decision
mechanism. Consequently, there is a decrease in the recognition success rate. The KCF-
YOLO algorithm can still stably track target individuals, demonstrating good robustness in
detection performance. Under overcast conditions, both the success rate and the frame rate
have decreased, possibly due to the dim lighting in overcast scenes, leading to a blurred
background. This increases the computational load for processing the background in the
KCF-YOLO algorithm. The algorithm requires more computational resources to identify
and filter targets, thereby reducing tracking efficiency and frame rate. However, the ability
to track target individuals has not been significantly affected, with a success rate reaching
93.33%. Thus, the KCF-YOLO algorithm still maintains good stability.

In terms of the impact of different dis and sigma values on the algorithm, this study
experimented with various values of dis and sigma for validation. When the dis value was
set to 200 pixels and the sigma value to 0.1, the KCF-YOLO algorithm demonstrated the
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best performance. For sigma values of 0.2 and 0.3, the Gaussian kernel function performs
poorly in processing target feature information. The reason might be that when the sigma
value is large, the blurring effect of the Gaussian kernel function leads to loss of target
feature information, thereby reducing the expressive power of the algorithm. By combining
the optimal solutions for dis and sigma values, the algorithm in this study effectively
captured target individual features, leading to the best overall performance. By adjusting
the dis and sigma values according to specific scenes, the algorithm can meet diverse scene
requirements, thereby enhancing its robustness and accuracy. In order to better evaluate
the tracking stability and anti-interference ability of the algorithm, this paper conducted
comparative experiments between the YOLO v5s algorithm and the KCF algorithm. The
experimental results indicate that the YOLO v5s algorithm can only recognize target
individuals but lacks the ability to track them, while the KCF algorithm exhibits instability
and poor tracking performance. In contrast, the proposed KCF-YOLO algorithm not only
achieves accurate tracking of target individuals but also possesses real-time detection
capabilities, demonstrating excellent performance in both tracking and detection.

Building upon the visual experiments, this paper conducted experiments focused on
human-following to assess the practicality and reliability of the KCF-YOLO algorithm in
real-world scenarios. Due to the slightly faster movement speed of the target individual
compared to the constant speed maintained by the mobile robot, there may be differences
in the Error X between the mobile robot and the target individual. However, this does not
affect the stability of the KCF-YOLO algorithm during the following process. Meanwhile,
it is evident that the prediction of personnel trajectories through UKF reduces the lateral
swaying of the robot, resulting in smoother following paths for the robot. The horizontal
distance Error Y between the three trajectories does not exceed 1.03 m. However, due to
terrain effects, there is relative jitter between the personnel and the mobile robot, leading to
some errors in the obtained personnel trajectories. In particular, Figure 22b illustrates the
linear acceleration of the mobile robot when personnel following are obstructed by fruit
trees. During the period from 20 s to 30 s, there is a segment where the acceleration value is
0, indicating that the mobile robot has stopped following. The linear accelerations of the
three axes remain within a certain range without significant fluctuations, indicating that the
speed of the mobile robot following is smooth. Compared to sunny conditions, the tracking
error under overcast conditions may slightly increase. This could be due to changes in
lighting conditions, resulting in less clear visual features of the target person and causing
some delay in the steering of the mobile robot. Although lighting conditions under overcast
skies may affect the tracking accuracy of the mobile robot to some extent, the experimental
results demonstrate that the mobile robot system is still capable of effectively tracking the
target person.

In summary, the algorithm combines the strengths of the KCF and YOLO v5s algo-
rithm. By integrating the YOLO v5s algorithm into the target detection module, precise
identification of target individuals is achieved. When the target individual is about to leave
the field of view, the KCF algorithm is introduced to accurately track the target individual,
ensuring that when the target person returns to the center of the field of view, YOLO v5s
can identify and continue tracking the lost target. The algorithm effectively utilizes the
advantages of both algorithms, thereby enhancing the stability of following within complex
orchard environments.

5. Conclusions and Future Work
5.1. Conclusions

To address the stability challenges faced by autonomous mobile robots in orchard
scenarios during human-following functions, this study proposes a vision-tracking method
based on KCF-YOLO fusion. This method aimed to overcome issues, such as obstacle
occlusion and overlapping personnel in unstructured orchard environments. First, target
localization and specific person identification were achieved by leveraging the target
detection accuracy advantage of YOLO v5s, combined with the real-time capabilities of KCF
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and its adaptability to continuous tracking. Second, fusion with the unscented Kalman filter
algorithm to fit the personnel movement trajectory achieved human-following in a complex
orchard scenario. Experiments were conducted in a complex orchard environment to verify
the effectiveness of the method in practical applications. The experimental results showed
that the KCF-YOLO algorithm performed well in tracking in orchard scenarios, with an
average tracking success rate of 96.66% and an average frame rate of 8 FPS. The mobile
robot maintained a constant speed and followed the target person steadily, maintaining the
horizontal offset from the followed person within a certain range. These results suggest that
the KCF-YOLO vision fusion human-following method proposed in this paper offers an
innovative solution for achieving human-following tasks in complex orchard environments,
providing more efficient and reliable assistance tools for fruit farmers.

5.2. Future Work

The proposed KCF-YOLO vision fusion method can effectively address the problems
of target tracking loss and repositioning failure of mobile robots in complex environments.
However, setting different dis values in different scenarios to ensure the robustness of the
algorithm is a crucial task. The reason lies in the difficulty of determining the optimal
value of this parameter across different scenes. Meanwhile, the dis value has a certain
impact on the stability of the subsequent human-following. In future work, further research
and adoption of adaptive algorithms are needed to enable the system to dynamically
adjust parameters based on real-time scenarios, thereby improving the robustness and
adaptability of the algorithm. Although the KCF-YOLO vision fusion method performs
well in target tracking, it lacks autonomous obstacle avoidance functionality. To enhance
the practicality and safety of mobile robots in orchard environments, future work will
focus on researching the autonomous navigation capabilities of robots to achieve obstacle
avoidance during the human-following. By delving into advanced navigation algorithms
and sensor technologies, and leveraging the characteristics of orchard terrain, robots will
be able to accurately identify and evade obstacles, ensuring smooth progress during the
human-following.
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