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Abstract: Artificial intelligence (AI) is revolutionizing approaches in plant disease management and
phytopathological research. This review analyzes current applications and future directions of AI
in addressing evolving agricultural challenges. Plant diseases annually cause 10–16% yield losses
in major crops, prompting urgent innovations. Artificial intelligence (AI) shows an aptitude for
automated disease detection and diagnosis utilizing image recognition techniques, with reported
accuracies exceeding 95% and surpassing human visual assessment. Forecasting models integrating
weather, soil, and crop data enable preemptive interventions by predicting spatial-temporal outbreak
risks weeks in advance at 81–95% precision, minimizing pesticide usage. Precision agriculture
powered by AI optimizes data-driven, tailored crop protection strategies boosting resilience. Real-
time monitoring leveraging AI discerns pre-symptomatic anomalies from plant and environmental
data for early alerts. These applications highlight AI’s proficiency in illuminating opaque disease
patterns within increasingly complex agricultural data. Machine learning techniques overcome
human cognitive constraints by discovering multivariate correlations unnoticed before. AI is poised to
transform in-field decision-making around disease prevention and precision management. Overall, AI
constitutes a strategic innovation pathway to strengthen ecological plant health management amidst
climate change, globalization, and agricultural intensification pressures. With prudent and ethical
implementation, AI-enabled tools promise to enable next-generation phytopathology, enhancing crop
resilience worldwide.

Keywords: artificial intelligence; phytopathology; emerging disease; climate change; control diseases

1. Introduction

Plant diseases have plagued agricultural crops for centuries, presenting a persistent
threat to global food security [1,2]. Annually, plant diseases account for an estimated
10–16% of global crop losses, translating into profound economic impacts [3,4]. With
the global population projected to reach 9.8 billion by 2050, it is imperative to increase
crop yields by 25–70% to meet escalating food demands [5], emphasizing the need for
revolutionary advancements in managing plant diseases.

However, the dynamics of plant pathosystems are complex, influenced by genetic and
environmental factors, and challenged by the evolution of host–pathogen interactions [6,7].
These interactions have been significantly altered in recent decades due to anthropogenic
factors, particularly climate change and modern agricultural practices. Climate change
has been a critical driver in the emergence and spread of new plant pathogens, altering
the geographical distribution of existing diseases and creating favorable conditions for the
emergence of novel pathogens [8,9]. Moreover, the intensification of agricultural practices,
including the use of monocultures and high-input farming systems, has reduced crop
diversity, making them more susceptible to widespread disease outbreaks [10–12].
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These evolving dynamics necessitate innovative solutions to expedite the discov-
ery of knowledge in plant disease dynamics, enhance crop resilience, and understand
plant–microbe interactions. Artificial intelligence (AI) offers groundbreaking avenues
for deciphering the complexity of plant pathosystems and deriving practical insights for
disease management [13,14]. The capacity of AI to analyze large volumes of agricultural
data enables the revelation of correlations beyond human cognitive abilities [15,16]. This
capability positions AI as a formidable tool in more easily unravelling the nature of plant–
disease interactions. These studies involve a substantial amount of data, and AI can identify
behavioral patterns in ways that are not readily discernible through purely human analysis.
Furthermore, machine learning algorithms can continually self-improve, progressively
facilitating the interpretation of new datasets in similar studies, while discarding data that
pertain to the inherent variability of the studies [17,18].

This review has three central aims: (1) examine existing and emerging applications
of AI supporting plant disease management; (2) identify current challenges and gaps
hindering the adoption of AI-driven solutions; and (3) outline a roadmap for stakeholder
alignment to mainstream AI in crop protection practices. By realizing these objectives
through a detailed literature analysis, this review seeks to catalyze a strategic transition
toward AI-enabled plant disease science and agriculture worldwide as a bridge to more
sustainable food production, addressing these evolving challenges in plant pathosystems.

2. Overview of Phytopathology

Phytopathology is the scientific discipline dedicated to the study of plant diseases.
This field investigates the complex interactions between plants and pathogenic organisms,
shedding light on the mechanisms underlying the onset and progression of diseases. The
scope of phytopathology encompasses the etiology of diseases, their epidemiology, and the
development of integrated strategies for managing them in agricultural and horticultural
contexts [2]. It is estimated that over 50,000 species of plant pathogens cause damage to
more than 30,000 plant species [1]. These pathogens comprise various taxa, including fungi,
bacteria, viruses, viroids, protozoa, and algae. Each pathogen type prompts unique disease
manifestations and demands tailored investigative approaches. Furthermore, the effects
of climate change, globalization, and crop intensification add complexity to deciphering
modern plant disease epidemiology [8].

As a discipline so integral to food security and agricultural sustainability, the impor-
tance of phytopathology cannot be overstated. As mentioned earlier, plant diseases result in
substantial economic losses in major staple crops worldwide, amounting to USD 220 billion
in annual economic damages globally [3,4]. For instance, Fusarium wilt disease alone re-
sults in approximately USD 410 million in annual banana crop damages, while cassava
brown streak disease incited over USD 100 million in crop damages across eastern Africa
in the early 1990s [19,20]. By elucidating plant–pathogen interactions and disease epidemi-
ology, phytopathology enables breeding disease-resistant varieties, optimizing cultural
practices, and implementing integrated pest management interventions that minimize
disease impacts and crop loss [6]. The development of resistant cultivars alone has saved
certain crops from near extinction, as exemplified by saving papaya production in Hawaii
from papaya ringspot virus in the mid-20th century [21]. A recent example of success
in phytopathology is the management of coffee rust disease in Central America. Since
2012, coffee rust has significantly threatened coffee production, but the implementation of
resistant varieties and improved agronomic practices has resulted in a notable recovery in
affected regions [22]. Another case is the management of citrus tristeza virus in Florida,
where the use of tolerant rootstocks and vector control has helped mitigate the impacts of
the disease [23].

However, current disease management strategies often provide incomplete and tem-
porary solutions in the face of an evolving pathogen landscape. In Figure 1, we present a
conceptual framework that lists some of the major challenges in contemporary phytopathol-
ogy, including emerging diseases, climate change, global trade and pathogen dissemination,
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breakdown of resistance, and data analysis and integration. The examples cited illustrate
how phytopathological science must respond to specific diseases with innovations and
adaptive strategies, highlighting its relevance in an ever-changing agricultural world.
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3. Role of Technology in Phytopathology

Historically, phytopathologists predominantly relied on conventional methods, such
as visual inspection, symptomatology characterization, and pathogen isolation for plant
disease diagnosis and management [2]. While these traditional techniques are valuable, they
have inherent limitations, especially when considering the emerging agricultural challenges
of the modern world. For instance, visual disease symptoms often do not manifest until
infections are well-established, leading to delayed intervention and unchecked pathogen
spread [24]. Reliance on visual symptoms alone also poses challenges in distinguishing
between diseases with similar outward manifestations [25].

Traditional methods, such as pathogen isolation and culture, remain cornerstones
in diagnostics. They require time-consuming processes, and obtaining pure cultures can
be technically challenging [26]. Furthermore, many phytopathogenic microbes exhibit
complex life cycles, switching between morphological forms, which traditional techniques
often fail to detect at low pathogen levels or in identifying novel strains [20,27]. This limits
their reliability and applicability in the dynamic agricultural ecosystems of today.
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3.1. Advent of Emerging Technologies in Agriculture

The advent of emerging technologies and advanced analytical tools has significantly
altered the agricultural landscape. Next-generation high-throughput DNA sequencing
platforms, for instance, have revolutionized plant–microbiome studies, enabling the rapid
genomic characterization of plant-associated microbiota and pathogens [28,29]. Metage-
nomic approaches have elucidated complex plant–microbe interactions, identified novel
pathogens, and assessed microbiome shifts correlating with health–disease transitions.
Additionally, ultra-sensitive quantitative DNA and RNA diagnostic tests now facilitate the
detection of exceedingly low pathogen levels at early infection stages [25,30].

Remote sensing technologies and high-resolution spectral imaging through satellites,
planes, and unmanned aerial vehicles offer large-scale capabilities in monitoring crop
health and stress levels [31,32]. These tools enable the real-time, non-invasive assessment
of plant vigor and the detection of disease outbreak locations in the field, facilitating timely
and precise management interventions [33]. Recent advancements in nano-biosensors
and lab-on-chip devices have allowed for the continuous monitoring of environmental
parameters influencing disease development, such as temperature, humidity, soil water
content, and microclimate conditions [34]. The integration of these sensors in agricultural
ecosystems generates comprehensive datasets, shedding light on the crop–climate–disease
interplay [35].

Big data analytics, automation, robotics, and artificial intelligence (AI) are accelerating
a paradigm shift towards data-driven precision agriculture systems [36–38]. Phytopathol-
ogy, transitioning into a highly interdisciplinary and technology-intensive science, inte-
grates diverse data streams. Advanced computational methods offer immense promise in
deriving actionable insights from the wealth of agricultural big data for efficient disease
management [39].

3.2. Need for Advanced Data-Driven Solutions

While emerging technologies provide promising avenues, significant challenges persist
in effectively managing diseases within the highly complex and dynamic agricultural
ecosystems of today. Globalization, climate change, and intensive farming systems facilitate
the increased emergence and faster evolution of plant pathogens [8,40]. Many conventional
disease management approaches now face diminishing effectiveness due to rising pathogen
resistance, alongside serious environmental and health concerns [11,12,41].

The complexity characterizing plant–pathogen interactions and disease epidemiology
necessitates a paradigm shift towards sophisticated, integrated solutions. In this context,
AI and advanced machine learning algorithms emerge as potentially transformative tools
in modern data-driven phytopathology. Machine learning models can analyze vast, dis-
parate datasets, including weather, soil, plant omics, microbiome, and pathogen genomic
information [42]. These models discern subtle multivariate relationships, predict disease
outbreak risks, and enable targeted intervention strategies undetectable via conventional
approaches [13,14,42]. Continually learning from accumulating agricultural data streams,
such AI-based systems progressively improve their predictive capabilities and decision
support functionalities. Therefore, harnessing modern technology and computational
innovation is imperative for developing dynamic, ecologically balanced, and economically
viable plant disease management regimes, crucial in addressing the pressing food security
challenges of the future [43].

4. Introduction to Artificial Intelligence (AI)

Artificial intelligence (AI) represents a transformative paradigm in computing, revolu-
tionizing how machines perform tasks that typically require human intelligence [44,45]. In
this section, we delve into the fundamental aspects of AI, tracing its evolution, understand-
ing its basic principles, and exploring its relevance to the field of phytopathology.
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4.1. Definition and Basics of AI

Artificial intelligence (AI) is the capacity of computer systems to undertake tasks
that usually require human cognition, such as learning, reasoning, perception, prediction,
and decision-making [46]. At its foundation, AI is about developing algorithms allowing
machines to emulate aspects of human intellect, like processing and adapting to information
over time. AI spans several sub-domains: machine learning uncovers data patterns without
direct programming [47], computer vision gives machines sight [48], and natural language
processing enables them to understand and produce human language [49]. Expert systems
represent human knowledge in structured domains [50], and robotics combines these AI
capabilities for environmental interaction [51–53]. AI can be general, with human-like
cognitive abilities, or narrow, focused on specific tasks, where most advancements occur,
revolutionizing industries with applications like smart assistants and fraud detection [54,55].
Deep learning, a machine learning subset using multi-layer neural networks, exemplifies
AI’s core research areas, alongside computer vision and natural language processing,
pushing autonomous pattern recognition and decision-making further [47]. Table 1 presents
different AI models, detailing their definitions and pivotal development dates, illuminating
AI’s diverse landscape. Furthermore, the integration of deep learning algorithms optimizes
neural network performance, as highlighted in [56], underscoring ongoing innovations in
AI’s algorithmic framework.

Table 1. Different artificial intelligence models. Definition and significant dates of development
are included.

Artificial Intelligence Models Definition and Significant Dates Reference

LLM—Large Language Model

These are systems that use large-scale neural networks to understand
and generate human-like language. They excel in natural language
processing tasks, such as text completion and language translation.
Notable developments in large language models, especially the
introduction of GPT-3, occurred around 2020–2021.

[57]

CNN—Convolutional Neural Network

A type of neural network designed for image processing and
recognition. It uses convolutional layers to automatically and
adaptively learn spatial hierarchies of features from input images.
Proposed by Yann LeCun in the early 1990s, CNNs gained prominence
in the mid-2010s with breakthroughs in image recognition tasks.

[58,59]

RNN—Recurrent Neural Network

A type of neural network architecture designed to recognize patterns in
sequences of data. RNNs are well suited for tasks involving sequential
data, such as time series analysis and natural language processing.
While the concept of RNNs dates back to the 1980s, their resurgence
and success in various applications, especially in natural language
processing, gained momentum in the mid-2010s.

[60]

GAN—Generative Adversarial Network

GANs consist of two neural networks, a generator and a discriminator,
which are trained simultaneously through adversarial training. GANs
are used for generating new, realistic data instances, such as images.
Introduced by Ian Goodfellow and his colleagues in 2014, GANs have
since become a revolutionary concept in the generation of realistic data.

[61]

Decision Tree and XGBoost
(eXtreme Gradient Boosting)

They are powerful models for classification, regression, and ranking
tasks. Decision Trees are simple yet effective models that partition data
into subsets based on feature values, using a tree-like structure of
decisions and their possible consequences. XGBoost, an
implementation of gradient boosted decision trees designed for speed
and performance, significantly improves model accuracy by combining
multiple decision trees to correct the errors of predecessors.
Introduced by Chen and Guestrin in 2016, XGBoost has become a
dominant force in machine learning competitions due to its efficiency
and effectiveness.

[62,63]
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Table 1. Cont.

Artificial Intelligence Models Definition and Significant Dates Reference

ElasticNet, Lasso, and Ridge Regression

They are regularization techniques in linear regression that address
overfitting by penalizing the size of coefficients. ElasticNet combines
the properties of both Lasso (Least Absolute Shrinkage and Selection
Operator) and Ridge Regression by integrating their penalty terms; it is
particularly effective when dealing with highly correlated data. Lasso
contributes to feature selection by reducing the coefficients of less
important features to zero, while Ridge Regression shrinks the
coefficients but does not set them to zero.
These methods were developed in the early 21st century, with
ElasticNet introduced by Zou and Hastie in 2005, offering a bridge
between Lasso’s feature selection and Ridge’s coefficient shrinkage.

[64]

Random Forest

It is an ensemble learning method renowned for its versatility and
accuracy in classification and regression tasks. By constructing
multiple decision trees at training time and outputting the mode of the
classes (for classification) or mean prediction (for regression) of the
individual trees, Random Forest mitigates the overfitting problem
common to single decision trees.
This model’s significant development dates back to the early 2000s,
with Breiman’s seminal paper in 2001 laying the foundational
framework for Random Forest algorithms.

[65]

SVM—Support Vector Machine

A supervised machine learning algorithm used for classification and
regression analysis. SVMs are effective in high-dimensional spaces and
are particularly useful in tasks like image classification and
handwriting recognition.
Proposed by Vladimir Vapnik and Corinna Cortes in the 1990s, SVMs
gained popularity in the early 2000s and became a staple in machine
learning applications.

[66,67]

KNN—k-Nearest Neighbors

A simple and effective algorithm used for classification and regression
tasks. KNN makes predictions based on the majority class or average
of the k-nearest data points in the feature space.
KNN is a classical algorithm, and its principles have been known for
decades. It is widely applied in various fields since the 1960s.

[68,69]

DNN—Deep Neural Network

A neural network with three or more layers, including an input layer,
one or more hidden layers, and an output layer. Deep neural networks
are capable of learning intricate representations and are used in various
applications.
While the concept of deep neural networks has roots in the 1960s, their
resurgence and practical success came in the mid to late 2000s with
advancements in training algorithms and hardware.

[70]

MLP—Multilayer Perceptron

MLP is an artificial neural network model consisting of an input layer,
multiple hidden layers, and an output layer, with each layer fully
connected to the next. It employs backpropagation for learning,
allowing it to model complex non-linear relationships.
Developed in the 1980s, MLPs are versatile in applications ranging
from pattern recognition to classification and regression tasks, marking
a significant advance in the field of deep learning.

[71]

SGD—Stochastic Gradient Descent

It is an optimization algorithm pivotal for training a broad spectrum of
artificial intelligence models, notably in deep learning. It optimizes
model parameters by calculating gradients based on randomly selected
data subsets, enhancing training efficiency across large datasets.
Introduced in the context of machine learning in the late 20th century,
its conceptual roots trace back to Robbins and Monro’s stochastic
approximation method in 1951, laying the theoretical groundwork for
iterative stochastic optimization techniques in AI.

[72]
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Table 1. Cont.

Artificial Intelligence Models Definition and Significant Dates Reference

LSTM—Long Short-Term Memory

A type of recurrent neural network architecture designed to overcome
the limitations of traditional RNNs in capturing long-term
dependencies in sequential data. LSTMs are widely used in natural
language processing and speech recognition.
Proposed by Sepp Hochreiter and Jürgen Schmidhuber in 1997, LSTMs
became popular in the mid-2010s, addressing challenges in capturing
long-term dependencies.

[60,73]

RL—Reinforcement Learning

An area of machine learning where an agent learns to make decisions
by interacting with an environment. The agent receives feedback in the
form of rewards or penalties, allowing it to learn optimal strategies
over time.
RL has a history dating back to the 1950s and 1960s, but recent
advancements, especially in deep reinforcement learning, have gained
prominence since the mid-2010s.

[74,75]

BERT—Bidirectional Encoder
Representations from Transformers

A pre-trained natural language processing model based on transformer
architecture. BERT is particularly effective in understanding the context
of words in a sentence and is used for various language-related tasks.
Introduced by Google AI in 2018, BERT brought a breakthrough in
natural language processing by capturing contextual information
bidirectionally.

[76]

4.2. Evolution of AI

The evolution of AI began with early conceptualizations by figures like Ada Lovelace
and Alan Turing, progressing through the 1950s with attempts at creating intelligent
machines [46] (Figure 2). Despite initial successes, challenges led to periods of stagnation,
known as “AI winters” [77]. The 21st century marked a resurgence, fueled by advancements
in computational power, data generation, and machine learning, leading to breakthroughs
in areas like vision and speech [47]. Recent developments in natural language processing
indicate significant advancements in AI’s ability to understand and generate human-like
language [78], hinting at future communicative AI systems’ potential [79–81] and supported
by large-scale data and computational resources [82]. Rapid innovation continues toward
safer and more robust language models aligned with human values [83]. The historical
context of AI’s development underscored by data-driven approaches is detailed in Figure 2.

4.3. Relevance of AI in Various Fields

In the realm of artificial intelligence (AI), its transformative impact extends far beyond
theoretical frameworks, finding tangible applications in diverse fields. AI is making
significant strides, revolutionizing industries and scientific endeavors.

4.3.1. Healthcare: Enhanced Diagnostics and Personalized Medicine

In the healthcare sector, AI is significantly improving clinical diagnostics and person-
alizing medicine. It utilizes advanced algorithms for medical image analysis and genomic
pattern recognition, enabling the early detection of conditions not visible through conven-
tional methods [84]. In digital pathology, AI predicts the risk of cancer metastasis earlier
than traditional clinical indicators [85–87]. For drug discovery, deep learning has shortened
the timeline for developing new medications [88]. AI also customizes treatment plans
to individual genetic profiles, enhancing patient outcomes [89]. This integration of AI is
transforming healthcare diagnostics, treatments, and drug development processes.
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4.3.2. Engineering: Optimizing Complex Systems

In the field of engineering, AI plays a crucial role in optimizing complex systems
through autonomous design enhancements, predictive maintenance, and self-adaptive
mechanisms. It has made significant strides in improving aerodynamic designs, reducing
the development time for aircraft wing prototypes [90], and employing AI vision systems
for the early detection of structural weaknesses, such as bridge cracks, to facilitate timely
repairs [91]. Moreover, neural networks allow electronics to dynamically reconfigure cir-
cuitry, enhancing resilience and operational efficiency despite component damages [92,93],
underscoring AI’s profound impact on fostering innovation and efficiency in engineering.

4.3.3. Business: Data-Driven Decision Automation

In the business sector, AI is revolutionizing decision-making by automating complex
analyses previously dependent on human judgment. It leverages advanced algorithms to
process diverse datasets, from historical records to market trends, enhancing risk manage-
ment and optimizing processes [94]. In finance, AI, through deep reinforcement learning,
outperforms human stock trading strategies [95]. Additionally, AI rapidly analyzes complex
legal documents and drives business analytics and marketing decisions, offering strategies
that significantly improve efficiency and outcomes [96,97]. This marks AI’s significant role
in advancing business practices through data-driven insights.

4.3.4. Transportation: Optimized Mobility

In transportation, AI enhances urban mobility and develops autonomous driving
technologies. Adaptive traffic systems, using deep learning, coordinate signals to reduce
congestion, significantly improving travel times [98]. Autonomous vehicles combine sensor
data for real-time environmental perception, crucial for safe navigation, including cam-
eras, LiDAR, radar, GPS, wheel odometry, and IMUs [99,100]. The integration of sensors,
software, and AI computational power is indeed enhancing the safety of autonomous
vehicles [101]. For instance, Waymo’s autonomous cars have covered over 20 million
miles, demonstrating sophisticated navigation capabilities [102]. Recent studies focus on
integrating AI into automotive manufacturing and navigation systems, promising safer,
more efficient transportation solutions [103,104].

4.3.5. Space Exploration: Autonomous Exploration and Data Analysis

AI is transforming space exploration by enabling autonomous operations and ad-
vanced data analysis. Machine learning equips spacecraft and rovers, like NASA’s Mars
rovers, to navigate and collect data independently, optimizing paths in real time. Research
expands AI’s role in autonomous spacecraft technology and space law [105,106], with a
focus on developing trusted AI systems for mission autonomy [107]. These AI advance-
ments promise to significantly enhance the efficiency, autonomy, and intelligence of space
missions, marking a new era in space exploration and analysis.

4.3.6. Education: Personalized Learning and Student Support

AI is revolutionizing education sector by facilitating personalized learning and sup-
porting students. It employs algorithms in adaptive platforms to customize educational
content for individual learners, enhancing their educational journey. AI-driven chatbots
offer instant assistance and guidance. For example, Duolingo uses AI to adjust language
lessons based on user progress [108]. Research in this area includes analyzing AI’s impact
on personalized learning [109], studying AI’s role in learning methodologies [110], and em-
ploying machine learning to identify learning styles [111], illustrating AI’s transformative
potential in education.

5. Applications of AI in Phytopathology

Artificial intelligence (AI) is transforming approaches in phytopathology, catalyzing
innovations in understanding, managing, and mitigating plant diseases. AI’s capacity to
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analyze vast datasets reveals subtle correlations in plant–pathogen interactions, granting
key insights for disease control [16]. This section surveys prominent applications of AI
across major facets of phytopathology.

5.1. Disease Detection and Diagnosis

Artificial intelligence (AI) enables rapid and precise disease detection and diagnosis,
overcoming the limitations of techniques reliant on visual inspection. Numerous studies
demonstrate the efficacy of AI in accurately diagnosing complex diseases. In an early
example, Ramcharan et al. [14] applied deep learning techniques for detecting and diagnos-
ing cassava diseases through image analysis. Using a convolutional neural network, they
achieved diagnostic accuracy above 90%, demonstrating deep learning’s effectiveness in
identifying various cassava diseases. This approach not only surpassed traditional methods
in terms of accuracy and speed but also enabled the implementation of these models on
mobile devices, facilitating diagnosis in the field.

Similarly, Fuentes et al. [112] implemented three artificial intelligence architectures—
Faster R-CNN, SSD, and R-FCN—to detect and diagnose diseases and pests in tomato
plants. These architectures fall within the broader context of convolutional neural networks
(CNNs), which are particularly suited for image recognition tasks due to their ability
to learn spatial hierarchies of features from input images (see information in Table 1).
The application of these models in the study marked a significant advancement in the
application of CNNs in image recognition tasks since their proposal in the 1990s. The
authors of [112] used images captured by cameras at various resolutions, both of healthy
plants and plants with symptoms. With these images, they trained the artificial processing
models, which significantly improved the accuracy in disease and pest recognition and
reduced false positives during the training phase. This systematic approach allowed the
AI system to effectively recognize nine different types of diseases and pests in tomato
plants, demonstrating the capability of these models to handle complex environmental
variables present in a plant’s surroundings. Following in the footsteps of these works, but
not focused on a specific plant species, Sladojevic et al. [113] also used deep convolutional
neural networks (CNNs), training the artificial model with an extensive database, which
allowed it to distinguish between different types of diseases in the leaves of various genera
and species. The novelty and advancement of the developed model lie in its simplicity,
where healthy leaves and background images are aligned with other classes, allowing the
model to distinguish between diseased and healthy leaves or their surroundings using
deep CNNs. The experimental results showed an accuracy of between 91% and 99% in
separate class tests and an overall accuracy of 95.8% in the trained model. These studies
are a clear example of CNNs’ ability to handle the complexity of visual data and improve
the accuracy of automated diagnosis [113].

Recent studies have continued to demonstrate AI’s potential in plant disease detection
and diagnosis using more modern, precise, and powerful models thanks to the development
of new AI capabilities. In 2022, Arinichev [114] explored the use of artificial intelligence
technologies for diagnosing fungal diseases in cereals, specifically in wheat and rice,
through methods of vision and automated recognition. This analysis revealed that artificial
neural networks have the capability to detect and classify disease patterns, such as yellow
spots, yellow and brown rust, and brown spots, with classification metrics ranging between
0.95 and 0.99. To advance in this line of research, Arinichev examined four well-established
and relatively light convolutional neural network (CNN) architectures, namely, GoogleNet,
ResNet-18, SqueezeNet-1.0, and DenseNet-121, with the DenseNet-121 model particularly
standing out for its optimal combination of high precision and operational efficiency.
Characterized by a relatively low number of parameters and a file size suitable for mobile
devices, this model achieved exceptionally high classification accuracy, surpassing the
other evaluated models. Similar to previous research, such as that of Ramcharan et al., the
implementation of a light neural network like DenseNet-121 facilitated its application in
the field on mobile devices, allowing for quick and accurate diagnostics [114].
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In the case of the study carried out by Feng et al. [115], the authors developed a
convolutional neural network model for potato late blight detection method using deep
learning, with high accuracy and fast inference speed, using a dataset of potato leaf disease
images in single and complex backgrounds. Feng et al. used the ShuffleNetV2 2× model,
characterized by its high classification accuracy, while also having a larger parameter
scale and memory space compared to other models with equal accuracy. The authors
improved the model through strategies that included introducing an attention module,
reducing network depth, and minimizing the number of 1×1 convolutions. This resulted
in an enhancement of classification accuracy while simultaneously maintaining efficient
inference speed on CPUs in the devices used for its application. In the same line of work,
Bracino et al. [116] carried out a study focus on the non-destructive classification of paddy
rice leaf diseases using deep learning algorithms such as EfficientNet-b0, MobileNet-v2,
and Places365-GoogLeNet. They aim to identify whether the rice paddy leaf is normal or
infected with various diseases including bacterial leaf blight (BLB), bacterial leaf streaks
(BLS), bacterial panicle blight (BPB), heart, downy mildew, hispa, or rice tungro disease
(RTD). Of the models used, EfficientNet-b0 was identified as the most effective, achieving
an average accuracy of 97.74%. This model is distinguished by its focus on maximizing
efficiency, optimally balancing network depth, width, and the resolution of input images
through a compound scaling technique, resulting in superior performance with minimal
memory requirements and floating-point operations per second (FLOPS). This efficiency
and precision capability distinguish it from the model used by Feng et al., the ShuffleNetV2
2×, which, although highly precise, focuses on improving inference speed and reducing
parameter size through the introduction of an attention module and the optimization of the
network architecture. Bracino et al.’s significant contribution lies in providing a precise and
non-destructive diagnostic method for rice diseases, thereby supporting the prevention of
product loss and improving crop quality through the application of advanced and efficient
AI technologies.

A deep convolutional neural network model was also developed by Jouini et al. [117]
to detect wheat leaf rust. The authors advanced the application of a CNN by developing a
model specifically designed for the detection of wheat leaf diseases using hyperspectral
images, achieving an impressive testing accuracy of 94%. This study showed the feasibility
of real-time disease detection in wheat, a critical advancement for resource-constrained en-
vironments where timely and effective disease management is vital [117]. In a related study,
Zhou et al. [118] introduced a novel spectral feature pseudo-graph-based residual network
(SFPGRN) for the spectral analysis of plant diseases. Their method innovatively constructs
a residual network model using a characteristic surface derived from natural neighborhood
interpolation based on preprocessed near-infrared spectral reflection signals and first-order
differential spectral index, achieving a classification accuracy of 93.21% on a dataset of ap-
ple leaf diseases and insect pests [118]. Complementing these developments, Shi et al. [93]
introduced a novel fast Fourier convolutional deep neural network (FFCDNN) designed
for the accurate and interpretable detection of wheat yellow rust and nitrogen deficiency
from Sentinel-2 time series data. The FFCDNN model stands out for its innovative use of
a fast Fourier convolutional block and a capsule feature encoder, significantly enhancing
computing efficiency and model interpretability. This approach not only achieves high
classification accuracy but also provides insights into the host–stress interaction, marking a
significant advancement over previous studies by integrating spatial-temporal information
for global feature extraction [93].

In recent times, the research group of Hassan et al. [119] introduced a groundbreaking
CNN architecture for plant disease identification, leveraging inception layers and residual
connections to enhance feature extraction, while employing depth wise separable convolu-
tion to significantly reduce computational complexity. This model is distinct in its ability to
achieve high accuracy across various plant disease datasets with a markedly lower param-
eter count, illustrating a significant advancement in AI’s application to phytopathology.
By optimizing the model to require fewer computational resources, this work facilitates
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the deployment of AI technologies on devices with limited processing capabilities, mak-
ing sophisticated disease diagnosis tools more accessible to a broader range of users and
applications [119].

A new evolution of CNN is the Siamese convolutional neural network (SNN). Narain
et al. [120] introduced an enhanced approach to detection systems by implementing a
SNN for identifying diseases in tomato leaves. Siamese neural networks stand out from
conventional CNN models due to their unique structure, designed to learn to differentiate
between pairs of inputs, making them exceptionally suitable for comparison and differ-
entiation tasks. By evaluating similarities or differences between pairs of images, SNNs
can offer notable accuracy in disease classification, often overcoming challenges faced by
traditional CNNs in terms of intraclass variability and the scarcity of labeled data (Figure 3).
In this work, Narain et al. developed a customized SNN by training with a specially
collected dataset of 155 tomato leaf images, and the system demonstrated high efficacy,
achieving an accuracy of 83.749% in training and 80.4% in testing. This improvement in
disease classification represents a significant advancement over more classic CNN models.
The implementation of Siamese networks signifies an optimization in the accuracy and
efficiency of disease detection in crops, allowing for the application of appropriate manage-
ment measures more quickly and accurately by providing a more robust and adaptable
mechanism for recognizing complex patterns associated with various plant diseases [120].
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Siamese convolutional neural networks operate into a sequence of steps illustrated
in Figure 3: (a) Pairing Images: a set of image pairs of plants is created, where each pair
consists of two images: it could be one of a healthy plant and one of a diseased plant, or
two healthy plants, or two diseased plants. (b) Feature Extraction: each image in the pair
is fed through a convolutional network that acts as a feature extractor. The key here is
that both images go through the same network (sharing weights), ensuring that features
are extracted uniformly. (c) Feature Comparison: the features extracted from each image
are combined and fed into a layer that compares the two images. This comparison could
be an absolute difference, a concatenation operation followed by dense layers, or even a
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more complex metric. (d) Similarity Scoring: the network produces a score that reflects
the similarity between the two images. In the context of plant disease detection, a high
score might indicate that both images are of plants in the same condition (both healthy or
both diseased), while a low score might suggest one is healthy and the other is diseased.
(e) Training and Thresholding: during training, the network learns what features are
important for distinguishing between healthy and diseased plants. A similarity threshold
is adjusted that best separates pairs of healthy plant images from pairs with at least one
diseased plant. (f) Disease Detection: once trained, the network can take a pair of images,
process them through the network to obtain the similarity score, and using the learned
threshold, determine if the plants are healthy or diseased.

Other authors are making significant advances in developing models which are more
advanced in capabilities and simpler in their handling, thanks to the evolution that vision
systems and their conjunction with large language modeling systems are undergoing in
recent months. In this line, Tabbakh and Barpanda [121] introduced an innovative hybrid
model for the classification of plant diseases, through the integration of Transfer Learning
with a Vision Transformer (TLMViT). This hybrid approach stands out for its unique ability
to extract and analyze deep features of plant leaf images, achieving exceptionally high
accuracy in the evaluated datasets. The TLMViT is a key innovation in this study, leveraging
the architecture of transformers, which has revolutionized natural language processing, to
apply it in the realm of computer vision. Vision transformers adapt the concept of attention,
allowing the model to focus on the most relevant parts of the image for the classification
task, significantly improving accuracy and efficiency in disease identification. Tabbakh
and Barpanda used a dataset freely available in the PlantVillage project, as the authors
comment. This dataset encompasses more than 54,000 images of more than 38 different
crop species, with a particular focus on cassava, tomato, pepper, and potato. Each image
within the dataset is labeled with the plant species and, if present, the disease. This resource
is freely available for computer vision and deep learning tasks, such as image classification,
object detection, and semantic segmentation. In the specific research of Tabbakh et al.,
three different crops from the PlantVillage dataset (pepper, potato, and tomato) were used,
which include 20,638 images of diseased and healthy leaves. The application of their model
managed to achieve identification accuracies above 98%. This hybrid model, combining
transferred learning with the power of vision transformers, illustrates a qualitative leap in
the detection and classification of plant diseases, offering new perspectives for precision
agriculture and sustainable crop management [121].

The integration of advanced AI models, from deep convolutional neural networks
to Siamese networks and vision transformers, underscores a transformative period in the
field of phytopathology. These studies collectively represent a leap forward in precision
phytopathology, offering not just higher accuracy in disease diagnosis but also a model for
future research to build upon. Particularly, the adoption of vision transformers marks a
novel approach, leveraging the strengths of AI to address complex agricultural challenges.
This evolution of AI methodologies, characterized by increased model sophistication and
adaptability, promises to significantly enhance disease detection capabilities, paving the
way for more targeted and effective disease management strategies.

5.2. Advancements in Plant Disease Propagation Modeling

The field of plant disease propagation modeling has witnessed transformative growth
through the incorporation of artificial intelligence (AI) and machine learning techniques,
opening new vistas in pathogen prediction and management. A pivotal approach in
this field is the application of machine learning models for disease prediction based on
symptoms and environmental data. In this context, the existing scientific literature encom-
passes a variety of meticulously developed strategies that significantly contribute to the
advancement of predictive model development in the field of plant pathology.

During 2022 several studies were published to apply different algorithms and predic-
tive models using AI. For example, a very interesting work is that published by Garrett
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et al. [39] in which the authors utilized Random Forest and Support Vector Machines
(SVMs) to analyze the complex interplay between climate change and pathogen emergence.
Random Forest is an ensemble learning method for classification, regression, and other
tasks. It operates by constructing a multitude of decision trees during training for more
accurate and robust predictions (consult Table 1 and Figure 4). SVMs, in contrast, are
powerful supervised machine learning models used for classification and regression chal-
lenges, effectively handling high-dimensional spaces and complex datasets. Employing
these algorithms, Garrett et al. aimed to capture and model the nuanced relationships
between environmental factors and the likelihood of pathogen spread, underscoring the
potential of AI to offer predictive insights into plant disease dynamics influenced by cli-
mate variables. Their methodology showcases the strengths of combining multiple AI
approaches to enhance predictive accuracy and provide actionable insights into pathogen
management strategies [39]. These modeling approaches were similarly utilized by Otero
et al. [122], who delved into the creation of data-driven predictive models utilizing artificial
intelligence to anticipate the occurrence of Plasmopara viticola and Uncinula necator in the
viticultural regions of Southern Europe. Otero et al. employed a variety of machine and
deep learning algorithms, including Logistic Regression, Decision Trees, Random Forest,
Gradient Boosting, K-Nearest Neighbors, Naïve Bayes, Support Vector Machines, and
Deep Neural Networks. Logistic Regression provides a probabilistic approach for binary
outcomes, making it suitable for disease presence predictions. Decision Trees offer clear,
interpretable decisions. Random Forest improves on Decision Trees by combining multiple
trees to reduce overfitting. Gradient Boosting sequentially corrects errors, enhancing model
performance. K-Nearest Neighbors classifies based on the majority vote of nearest data
points, offering simplicity and effectiveness. Naïve Bayes, based on Bayes’ theorem, excels
in classification with an assumption of feature independence. Support Vector Machines
efficiently handle high-dimensional data, optimizing margins between classes for clear
decision boundaries. Notably, the models employed by Otero et al. achieved over 90%
accuracy for infection risk and over 80% for treatment recommendations, highlighting the
potential of AI in enhancing disease management strategies in vineyards across Southern
Europe [122].

Collaboration and innovation in AI and cloud-based platforms are charting new paths
in the monitoring and forecasting of plant diseases. The study published by Lavanya
and Krishna [123] has developed a collaborative AI and cloud-based platform for plant
disease identification, tracking, and forecasting. This innovative approach merges a mobile
application with AI algorithms, providing real-time disease diagnostics and disease density
mapping. This collaborative and technology-driven approach reflects a shift towards more
integrated and interconnected systems for plant disease management, akin to the initiatives
by Otero et al. [122] and Zen et al. [124]. The study by Zen et al. focuses on developing an
AI-based mobile application for detecting plant diseases with high accuracy, utilizing CNN
and RNN with TensorFlow.js. TensorFlow.js is an open-source library developed by Google
for machine learning in JavaScript. It enables the training and deployment of machine
learning models directly in the browser or on Node.js. TensorFlow.js provides a flexible
and efficient platform for building and executing machine learning algorithms on web-
based applications, allowing for interactive and real-time applications of AI technologies
without the need for backend servers. The application in this study was tested on tomato
plant diseases, achieving prediction accuracies of 100% for early blight, 90% for bacterial
spot, and 100% for both healthy and late blight conditions. This research showcases the
application’s capability to recommend treatment options based on image analysis, offering
a significant tool for farmers to identify and manage plant diseases effectively [122–124].
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During 2023, in the realm of early disease detection and prediction in plants, techno-
logical advancements, particularly in Enhanced Data rates for GSM Evolution (EDGE) and
deep learning, have played a pivotal role. Marco-Detchart et al. [125] focuses on the devel-
opment of a robust, multi-sensor consensus approach for plant disease detection using the
Choquet Integral. The Choquet Integral is a mathematical concept used in decision-making
and information aggregation integrated in an Edge-AI device. Edge-AI refers to the deploy-
ment of AI applications directly on devices located at the “edge” of the network, rather than
relying on centralized cloud services. This means that computations are performed close to
where data are generated, such as in smartphones, surveillance cameras, or IoT devices,
which allows for faster processing times, reduced bandwidth costs, and improved data
privacy. This device was designed to improve disease classification by capturing multiple
images of plant leaves and applying data fusion techniques. The system demonstrated
increased robustness in classification responses to potential plant diseases, leveraging deep
learning models for better analysis and classification. This innovatively implemented a
multi-sensor consensus approach for plant disease detection, monitoring and prediction
demonstrating efficacy surpassing traditional single-camera setups. Complementing this,
Ojo and Zahid [126] have refined deep learning classifiers for plant disease detection by
adeptly applying image preprocessing techniques and addressing class imbalance issues.
Ojo and Zahid focused on enhancing deep learning classifiers for plant disease detection by
addressing data imbalances and applying image preprocessing techniques. They used tech-
niques like Adaptive Histogram Equalization (AHE), Contrast Limited Adaptive Histogram
Equalization (CLAHE), and image sharpening to improve image quality. They tackled
class imbalance with methods like Synthetic Minority Oversampling Technique (SMOTE),
Major-to-Minor Translation (M2m), and Generative Adversarial Networks (GANs). These
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studies collectively highlight the critical role of cutting-edge technology in efficient disease
management and resource optimization in agricultural sectors [125,126].

The study by Vardhan et al. [127] takes an innovative approach to plant disease de-
tection and monitoring using drone-captured imagery. They developed a comprehensive
database from online sources, categorizing various plant species and diseases for analysis.
This database was crucial for testing the accuracy and reliability of their CNN-based model.
Their methodology emphasizes the use of CNNs due to their effectiveness in complex
categorization and detection challenges, especially under varied imaging conditions. Ad-
ditionally, they introduced a prototype drone equipped with a high-resolution camera
for live field monitoring, showcasing the practical application of their research in real
agricultural settings. This integration of advanced imaging techniques and AI algorithms
represents a significant step forward in agricultural technology, offering a more efficient
and accurate method for plant health assessment and disease management. In relation,
the study published by Dagwale et al. [128] showed the YOLOv5 model, an advanced
neural network architecture for real-time object detection, to accurately predict leaf species
and diseases across various plant types using the PlantDoc dataset. YOLOv5 (You Only
Look Once version 5) is designed for rapid image processing, identifying, and classifying
multiple objects simultaneously with high precision. This integration showcases the poten-
tial of leveraging cutting-edge AI technologies like YOLOv5 to enhance disease detection
accuracy in agriculture, marking a significant advancement in plant pathology diagnostics
and disease spread and monitoring [128].

It is notably how neural networks, especially convolutional neural networks (CNNs),
are emerging as the predominant technique for classifying plant diseases, thanks to their
inherent flexibility and automatic feature extraction capabilities [124,127]. The develop-
ments shown in this subsection mark a milestone at the confluence of advanced technology
and agronomy, heralding a new era in plant disease management. The fusion of machine
learning techniques with cloud-based collaborative platforms is redefining the approach of
farmers and scientists to plant disease challenges. These advancements not only enhance
accuracy in disease detection and management but also facilitate a prompter and effective
response, crucial for global sustainability and food security.

5.3. Comprehensive Evaluation and Prospects of AI Technologies in Phytopathological Applications

In the rapidly evolving domain of AI-assisted plant disease management, the inte-
gration of pretrained models, such as ResNet-18 and ResNet-50, marks a significant leap
towards refining disease detection and diagnostic accuracy. These models, part of the
Residual Networks (ResNets) introduced to mitigate the vanishing gradient problem in
deep convolutional neural networks (CNNs), incorporate “shortcut connections” that allow
gradients to flow through the network without undergoing non-linear transformations,
thereby facilitating the training of much deeper networks. ResNet-50, a 50-layer CNN
comprising 48 convolutional layers, one MaxPool layer, and one average pool layer, em-
ploys a “bottleneck” design in each residual block to reduce the number of parameters and
accelerate layer training. This bottleneck design, featuring a stack of three layers instead
of two, utilizes 1 × 1 convolutions to compress and then expand the number of channels,
significantly lowering computational complexity while maintaining or enhancing model
performance [129].

Originally trained on the expansive ImageNet dataset, these models exhibit exceptional
prowess in feature recognition, offering tailored solutions for the nuanced challenges of
phytopathology. Their capability to discern complex image characteristics with remarkable
precision positions them as indispensable tools for identifying plant pathologies, often
surpassing traditional visual inspection methods with accuracies ranging between 95%
and 97%. Furthermore, the application of these pretrained models extends beyond disease
identification to encompass broader spatial analyses, as evidenced by their deployment
within the ArcGIS ecosystem for tasks like land cover classification and aerial feature
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extraction, underscoring their potential to revolutionize the monitoring and management
of plant health on a large scale [130].

The comparative analysis of AI models, including CNNs, YOLOv5, and MobileNet,
illuminates the diverse applicability and efficacy of these technologies in phytopathology.
Each model, with its unique strengths (be it CNNs for their image processing capabilities,
YOLOv5 for its rapid processing speed facilitating timely interventions, or MobileNet for
offering an efficient solution on low-power devices), advances our capacity to manage plant
disease spread through predictive analyses that integrate environmental and symptomatic
data. This synthesis not only augments diagnostic precision but also enhances proactive
disease management strategies. Nevertheless, the practical application of these models
encounters challenges such as the need for image preprocessing and handling unbalanced
datasets, propelling the pursuit of technological innovations, especially in the realm of Edge-
AI devices. These advancements promise a transformative impact on disease monitoring,
enabling more accurate and accessible diagnostics.

As AI technologies continue to evolve, alongside breakthroughs in sensor technologies,
we are ushered towards a new era of integrated and automated plant disease management.
This journey is not without its hurdles, necessitating innovative approaches like transfer
learning and the development of multisensorial detection systems to overcome current
limitations. The ongoing exploration and refinement of AI models in phytopathology not
only pave the way for future research directions but also highlight the pivotal role of AI in
crafting sustainable, precision-based solutions for global agricultural challenges.

6. Applications of AI in Precision Agriculture and Management

The advent of artificial intelligence (AI) in precision agriculture marks a significant
milestone in the evolution of precision farming, offering a promising avenue for enhancing
yields while minimizing ecological impacts. The advantages of AI are not only related to
phytopathology; groundbreaking developments in AI, such as advanced robotic weeders
equipped with computer vision, have substantially reduced herbicide usage, exemplifying
a move towards more sustainable farming practices [131]. Machine learning models that in-
tegrate weather, soil, and crop data have become increasingly sophisticated, aiding farmers
in making well-informed decisions about irrigation, fertilization, and harvesting [132]. The
democratization of AI through affordable solutions is further expanding the accessibility
and effectiveness of precision farming [133].

The role of AI in agriculture, as outlined by Buja et al. [134], emphasizes the impor-
tance of early detection and rapid, accurate diagnostics for managing phytopathological
challenges. This progress, marked by the application of nanotechnologies and the integra-
tion of the Internet of Things (IoT), is revolutionizing preventive strategies in combatting
phytopathogens and precision agriculture. Liakos et al. [15] provide a comprehensive
review of machine learning applications in agriculture, demonstrating how AI, combined
with sensor data, is transforming farm management systems into real-time, intelligent
platforms. These platforms offer insightful recommendations, significantly aiding in farmer
decision-making across various aspects of agriculture, including crop, livestock, water, and
soil management.

Kumar et al. [135] introduced DeepMC, a deep learning-based microclimate prediction
framework utilizing IoT data, which exemplifies the potential of AI in enhancing precision
agriculture. DeepMC’s innovative approach to predicting a range of climatic parameters,
including soil moisture, humidity, and temperature, offers accurate forecasts crucial for
agricultural decision-making. The integration of AI in image processing has made sig-
nificant contributions to precision agriculture. Studies by G S. and Rajamohan [136] and
Sasikala D. and Sharma K. [137] demonstrate how AI-driven image processing technologies
improve crop monitoring and management, further bolstering the efficiency and accuracy
of agricultural practices.

Furthermore, the work of Joseph R.B. et al. [138] and Arokia Raj V.H. and Xavier de
Carvalho C. [139] highlights the integration of AI in agricultural automation and agromete-
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orology, respectively. These studies underscore AI’s potential in enhancing the efficiency of
agricultural products and in offering model-based decision support systems that unite AI
with precision agriculture.

Lastly, Williams et al. [140] developed the AI2Farm model, a machine learning-based
approach that analyzes the impact of global and domestic events on agricultural pro-
duction, consumption, and pricing. This model represents a significant advancement in
precision agriculture by providing farmers with tools to adapt to both conventional and
unconventional challenges in agriculture.

In summary, the integration of AI into precision agriculture and management marks
a transformative shift in modern farming encompassing sustainable practices, advanced
diagnostics, data-driven decisions, and innovative technologies. These developments
are crucial to meet escalating food demands while maintaining ecological balance. Con-
currently, manifold AI applications in detection, forecasting, precision management, and
monitoring are transforming phytopathology. As these techniques mature, AI-enabled tools
promise to strengthen global food security and agricultural sustainability amidst evolving
plant disease challenges. Taken together, the advent of precision agriculture powered by AI
constitutes a strategic innovation pathway for next-generation phytopathology and plant
protection practices worldwide. With prudent and ethical implementation, data-driven
smart farming technologies can enable the sustainable intensification of crop productivity
to feed rising populations in the face of climate change and agricultural pressures.

7. Integration Challenges and Ethical Considerations
7.1. Technical Barriers to AI Implementation

While artificial intelligence promises transformative phytopathology innovations,
prudent precautions are necessary for its successful integration into agricultural systems.
Technical barriers persist in developing robust, reliable AI solutions for real-world plant
disease environments [47]. A key limitation of many current machine learning models is
their narrow focus on specific crops, pathogens, and controlled settings [141]. Algorithms
trained on limited datasets often fail to generalize across diverse agricultural contexts.
The myriad variations in crop cultivars, growth stages, climates, soil conditions, and
pathogen strains pose challenges in creating AI tools with sufficient flexibility for in situ
usage [13,142].

Progress is also impeded by a lack of coordination across data collection efforts and
an unwillingness to openly share datasets between research groups and private entities.
Most available plant disease datasets remain relatively small-scale and sparse [14]. Such
fragmented data restrict the training and performance scope of AI systems. While emerg-
ing sensor, imagery, and genomic technologies offer copious agricultural data streams,
integrating such disparate formats for AI utilization is non-trivial and requires dedicated
preprocessing pipelines [15].

Researchers have outlined frameworks to methodically address these technical barriers
through good data practices and coordinated action [141,143]. Recommendations include
collaborative open-access data platforms, standardized collection protocols, and emphasis
on creating shareable datasets with diversity. Transfer learning methods that leverage
models pre-trained on large natural image repositories are also being explored to improve
generalization despite limited domain-specific agricultural data [144].

In additions, while AI holds the potential to drive sustainable agricultural practices,
such as optimizing resource use and minimizing chemical inputs, it is also essential to
consider the environmental footprint of the AI technology itself. This includes the carbon
footprint associated with data centers powering AI applications and the environmental
impact of manufacturing AI hardware. Sustainable AI in agriculture should strive for a
balance where the ecological benefits of its application significantly outweigh its environ-
mental costs [145].
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7.2. Ethical Issues in AI-Driven Phytopathology

The integration of AI into phytopathology or precision agriculture also raises pressing
ethical concerns regarding data privacy, accountability, labor impacts, and environmen-
tal sustainability that warrant scrutiny [146,147]. Critics caution that AI-enabled crop
management regimes could reinforce unsustainable industrial farming at the cost of rural
livelihoods, localized knowledge, and the food sovereignty of smallholder farmers [148,149].
Therefore, phytopathology AI systems must be designed through inclusive stakeholder
participation, centering human needs and values.

There is apprehension surrounding the data privacy and consent procedures in-
volved in collecting large agricultural datasets for training AI models, which could include
farmer proprietary information alongside field images or soil data [36]. The onus is on re-
searchers to implement ethical data management practices that protect farmer interests and
anonymity. Moreover, the proprietary black-box nature of some commercial AI technolo-
gies obscures model biases and prevents oversight into decision-making rationales [150]
(Ribeiro et al., 2016). Such opacity becomes ethically problematic for AI systems deployed
in social realms including agriculture [151].

Broader concerns also exist around delegating data-driven farming fully to AI, poten-
tially marginalizing rural communities and eroding farmers’ autonomy, knowledge, and
sense of place [148]. Hence, human-centered design considerations must shape responsible
AI integration in phytopathology, serving to augment, not replace, agricultural expertise
and intuition. Ongoing farmer education and upskilling initiatives are imperative to de-
mocratize AI access, allowing rural communities to reap the benefits equitably and partake
in co-developing solutions attuned to local needs [43,152].

7.3. Regulatory Frameworks and Standards

Realizing ethical AI for agriculture requires establishing regulatory frameworks and
technological standards guiding development and deployment [153]. At present, there is a
lack of governance surrounding the creation, sales, and monitoring of AI phytopathology
technologies. Policy interventions are required at national and global levels to regulate the
quality control, risk assessments, and liability attribution of agricultural AI systems. Such
oversight can mitigate dangers of hastily implemented tools with unreliable real-world
performances or unexamined biases causing harm [154,155].

Global agreements are also needed to align technological approaches, architecture
choices, data formats, curation protocols, and performance benchmarks across the emerging
field of AI phytopathology [156]. Common technology standards will support collaboration,
open data sharing, and interoperability, accelerating innovation. Furthermore, voluntary
professional codes of ethics around topics such as model transparency, auditability, and
farmer privacy could guide institutional research and industry product design [157]. Over-
all, multi-tiered governance combining binding regulations and soft-law ethics codes can
steer agricultural AI progress along responsible trajectories.

In summary, realizing AI’s promise in transforming 21st century phytopathology
necessitates prudently navigating the accompanying integration barriers and ethical ten-
sions. Only through holistic frameworks considering all stakeholder needs can AI tech-
nologies serve humanity in enabling sustainable plant disease management worldwide.
The path forward lies in an inclusive and value-based co-development of agricultural AI
tools, supported by emergent policy regimes governing these evolving technologies for
societal benefit.

8. Conclusions
8.1. Summary of Key Findings

This comprehensive review highlights the immense potential of artificial intelligence
to transform modern approaches in plant disease management and phytopathological
research. Through an extensive analysis of the existing literature, manifold AI applications
across major facets of phytopathology have been delineated.
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Notable successes have been demonstrated in employing AI for automated disease
detection and diagnosis using image recognition techniques like convolutional neural
networks. Studies indicate that AI can identify plant diseases, often with 95–97% accuracy,
exceeding human visual inspection. AI also shows an aptitude for data-driven disease
spread forecasting, integrating weather, soil, and crop parameters to predict outbreak risks
up to 3 weeks prior at 81–95% precision. This enables preemptive and targeted protection
strategies minimizing pesticide usage.

Furthermore, AI is optimizing precision agriculture through site-specific interventions
tailored to local conditions based on integrated crop data analysis. These holds promise to
boost yields while protecting ecosystems. The AI monitoring of plant and environmental
cues also facilitates pre-symptomatic disease alerts for early action. Ongoing research on
explainable and transparent AI can mitigate issues surrounding model opacity.

Overall, real-world evidence affirms that AI-enabled tools can strengthen disease con-
trol, enhance crop resilience, and unlock novel phytopathological insights from increasingly
complex agricultural data streams [158]. AI’s self-improving and generalizable capabilities
make it well suited to address evolving plant health challenges amidst climate change,
globalization, and intensified farming systems.

8.2. Implications for the Future of Phytopathology

The integration of AI portends a paradigm shift in phytopathology and plant protec-
tion strategies worldwide. As algorithms become more robust and tailored for agricultural
settings, AI’s role is poised to expand from assisting tasks to autonomous in-field decision-
making around disease management. With sufficient training data encompassing diverse
cropping contexts, AI systems can attain the flexibility and adaptiveness required for
broad deployment.

Advances in sensors, automation, and robotics will enable expansive data genera-
tion on crop status, disease progression, and environmental influences. AI’s capacity to
assimilate such big data and discern correlations can illuminate plant–microbe interactions,
evolutionary dynamics, and epidemiology at unprecedented resolution. These insights
promise to accelerate knowledge discovery and innovation in phytopathology, seeding 21st
century breakthroughs.

Overall, the advent of data-driven smart farming powered by AI algorithms marks a
historic juncture in tackling plant disease burdens. As phytopathology transitions into an
interdisciplinary, technology-intensive science, AI will catalyze a strategic shift towards pre-
cision and sustainable agriculture. This new paradigm seeks ecological disease prevention
over chemical controls, supporting global food security and environmental objectives.

8.3. Call to Action for Researchers and Stakeholders

Realizing the immense promise of AI in enabling next-generation phytopathology
necessitates focused efforts by researchers worldwide alongside multi-stakeholder par-
ticipation. Key priorities include assembling diverse open-access datasets, advancing
collaborative models, strengthening farmer education, and developing supportive policies.

Researchers must coordinate shared protocols and create expansive training datasets
encompassing various crops, cultivars, pathogens, and agricultural environments. This will
improve AI model robustness, avoiding dataset limitations. Committing to open data ac-
cess and developing regional repositories are critical to accelerated innovation. Advancing
participatory models where farmers help co-design context-specific AI tools is vital to de-
mocratize benefits equitably. Capacity building to equip farming communities in adopting
smart technologies responsibly is imperative. Policymakers must also implement updated
regulations governing agricultural AI development and deployment for the public good.

In summary, the promising future of AI in plant disease management calls for collective
action by stakeholders worldwide. Through ethically aligned, inclusive efforts that put
farmers first, AI can help secure the productivity and sustainability of agricultural systems
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globally in the face of rising pressures. This necessitates bridging disciplinary divides and
steering agricultural AI progress along humanistic trajectories.
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