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Abstract: Anthocyanins, recognized as stress indicators, particularly under high-light conditions, play
a pivotal role in plant stress responses. The advent of transcriptomics has opened avenues to elucidate
the mechanisms underlying high light-induced anthocyanin biosynthesis. This study delved into
transcriptomic changes in Begonia semperflorens leaves under varying light intensities: 950–9600 lx
(TL_100), 6800–7000 lx (HS_75), and 4300–4500 lx (LS_25). To confirm the expression profiles of the
key genes, we chose 12 critical genes associated with anthocyanin production for quantitative reverse
transcription PCR (qRT-qPCR) analysis. Following this, we measured the levels of anthocyanins to
substantiate the findings from the gene expression analysis. The transcriptome assembly in this study
was extensive, yielding 43,038 unigenes that collectively spanned about 49.83 million base pairs,
with an average unigene length of 1157 bp and an N50 value of 1685 bp. This assembly facilitated a
thorough functional annotation across seven distinct protein databases, leading to the classification
of 16,363 unigenes into 58 different families of transcription factors. Our comparative analysis of the
transcriptomes highlighted a substantial number of differentially expressed genes (DEGs): 5411 DEGs
between HS_75 and TL_100 conditions, with 3078 showing increased expression and 2333 showing
decreased expression; 4701 DEGs between LS_25 and TL_100, consisting of 2648 up-regulated and
2053 down-regulated genes; and 6558 DEGs between LS_25 and HS_75, with 3032 genes up-regulated
and 3526 down-regulated. These DEGs were significantly involved in critical pathways, such as
anthocyanin synthesis, plant hormone signaling, and other regulatory mechanisms. This study
suggests that genes, including F3′H, MYB102, and SWEET1, could play vital roles in regulating
anthocyanin synthesis in response to various light conditions, potentially impacting the expression
levels of other genes, like WRKYs, ATHB12, and those similar to HSP.
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1. Introduction

Ornamental plants, renowned for their diverse colors and patterns, significantly con-
tribute to the aesthetics and commercial success within the floriculture industry [1,2].
Predominant pigments, like chlorophyll, flavonoids, carotenoids, and betalains, define
plant coloration, each stemming from distinct metabolic pathways [3,4]. Flavonoids, a
prevalent class of secondary metabolites in angiosperms, exhibit a wide spectrum of
colors [5]. These compounds are crucial for various physiological roles in plants, including
pigmentation, resilience against biotic and abiotic stressors, and developmental regula-
tion. For instance, studies have shown that flavonoids in Ginkgo biloba confer resistance
to low temperatures and salt stress by scavenging free radicals [6] and offer protection
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against insect predation [7]. In Oryza sativa, the flavonoids present in phloem or leaves
can deter pests like Niloparvata lugens or Ditylenchus angustus, inhibit the growth of fungi
and bacteria, and counteract other pathogenic organisms [8,9]. In Arabidopsis, flavonols are
known to influence auxin transport, impacting root growth, anther dehiscence, and pollen
germination [10].

Anthocyanins, a subset of flavonoids, are water-soluble pigments responsible for
vibrant hues, ranging from orange to blue in leaves, flowers, and fruits [4,11]. These
compounds serve as vital secondary metabolites, imparting color to plant tissues and
protecting against the oxidative stress caused by environmental factors, such as salinity,
low temperature, drought, and high light [12]. They also safeguard against ultraviolet
radiation and help prevent oxidative damage to DNA [7,13]. Furthermore, anthocyanins in
Arabidopsis seeds play a role in regulating dormancy and germination [14]. Beyond their
aesthetic value in ornamental plants, flavonoids have been recognized for their antioxidant
properties, which contribute to neuroprotection, anti-inflammatory effects, pain relief,
antibacterial and antispasmodic activities, cancer cell growth inhibition, and cardiovascular
disease prevention [8,15].

B. semperflorens, a perennial evergreen herb belonging to the Begonia family, is ex-
tensively used for ornamental purposes in gardens and lawns. Its leaves often exhibit
red pigmentation, primarily due to the accumulation of anthocyanins, in response to en-
vironmental triggers, such as low temperature, intense light, malnutrition, and physical
injury. This makes B. semperflorens an excellent subject for investigating environmentally in-
duced anthocyanin synthesis. However, detailed genetic information on many Begoniaceae
species remains scarce. Transcriptome sequencing has emerged as an accurate and reliable
method for exploring genomic characteristics, particularly for plants with unsequenced
genomes, aiding in the comprehensive understanding of plant growth and regulatory
mechanisms [16,17]. Under a low-nitrogen environment, the PAL (phenylalanine ammonia-
lyase), CHS (chalcone synthase), and DFR (dihydroflavonol 4-reductase) genes are responsible
for accumulating flavonoids in snow chrysanthemum (Coreopsis tinctoria Nutt.); this was
revealed through both flavonoid metabolism and transcriptomics [16]. In Chrysanthemum
morifolium, a combination of genomic and transcriptomic approaches demonstrates that the
C. morifolium genome can be used to identify genes underlying key ornamental traits [17].

Previous research has demonstrated that lower temperatures increase the anthocyanin
content in B. semperflorens seedlings, with reactive oxygen species (ROS) produced by BsR-
BOHD playing a crucial role in this process [18,19]. Additionally, short day conditions have
been identified as essential for anthocyanin biosynthesis in Begonia seedlings under low
temperatures [19]. When the shading degree was increased, the flower number, chlorophyll
content, peroxidase activity, and nitrate reductase began to increase and then decreased,
while the anthocyanin content decreased gradually [20]. However, the specific mechanisms
through which light influences anthocyanin biosynthesis remain under-explored. In this
study, we analyzed the transcriptomes of adult B. semperflorens leaves under various light
conditions—TL_100 (9500–9600 lx), HS_75 (6800–7000 lx), and LS_25 (4300–4500 lx)—to
unravel the biological mechanisms governing anthocyanin biosynthesis in response to light.

2. Methods
2.1. Plant Material and Treatment

B. semperflorens plants were grown in plastic containers filled with a 7:3 mixture of
peat and vermiculite, with three plants per pot. These were then acclimatized to natural
environmental conditions. After 20 d, the plants underwent different light treatments
using shading nets set 1.5 m above the ground, creating three light intensity environments:
TL_100 (9500–9600 lx), HS_75 (6800–7000 lx), and LS_25 (4300–4500 lx). Each treatment
group consisted of twenty pots. Then, 30 d later, the third and fourth leaves from each plant
were collected, instantly frozen in liquid nitrogen, and stored at −80 ◦C for RNA extraction.
For RNA-seq analysis, three biological replicates were used per treatment group.
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2.2. Sequencing and De Novo Splicing

The total RNA was isolated and contaminating DNA was removed using DNase.
Eukaryotic mRNAs were then enriched using Oligo (DT) magnetic beads. Following this,
single-stranded cDNA was synthesized using random primers, which was then converted
into double-stranded cDNA. The double-stranded cDNA underwent end repair, a-tailing,
adapter ligation, size selection, and PCR amplification. Sequencing was carried out using
the Illumina HiSeq X Ten platform, generating 150 bp paired-end reads. Unigenes were
identified using Trinity software (version 2.4.0) for splice assembly, selecting the longest
sequence per gene based on similarity and length [21]. CD-HIT software (version 4.6) was
employed to cluster sequences and eliminate redundancy [22].

2.3. Database Annotation and Unigene Expression Analysis

Unigenes were annotated using various databases, including NR, KOG, GO, Swiss-
Prot, eggNOG, KEGG, and the Pfam database, employing diamond (version 0.4.7) and
HMMER software (version 3.0) [23,24]. The abundance of each unigene’s expression was
quantified using sequence similarity comparison methods [25]. Bowtie2 software (version
2.3.3.1) was used to map reads to unigenes and expression levels were determined by
calculating Fragments Per Kilobase of transcript per million mapped reads (FPKMs) using
eXpress software (version 1.5.1) [26,27]. DESeq software (version 1.18.0) was used to
normalize unigene counts, calculate expression multiples, and assess the significance of
read number differences using a negative binomial distribution [28]. Significantly different
expression was defined by a p-value < 0.05 and an absolute log2 fold change >2.

2.4. Quantitative RT-PCR

For qRT-PCR analysis, we collected the third leaf from each B. semperflorens plant.
Tissue samples, comprising a combination of 3 to 5 plants, represented a single biological
replicate. And 1 microgram of RNA was used for cDNA synthesis via reverse transcription
with PrimeScript®Reverse Transcriptase. Primer design was facilitated by Primer 5.0 soft-
ware. Each tissue sample was subjected to qRT-PCR in triplicate, and the reaction conditions
were as follows: 95 ◦C/10 s, 40 cycles of 95 ◦C/10 s, and 60 ◦C/45 s. Relative abundance
of transcripts was determined using the 2−∆∆Ct method [29], with the B. semperflorens 18S
rRNA gene serving as the reference.

2.5. Anthocyanin Quantification

We quantified anthocyanin content following the protocol by Mita et al. [30]. Leaf
tissue, weighing 0.3 g, was homogenized in 3 mL of 1% HCl in methanol and incubated
in darkness at 4 ◦C for 24 h. After centrifugation at 3500× g for 15 min, we measured the
absorbance of the supernatant at 530 nm and 657 nm. Anthocyanin content was calculated
as the absorbance unit (A530–0.25 × A657) per mL of the extraction solution.

3. Results
3.1. Anthocyanin Quantification, RNA-Seq, and Sequence Assembly

Exposure to light induced a red pigmentation in B. semperflorens leaves, with the TL_100
treatment resulting in entirely red leaves (Figure 1A). Correspondingly, the anthocyanin
content in the leaves increased with light intensity (Figure 1B). Leaf samples from the three
light treatments (LS_25, HS_75, and TL_100), including biological replicates, were used to
construct the libraries using Illumina sequencing.

In this study, a total of nine samples (SJHT01–SJHT09) were analyzed (Tables 1 and S1).
Trimmomatic software (version 0.36) was employed to preprocess the quality of the raw
data [31]. Low-quality bases at the 3′ and 5′ ends were trimmed and the number of reads
was counted. A total of 43,038 unigenes were assembled, with an average length of 1157 bp,
an N50 value of 1685 bp, and a range of lengths from 301 to 13,934 bp. The Q30 score for
each sample ranged between 94.13% and 94.72%, with an average GC content of 46.78%.
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Figure 1. Phenotypes (A) and the relative content of anthocyanin (B) in the leaves of B. semper-
florens under different light conditions: TL_100 (9500–9600 lx), HS_75 (6800–7000 lx), and LS_25
(4300–4500 lx). Values given in the form of mean ± SE (n = 3). Significant differences were analyzed
using Duncan’s multiple range test; bars with different letters (a, b, c) are significantly different from
each other (p < 0.05).

Table 1. Summary of sequencing data quality preprocessing results.

Sample Raw_Reads Raw_Bases Clean_Reads Clean_Bases Valid_Bases Q30 GC

SJHT01 49,777,226 7,466,583,900 48,004,270 6,990,744,218 93.63% 94.40% 46.57%
SJHT02 49,522,814 7,428,422,100 47,590,320 6,923,035,939 93.20% 94.13% 46.62%
SJHT03 49,863,826 7,479,573,900 47,936,466 6,967,194,631 93.15% 94.15% 46.63%
SJHT04 49,828,304 7,474,245,600 48,213,482 7,020,997,231 93.94% 94.72% 46.58%
SJHT05 49,100,084 7,365,012,600 47,345,236 6,871,630,987 93.30% 94.43% 46.35%
SJHT06 49,157,100 7,373,565,000 47,370,798 6,876,938,189 93.26% 94.35% 46.21%
SJHT07 49,563,616 7,434,542,400 47,804,554 6,944,073,974 93.40% 94.45% 47.48%
SJHT08 49,606,990 7,441,048,500 47,810,836 6,952,011,668 93.43% 94.40% 47.44%
SJHT09 49,281,318 7,392,197,700 47,370,676 6,890,183,691 93.21% 94.24% 47.13%

For mapping clean reads to unigenes, Bowtie2 software (version 2.3.3.1) was utilized,
showing a total read mapping rate of 100%, with over 80% of reads mapped and more
than 60% uniquely mapped (Table 2) [25]. Pearson’s correlation coefficient among biolog-
ical replicates in each light condition indicated a high transcript abundance correlation
(Figure S1). This was further supported by principal component analysis (PCA) results
(Figure S2).

Table 2. Statistics of comparison results between reads and unigenes.

Term/Sample SJHT01 SJHT02 SJHT03 SJHT04 SJHT05 SJHT06 SJHT07 SJHT08 SJHT09

Total reads 48,004,270
(100.00%)

47,590,320
(100.00%)

47,936,466
(100.00%)

48,213,482
(100.00%)

47,345,236
(100.00%)

47,370,798
(100.00%)

47,804,554
(100.00%)

47,810,836
(100.00%)

47,370,676
(100.00%)

Total
mapped
reads

41,984,877
(87.46%)

41,550,401
(87.31%)

41,907,962
(87.42%)

41,832,385
(86.76%)

41,286,182
(87.20%)

41,353,105
(87.30%)

41,068,040
(85.91%)

41,291,670
(86.36%)

40,733,631
(85.99%)

Multiple
mapped

11,293,504
(23.53%)

10,918,104
(22.94%)

11,014,508
(22.98%)

10,837,352
(22.48%)

10,429,495
(22.03%)

10,401,779
(21.96%)

10,774,523
(22.54%)

10,746,716
(22.48%)

10,275,731
(21.69%)

Uniquely
mapped

30,691,373
(63.93%)

30,632,297
(64.37%)

30,893,454
(64.45%)

30,995,033
(64.29%)

30,856,687
(65.17%)

30,951,326
(65.34%)

30,293,517
(63.37%)

30,544,954
(63.89%)

30,457,900
(64.30%)

Reads
mapped in
proper pairs

38,922,888
(81.08%)

38,559,570
(81.02%)

38,869,636
(81.09%)

38,862,724
(80.61%)

38,360,006
(81.02%)

38,436,858
(81.14%)

37,948,358
(79.38%)

38,199,484
(79.90%)

37,668,310
(79.52%)

3.2. Transcriptome Functional Annotation

The unigenes were compared with NR, KOG, GO, Swiss-Prot, eggNOG, and the KEGG
database using diamond software (version 0.4.7) and the Pfam database via HMMER
software (version 3.0) [23,24]. All of the unigenes were aligned to the NR, Swiss-Prot,
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KEGG, KOG, eggNOG, GO, and Pfam protein databases. And the results showed that
31,197, 24,591, 12,096, 18,309, 30,226, 22,489, and 41 unigenes were identified in the NR,
Swiss-Prot, KEGG, KOG, eggNOG, GO, and Pfam protein databases, respectively (Table 3).
Most unigenes were annotated in NR protein databases, reaching 72.49%.

Table 3. Annotation of the unigenes in seven databases.

Database Annotated Number Percentage (%)

NR 31,197 72.49
Swiss-Prot 24,591 57.14

KEGG 12,096 28.11
KOG 18,309 42.54

eggNOG 30,226 70.23
GO 22,489 52.25

Pfam 41 0.10

3.3. Differentially Expressed Gene Analysis

Differential gene expression was assessed using DESeq software (version 1.18.0) [32].
A total of 5411 DEGs were identified between HS_75 and TL_100, with 3078 up-regulated
and 2333 down-regulated (Figure 2A; Table S2). In the LS_25 vs. TL_100 comparison,
4701 DEGs were identified, with 2648 up-regulated and 2053 down-regulated (Figure 2A;
Table S3). Between LS_25 and HS_75, there were 6558 DEGs, with 3032 up-regulated
and 3526 down-regulated (Figure 2A; Table S4). Additionally, 416 DEGs were commonly
expressed across all three comparisons (Figure 2B; Table S5).
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Figure 2. Number of up- or down-regulated genes in the three comparisons (A). The unigene venn
diagram was expressed differently in each group (B).

3.3.1. GO Enrichment Analysis of DEGs

GO enrichment analysis was performed on the DEGs and results were integrated
with those of GO annotations. The number of differential mRNAs produced in each GO
term was counted and hypergeometric distribution tests were conducted to determine
the significance of enrichment (Figure 3). The identified biological processes included
flavonoid biosynthesis, pigment biosynthesis, and the regulation of flavonoid biosynthetic
processes. Molecular functions related to enzymes involved in anthocyanin biosynthesis
were also identified (Figure 3).
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term and the vertical coordinate indicates the −log10 p value.

3.3.2. KEGG Enrichment Analysis of DEGs

KEGG pathway analysis was carried out to understand the pathways associated with
the DEGs [33]. The top 20 enriched pathways are represented in a bubble diagram (Figure 4).
Flavonoid metabolism, along with starch and sucrose metabolism and plant hormone signal
transduction pathways, was found to be influenced by the light environment (Figure 4).
The above results indicate that high-light stress can induce anthocyanin biosynthesis.
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Figure 4. KEGG classification of DEGs that were detected in the three comparisons of HS_75–vs–
TL_100 (A), LS_25–vs–TL_100 (B), and LS_25–vs–HS_75 (C). Red line shows the flavonoid biosynthe-
sis pathway item. The x-axis is the enrichment score. The larger the bubble, the more the number of
DEGs. The color of the bubble changes from purple to blue to green to red. The smaller the p-value of
the bubble, the greater the significance.

3.4. Analysis of DEGs Involved in Flavonoid Biosynthesis

Within the study, several genes involved in phenylpropanoid biosynthesis, which leads
to anthocyanin production, were identified. DEGs, including CHS, CHI, F3H, F3′5′H, F3′H,
DFR, and ANS, were present in different conditions, whereas 3GT (UDP-glucose: flavonoid
3-o-glucosyltransferase) was not detected. The expression of the F3′H gene was notably
up-regulated with increased light intensity (Figure 5), suggesting its role in light-induced
anthocyanin biosynthesis.
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Figure 5. Schematic of physiological roles and the expression of DEGs regulated by different light
conditions in flavonoid biosynthesis in B. semperflorens. CHS, chalcone synthase; CHI, chalcone
isomerase; DFR, dihydroflavonol 4–reductase; F3H, flavanone 3–hydroxylase; F3′H, flavanone–3–
hydroxylase; F3′5′H, flavonoid F3′5′H–hydroxylase; FNS, flavone synthase; LAR, leucoanthocyanidin
reductase; ANR, anthocyanidin reductase; FLS, flavonol synthase.

3.5. Transcription Factor Database Annotation

Transcription factors are proteins that bind to specific DNA sequences, which play
a key role in gene expression regulation by controlling the transcription of genetic in-
formation from DNA to RNA. PlantTFDB (https://opendata.pku.edu.cn/dataset.xhtml?
persistentId=doi:10.18170/DVN/GHICUF, accessed on 10 January 2024) is a database of
plant transcription factors which contains sequences from 165 plants and 58 families of plant
transcription factors, and the top 10 species distribution is shown in Figure S3. The unigene
sequence was compared to the transcription factor database by blastx (E-value < 1 × 10−5).
A total of 16,363 unigenes were annotated in the transcription factor database, which were
distributed in 58 families. The TF comparison results are shown in Figure 6, and the
MYB and MYB-related, bHLH (basic Helix–Loop–Helix), WRKY (WRKYGQK), and ERF
(Ethylene-Responsive Factor) transcription factors showed a higher number.

Then, the expression levels of some key candidate DEGs related with anthocyanin
biosynthesis were further examined under light conditions (Table S6). The expression of
the CRF6 (Cytokinin Response Factor 6), ERF2, F3′H, MYB102, WRKY40, WRKY76, WRKY53,
and WRKY70 genes was up-regulated in HS_75-vs-TL_100, LS_25-vs-TL_100, and LS_25-vs-
HS_75; however, the expression of SWEET1 (Sugars Will Eventually be Exported Transporters),
ATHB12 (Arabidopsis thaliana homeobox genes), HSP20 (Heat Shock Protein 20), and HSP-like
was down-regulated (Figure 6). In short, transcription factors may also be involved in
regulating the anthocyanin biosynthesis of B. semperflorens under light conditions.

https://opendata.pku.edu.cn/dataset.xhtml?persistentId=doi:10.18170/DVN/GHICUF
https://opendata.pku.edu.cn/dataset.xhtml?persistentId=doi:10.18170/DVN/GHICUF
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Figure 6. The distribution of the transcription factor family that were detected in the three compar-
isons of HS_75–vs–TL_100 (A), LS_25–vs–TL_100 (B), and LS_25–vs–HS_75 (C). Purple represents
all unigenes, blue represents differentially expressed unigenes, green represents down-regulation
of unigenes, and red represents up-regulation of unigenes. The abscissa is the transcription factor
family and the ordinate is the number of unigenes.

3.6. Transcriptome Data Were Verified via qRT-PCR

In order to verify the validity of the data of transcriptomes, we selected 12 genes (ERF2,
MYB102, F3′H, WRKY40, WRKY76, WRKY53, WRKY70, SWEET1, CHI, F3H, ATHB12,
and HSP-like) from the DEGs for qRT-PCR analysis of their expression under different
light conditions (Figure 7). These results are consistent with the data of transcriptomes.
Meanwhile, we also found that the ERF2, MYB102, F3′H, WRKY40, WRKY76, WRKY53, and
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WRKY70 genes were up-regulated with increases in light intensity (Figure 7); in contrast, the
SWEET1, ATHB12, and HSP-like genes decreased with increases in light intensity (Figure 7).
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Figure 7. qRT-PCR validation of the transcriptome data. The relative transcript levels of these twelve
genes were shown in panel (A) (ERF2), (B) (MYB102), (C) (F3’H), (D) (WRKY40), (E) (WRKY76),
(F) (WRKY53), (G) (WRKY70), (H) (SWEET1), (I) (CHI), (J) (F3H), (K) (ATHB12), and (L) (HSP-like).
Values given in the form of mean ± SE (n = 3). Significant differences were analyzed using Duncan’s
multiple range test; bars with different letters are significantly different from each other (p < 0.05).
The sequences of primers are shown in Table S7.

4. Discussion
4.1. Anthocyanin Was Induced by Light Conditions

Anthocyanins, as significant flavonoid compounds, play a critical role in plant defense
mechanisms and adaptability to various environmental stresses [18,34]. The biosynthesis of
anthocyanins in B. semperflorens ‘Super Olympia’ seedlings is induced by low temperatures,
alongside the synthesis of lignin [18]. Similarly, anthocyanin content in grapes increases
upon infection with Colletotrichum gloeosporioides [34]. Previous studies, including ours,
have shown that shading can alter both the morphological and physiological characteristics
of plants [5,20]. High light induces an accumulation of superoxide anions (O2

−) and
malondialdehyde (MDA); meanwhile, the relative contents of anthocyanin, soluble sugar,
starch, and superoxide dismutase (SOD) activity also increased [20]. Fortunately, under
high-light conditions, the color of B. semperflorens leaves turned to red, which has high
ornamental value (Figure 1A).

Generally, the structural genes, like CHI, CHS, DFR, and ANS, within the flavonoid
metabolic pathway significantly influence the flavonoid content [35,36]. High light is
known to induce anthocyanin biosynthesis by up-regulating these structural genes, such
as PAL, CHS, F3H, and ANS genes [18]. And our study reveals a novel aspect, where
F3′H gene expression was markedly up-regulated with increased light intensity (Table S6
and Figure 7). So far, the F3′H gene has been reported to positively regulate anthocyanin
biosynthesis. In the present study, the anthocyanin content was 11.54 ± 1.99 U·g−1·FW,
45.42 ± 3.43 U·g−1·FW, and 134.60 ± 6.4 U·g−1·FW in LS_25, HS_75, and TL_100, respec-
tively (Figure 1B). Therefore, the F3′H gene is responsible for anthocyanin synthesis and
then further resistance to high-light stress. And, in B. semperflorens, it was also reported
that exogenous sucrose could induce anthocyanin accumulation, which is related to the
up-regulation of PAL, CHI, DFR, etc. [37]. Hence, the function of the F3′H gene must be
further explored.
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4.2. High Light Affects the Expression of Transcription Factors

It is well known that transcription factors also play key roles in modulating antho-
cyanin biosynthesis under stress conditions [38,39]. For example, in Lycoris radiata, Lr-
WRKY3/27 regulates anthocyanin synthesis under drought stress [39]. In Malus crabapple,
the McWRKY71 transcription factor is induced by ozone stress, influencing anthocyanin
and proanthocyanidin synthesis [40]. The bHLH137 transcription factor is involved in
the positive regulation of proanthocyanidins and anthocyanins in grapevines, enhancing
resistance to C. gloeosporioides [34]. Additionally, the postharvest temperature and light
treatments in ‘Akihime’ plum (Prunus salicina Lindl.) induce anthocyanin accumulation via
the transcription factor PsMYB10.1 [41]. In the Asiatic hybrid lily (Lilium spp.), LhWRKY44
is implicated in light- and drought-induced anthocyanin synthesis [12]. Furthermore, a
model of light-regulated anthocyanin biosynthesis in rose petals included a network of
genes, such as HY5 (ELONGATED HYPOCOTYL 5), MYB114a, bHLH3, CHS, and F3′H [42].

In the present study, we observed that high-light exposure not only induces antho-
cyanin biosynthesis-related genes but also affects the expression levels of various stress-
responsive genes (Table 4), like WRKY, HSP-like, ERF genes, etc. Meanwhile, in order to
resist the high-light environment, we found that the leaf area decreased and curled, the
flower number decreased, the plant height reduced, and so on (Figure 1A). These results
imply that the pant growth was also affected by these transcription factors, such as AP1
(APETALA1), ERF2, SWEET1, etc. And these transcription factors may have functions in
responding to high-light environments. However, the lack of transgenic systems makes it
difficult to clearly explain their function.

Table 4. Some key transcription factors that respond to high-light conditions.

Gene_Id HS_75–vs–TL_100 LS_25–vs–HS_75 LS_25–vs–TL_100 Annotation

TRINITY_DN17817_c0_g1_i3_2 Up Up Up WRKY70
TRINITY_DN18363_c1_g1_i1_2 Up Up Up CRF6
TRINITY_DN19191_c0_g1_i3_2 Up Up Up WRKY-like
TRINITY_DN19457_c0_g3_i1_2 Up Up Up F3′H
TRINITY_DN20076_c0_g1_i1_2 Up Up Up MYB102
TRINITY_DN20148_c0_g1_i1_2 Up Up Up ERF2
TRINITY_DN20316_c0_g1_i4_1 Up Up Up WRKY40

TRINITY_DN21459_c0_g1_i15_2 Up Up Up WRKY40
TRINITY_DN2235_c0_g1_i1_1 Up Up Up WRKY76

TRINITY_DN24643_c0_g1_i2_2 Up Up Up WRKY53
TRINITY_DN5558_c0_g1_i1_3 Up Up Up WRKY70

TRINITY_DN14802_c0_g1_i1_3 Down Down Down AP1
TRINITY_DN18676_c0_g2_i2_3 Down Down Down SWEET1
TRINITY_DN19032_c0_g1_i1_3 Down Down Down ATHB12
TRINITY_DN20561_c0_g1_i2_3 Down Down Down HSP20-like
TRINITY_DN24640_c0_g3_i1_3 Down Down Down HSP-like

Significant differences were determined with a p-value < 0.05 and |log2 fold change| > 1.

5. Conclusions

In summary, our research demonstrates that high-light exposure triggers anthocyanin
accumulation in the leaves of adult B. semperflorens plants. The identification of DEGs
under high-light conditions revealed that anthocyanin accumulation is a strategic response
to high-light stress. Importantly, these DEGs not only include structural genes but also
transcription factors (Table 4; Figure 8). High light promoted the expression of ERF2,
MYB102, F3′H, WRKYs, etc., but also inhibited the expression of SWEET1, ATHB12, and
HSP-like genes. This suggests that these genes may be involved in both anthocyanin
biosynthesis and the response to high-light stress environments.
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