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Abstract: The beneficial application of silver nanoparticles and biostimulants to increase crop yield
and quality is a long-term strategy to achieve desired agricultural productions that are resilient
to various biotic and abiotic challenges. This project aimed to evaluate the individual effects of
silver nanoparticles (AgNPs), Ascophyllum nodosum (SEW), and Spirulina platensis (SP) on the growth
and physiological responses of Santolina chamaecyparissus. S. chamaecyparissus plants were exposed
to AgNPs (20, 40, and 60 mg L−1), SWE (0.5% and 1%), and SP (1%, 2%, and 3%). The finding
indicates that the light-harvesting efficiency and plant photochemical capacity are not affected by
most treatments except for 60 mg L−1 AgNPs. Furthermore, the pattern of H2O2 levels in leaves
was significantly higher after AgNP, SP, and SEW treatments. In parallel, total phenolic production
was at least accompanied by a burst in H2O2 levels. However, higher antioxidant activity compared
to the control, is shown by the higher free-DPPH-radical inhibition that goes completely smoothly
with lower H2O2 levels. Thus, the results of the present study showed that biostimulants overall
improved the antioxidant activity of S. chamaecyparissus and induced variable detectable amounts of
phenolic compounds in response to the concentrations of each biostimulant.

Keywords: Antioxidants; DPPH; H2O2; phenolics; RP-HPLC; AgNPs

1. Introduction

Santolina chamaecyparissus is a dense and attractive dwarf shrub native to the Mediter-
ranean region and a member of the family Asteraceae. The greyish foliage and yellowish
flowers of the plant make it attractive as an ornamental presence in gardens [1,2]. The
pharmaceutical uses of the plant include its potential use as an anticancer, antioxidant,
antidiabetic, antimicrobial, and anti-inflammatory agent [3–6]. The biological activities of
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S. chamaecyparissus can be attributed to its chemical constituents, which have been analyzed
in flowers, leaves, and shoots of wild-grown and micro-propagated plants [2,3,7,8]. Essen-
tial oils from aerial parts of Saudi S. chamaecyparissus were particularly rich in curcumene,
alpha-bisabolol during spring, and caryophllene oxide and limonene diepoxide during the
summer season [2]. Analyses of the ethyl acetate extract of S. chamaecyparissus showed that
44 compounds were identified, of which tetrapentacontane constituted the main compound,
27.15% [3]. Essential oils from the foliage of S. chamaecyparissus plantlets grown in vitro
were harvested using a Clevenger-type apparatus and then collected in benzene to analyze
their major constituents [8]. According to that study, 25 compounds were identified, of
which monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocar-
bons, and oxygenated sesquiterpenes were the main groups of phytoconstituents. The
antioxidant activity of the essential oils of S. chamaecyparissus, in particular, led researchers
to incorporate it into the chocolate industry to improve its nutritional value and to provide
a new acceptable aroma and sensory qualities of dark chocolate [9]. Coatings that confer
enhanced antifungal protection for Manchego cheese were developed containing industrial
residues of S. chamaecyparissus [10]. Hence, the biological activities of the phytoconstituents
in herbs such as S. chamaecyparissus made them good candidates for the production of
functional foods [11].

Biostimulants and biotechnological tools have recently gained more attention to in-
crease plant growth, introduce high-value crops, and secure more environmentally safe
food that has more nutritional value and/or more metabolite content [12–14]. Natural bio-
stimulants include microorganisms as well as a variety of substances such as humic acids,
protein hydrolysates, and fulvic acid that can improve physiological processes of the plant,
nutrient absorption and defense mechanisms against stress conditions, and thus enhance
plant growth and development [15,16]. Other categories of biostimulants that are worth
testing further include seaweed extracts (SEWs), which are a group of macroalgae, and
Spirulina platensis (SP), which is a cyanobacterium [16,17]. Biotechnological applications
have been expanding recently to include the green synthesis of metallic nanoparticles as
well as the synthesis of Ag nanomaterials from plant extracts [18]. Nanoparticles were
reported to enhance growth, leaf health and greenness, pigmentation, antioxidant enzymes,
and the vase-life of flowers [19,20]. Therefore, the objective of the study was to explore
the effects of using different concentrations of SEW and SP extracts and green-synthesized
silver nanoparticles on the phytochemical constituents and potential biological activities of
S. chamaecyparissus, including antioxidant and antimicrobial effects.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

S. chamaecyparissus samples were grown under controlled conditions (14 h under
~80 µE light at 21 ◦C/10 h in the dark at 20 ◦C; 55–60% relative humidity) in soil culture
of 2/1/1 (v/v/v) mixture of peat moss, perlite, and vermiculite. After two weeks of
growth, the plants were either irrigated with one of the biostimulants for the next 10 days
or kept in the plant growth chamber under previously specified controlled conditions as
control experiments.

2.2. Biostimulants Treatments

Treatment with biostimulants included Ascophyllum nodosum, seaweed extracts (SEWs)
(0.5, 1%), Spirulina platensis (SP) (1, 2, and 3%), AgNPs (20, 40, and 60 mgL−1). S. chamae-
cyparissus plant samples were irrigated three times per week for up to 10 days with each
specific plant biostimulant. Control samples were irrigated with tap water three times a
week for up to 10 days under controlled growth conditions. At the end of each specific
plant biostimulant treatment, leaves collected from the treated plants were directly frozen
in liquid nitrogen and stored at −80 ◦C until a further analysis of H2O2, chlorophylls and
carotenoids, total phenolics, and antioxidant activity. Untreated control plants were grown
in parallel with treated plants.
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The remaining plants from each treatment were transplanted into 15 cm pots con-
taining a peat moss/perlite mixture in a 2:1 ratio and grown for up to 3 months under
greenhouse conditions. The established mother plants were acclimatized for up to 2 weeks
and then received the same corresponding treatment to which they were assigned in the
plant growth chamber. Each plant was treated four times at 15-day intervals with 100 mL
of the corresponding initial treatment. At the end of the 3-month growing period in the
greenhouse, the leaves were collected and stored as mentioned above, and the extracts
were tested against selected pathogens.

2.3. Quantifying Hydrogen Peroxide (H2O2) Levels

The H2O2 content in leaf samples was determined as described by [21]. Frozen leaf
material (~0.1 g) was homogenized in 0.1% trichloroacetic acid (TCA) on ice, followed by
centrifugation at 15,000× g for 15 min at 4 ◦C. The supernatant (0.5 mL) was mixed with
0.5 mL of pH 7.0 potassium phosphate buffer and 1 mL of 1 M KI. The assay mixture’s
absorbance was read at 390 nm, and H2O2 content was calculated from a standard curve.

2.4. Quantification of Chlorophylls and Carotenoids

Chlorophyll and carotenoid measurement, following [22], involved grinding 20 mg of
leaf samples in 1 mL of 80% acetone, incubating for 1 h in darkness, and centrifuging at
13,000 rpm for 10 min at 4 ◦C. The supernatant was read at 646.6 and 663.6 nm.

2.5. Antibacterial Activity

The following microorganisms were used in bioactivity assays

Organism Accession Number

Gram-negative bacteria
Escherichia coli ATCC 25922
Pseudomonas aeruoginosa ATCC 27853
Gram-positive bacteria
Bacillus subtilis ATCC 6633
Staphylococcus aureus ATCC 43300
Bacillus cereus ATCC 11778

The antibacterial activities of crude extracts from different parts of the plant were
evaluated by agar diffusion tests according to the guidelines of the Institute of Clinical
and Laboratory Standards (CLSI, 2012). Mueller-Hinton agar plates were seeded with
overnight cultured test bacterial strains at a cell density of 106 bacterial cells/mL. Different
concentrations of the tested extracts were applied to sterile blank discs (6 mm) which
were placed on the surface of seeded Mueller Hinton agar plates. Antibacterial activities
were determined by measuring the inhibition zones produced after the plates had been
incubated for 24 h at the required temperature. The experiment was performed in triplicate,
and the results represented the mean value.

2.6. Sample Preparation for Antioxidant Determination

The sample was weighed and dried in the oven at a temperature of 60 ◦C overnight,
then weighed and ground with a food mill, and for every 1 g 25 mL of methanol was placed
in a shaker water bath for an hour at a temperature of 60 ◦C. After that, the solution was
filtered, and the supernatant was kept for further analysis.

2.7. Determination of Total Phenolic Content

The phenolic content is determined with the Folin–Ciocalteu method [23] with minor
modifications. In total, 0.1 mL of the sample is mixed with 8.4 mL of distilled water and
0.5 mL of the Folin–Ciocalteu reagent, vortexed for 4 min. Then, 1 mL of a 5% sodium
carbonate solution is added, and the mixture is left for 1 h in the dark. Absorbance
is measured at 725 nm using a UV spectrophotometer (UV 1800, Biotech Engineering
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Management Co., Ltd., UK). Phenolic content is expressed as mg of gallic acid equivalents
per gram of dry matter (mg GAE/g), with gallic acid stock at concentrations of 0, 0.25, 0.50,
0.75, and 1.0 mg mL−1.

2.8. Determination of Antioxidant Activity

Antioxidant activity (A.A) was determined with the DPPH (1,1-diphenyl-2-Picryl-
Hydrazyl radical) method which is described by [24]. Where, 3.9 mL of 6 × 10−5 mol L−1

of DPPH solution which was prepared by (2.4 mg of DPPH in 100 mL of methanol) was
mixed with 0.1 mL of the extracted sample, after the mixture was set in a dark place for
30 min at room temperature, the absorbance (A) of the color was measured at 515 nm using
a spectrophotometer (Spectrophotometer-UV 1800, Biotech Engineering Management Co.,
Ltd., UK), at time 0 and 30 min. Antioxidant activity was calculated according to the
following equation:

% antioxidant activity = (1 − [(Abs of sample t = 30)A/(Abs of control t = 0)B]) × 100.

A: is the absorbance of the sample at 30 min.
B: is the absorbance of the control at 0 min.

2.9. Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) Analysis for
Phenolic Compounds

Phenolic extracts were dried under a stream of nitrogen and then dissolved in 1 mL
of methanol and stored at −18 ◦C for the RP-HPLC analysis. Standards of phenolics
(5 µg) were dissolved in 1 mL of methanol and stored at −18 ◦C. The RP-HPLC analysis
was performed according to a modified procedure of [25,26] with a UHPLC (Thermo
Scientific Ultimate 3000, USA), liquid chromatography equipped with a Programmable
Solvent Module for high-pressure solvent delivery, an autosampler model (WPS-3000),
a column oven model (TCC-3000), a pump model (LPG-3400SD), and a programmable
diode array detector (DAD). Spectral and chromatograph analyses were analyzed with the
Chromeleon software (c) Dionex Version 7.2.10.23925, translated into PRN format for the
manipulation of Microsoft Excel, and stored on a disc. For chromatographic separation,
20 µl of the sample described in the section was injected into a reversed phase Phenolic
Venusil SCX-C-18 column (pore size of 5 µm, 250 × 4.6 mm i.d, USA) operated at room
temperature. The sample was eluted at a flow rate of 0.75 mL/min with the following two-
buffer gradient system: solvent A, 0.2% TFA in water (v/v); solvent B, 100% methanol (with
a linear gradient starting at 5% to 80% methanol in 58 min, and the initial conditions were
then re-established over 10 min). The phenolic compounds in the extract were monitored
at 280 nm. The identification and quantification of phenolic compounds were determined
by comparing the retention time of the prepared standard phenolic compound solutions
with the retention time from the collected data for the samples after each run.

2.10. Statistical Analysis

For all experiments, samples were analyzed and all assays were carried out in three
independent replicates (n = 3). Results were expressed as mean ± SD. The SAS software was
used to perform analyses of variance (ANOVA) on the data, and the Tukey-Kramer range
test was used to compare the treatment means at the 0.05 significance levels. (p ≤ 0.05). The
principal component analysis (PCA) was performed using JMP version 9.0 (SAS Institute
Inc., USA).

3. Results
3.1. Chlorophylls and Carotenoids Content of S. chamaecyparissus Leaves

The application of different biostimulants resulted in a reduction in total chlorophyll
content, in particular, at Chl a content rather than Chl b content in response to an increased
AgNP dose and SP at 2% and 3% treatments (Figure 1). Nevertheless, the ratio of Chl a/Chl
b even reflects a slight reduction in comparison to the control and still keeps a high ratio



Horticulturae 2024, 10, 26 5 of 13

except for plants treated with 60 mg L−1 of AgNPs, which significantly recorded the lowest
ratio at all treatments (Table 1). In contrast, carotenoid content was reduced in response
to the treatment of mainly an increased AgNP dose (Figure 2). However, the Chl/Car
showed the least reduction compared to the control content in response to SP at 2% and 3%
treatments (Table 1).

Horticulturae 2023, 9, x FOR PEER REVIEW 5 of 14 
 

 

3. Results 
3.1. Chlorophylls and Carotenoids Content of S. chamaecyparissus Leaves 

The application of different biostimulants resulted in a reduction in total chlorophyll 
content, in particular, at Chl a content rather than Chl b content in response to an increased 
AgNP dose and SP at 2% and 3% treatments (Figure 1). Nevertheless, the ratio of Chl a/Chl 
b even reflects a slight reduction in comparison to the control and still keeps a high ratio 
except for plants treated with 60 mg L−1 of AgNPs, which significantly recorded the lowest 
ratio at all treatments (Table 1). In contrast, carotenoid content was reduced in response 
to the treatment of mainly an increased AgNP dose (Figure 2). However, the Chl/Car 
showed the least reduction compared to the control content in response to SP at 2% and 
3% treatments (Table 1). 

 
Figure 1. Chlorophyll content (a and b) of S. chamaecyparissus leaves subjected to different biostim-
ulants compared with that of plants grown without any additions (control). Data represent mean 
values ± SD, n = 3. Different letters denote statistically different means (Tukey’s test; p ≤ 0.05). 

 
Figure 2. Carotenoid content in leaves of S. chamaecyparissus subjected to different biostimulants 
compared to that of plants grown without any additions (control). The effect with different concen-
trations of biostimulants in comparison with control. Data represents mean values ± SD, n = 3. Dif-
ferent letters denote statistically different means (Tukey’s test; p ≤ 0.05). 
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values ± SD, n = 3. Different letters denote statistically different means (Tukey’s test; p ≤ 0.05).

Table 1. Chlorophyll and Carotenoid ratio of S. chamaecyparissus leaves subjected to different biostim-
ulants in comparison with control. Data represent mean values ± SD, n = 3.

Control AgNPs, 20 AgNPs, 40 AgNPs, 60 1% SP 2% SP 3% SP 0.5% SEW 1% SEW

C
hl

a/
C

hl
b

3.51 ± 0.28 2.56 ± 0.06 2.24 ± 0.15 1.67 ± 0.05 2.25 ± 0.12 10.56 ± 1.86 3.14 ± 0.09 2.06 ± 0.21 2.87 ± 0.16

C
hl

/C
ar

o

4.52 ± 0.46 4.02 ± 0.12 4.09 ± 0.13 4.66 ± 0.20 4.49 ± 0.12 3.50 ± 0.19 2.71 ± 0.05 4.03 ± 0.37 4.09 ± 0.08
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3.2. H2O2 Content in Leaves of S. chamaecyparissus

Figure 3 shows the effects of different biostimulant treatments on H2O2 content in
the examined leaves of S. chamaecyparissus. H2O2 levels in leaves increased depending on
the type of biostimulant treatment. The pattern of H2O2 levels was significantly higher
following AgNPs, SP, and SEW treatments. The H2O2 levels in AgNPs-treated plants were
1.4-, 1.1-, and 1.2-fold higher than those in untreated plants after 20, 40, and 60 mg L−1 of
treatment, respectively. However, significant changes in H2O2 production after SP at 1%,
2%, and 3% treatment were observed. The H2O2 level peaked and was 3-, 1.3-, and 2-fold
higher than the H2O2 level in control plants respectively. H2O2 levels increased in SEW
treated plants by 1.7-fold and 2.6-fold compared to H2O2 levels in control plants after 0.5%
and 1% treatment, respectively.
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with different concentrations of biostimulants in comparison with control. Data represent mean
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3.3. Chemical Profile and Biological Activity

Except for SEW at 0.5%, the production of total phenolics in the nontreated control
plants significantly out-yielded the various biostimulant treatments (1273.2 and
1322.2 mg GA 100 g−1 in the control and 0.5%-SEW-treated plants, respectively) (Figure 4).
Plants treated with 60 mg L−1 of AgNPs, SEW at 1%, and SP at 1% significantly recorded
the lowest phenolic content (397.4, 812.4, and 907.2 mg GA 100 g−1) (Figure 4). AgNPs
at 20 and 40 mg L−1 significantly resulted in higher antioxidant activity compared to the
control, as shown by the higher inhibition (21.1%, 26.1%, and 5%, respectively) (Figure 5).
Results also showed that SP at 2% and 3%, but not at 1%, and SEW at 0.5% and 1% triggered
a significantly higher free radical inhibition compared to the control (20.8, 16.2, 23.2, 15.0,
and 5.1% corresponding to SP2%, SP3%, SEW0.5%, SEW1%, and control, respectively)
(Figure 5). Inhibition of free DPPH radicals and antioxidant activities followed a relatively
similar trend within the various levels of each biostimulant, where the lowest phenolic
contents and antioxidant activity resulted from plants treated with 60 mg L−1 of AgNPs,
SP at 1%, and SEW at 1% (Figures 4 and 5). Phenolic compounds using the specified
standards in this study clearly demonstrated the effects of biostimulants applied on the
plant biochemical profile of S. chamaecyparissus (Table 2). Of the phytoconstituents screened
in the present study, those that can be detected using the HPLC technique in the control
plants were gallic acid, quercetin, and thymol. In total, 20 and 40 mg L−1 of AgNPs hardly
affected the levels of compounds in the treated plants where only an amount of 13.1 µg g−1

of thymol was detectable among the screened standards in response to 40 mg L−1 of AgNPs.
The rest of the treatments (60 mg L−1 of AgNPs, SP at 1%, 2%, and 3%, and SEW at 0.5%
and 1%) were more responsive to induce detectable amounts of variable magnitudes of
the screened compounds. However, gallic acid, catechin, chlorogenic acid, epicatechin,
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syringic acid, and sinapic acid were not detected in plants treated with SEW at 0.5% and
1% (Table 2).
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The concentration of phenolic compounds peaked in the leaves of plants using different
treatments: gallic acid, 14.2 µg g−1 using 60 mg L−1 of AgNPs; 2,3-dihydroxyphethyl
alcohol, 63.2 µg g−1 using SP at 3%; catechin, 49.2 µg g−1 using 60 mg L−1 of AgNPs;
2-hydroxyphenethyl alcohol, 37.7 µg g−1 using SP at 3%; chlorogenic acid, 29.6 µg g−1

using SP at 3%; vanillic acid, 18.0 µg g−1 using SP at 3%; epicatechin, 36.4 µg g−1 using
SP at 3%; caffeic acid, 23.3 µg g−1 using SP at 2%; syringic acid, 6.7 µg g−1 using SP at 3%;
p-coumaric acid, 38.8 µg g−1 using SP at 3%; sinaptic acid, only produced using SP at 1%,
45.0 µg g−1; Ferulic acid, 32.1 µg g−1 using SP at 3%; rutin, 263.2 µg g−1 using SP at 2%;
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rosmarinic acid, 65.7 µg g−1 using 60 mg L−1 of AgNPs; quercetin, 187.3 µg g−1 using SP
at 3%; and thymol, 208.6 µg g−1 using SP at 3% (Table 2).

Table 2. Changes in the phenolic compounds of S. chamaecyparissus leaves subjected to different
biostimulants quantified by High-Performance Liquid Chromatography (RP-HPLC). Data represent
mean values ± SD, n = 3. ND; Not Detected.

Standard/Sample Control AgNPs, 20 AgNPs, 40 AgNPs, 60 1% SP 2% SP 3% SP 0.5% SEW 1% SEW

Gallic acid 14.06 ± 1.12 ND ND 14.16 ± 0.17 10.09 ± 0.01 2.74 ± 0.08 12.87 ± 0.22 ND ND

3,4-Dihydroxyphethyl
alcohol ND ND ND ND 10.09 ± 0.004 35.99 ± 0.46 63.25 ± 0.74 50.34 ± 1.42 46.42 ± 5.54

Catechin ND ND ND 49.24 ± 0.24 ND 19.78 ± 0.48 38.16 ± 0.22 ND ND

2-Hydroxyphenethyl
alcohol ND ND ND 24.20 ± 0.47 14.31 ± 0.62 7.44 ± 0.17 37.73 ± 1.11 18.52 ± 1.60 18.11 ± 1.59

Chlorogenic acid ND ND ND ND ND 14.35 ± 0.26 29.59 ± 0.42 ND ND

Vanillic acid ND ND ND ND ND ND 18.03 ± 0.40 ND 5.61 ± 1.64

Epicatechin ND ND ND 14.89 ± 0.19 ND 9.89 ± 0.24 36.36 ± 0.68 ND ND

Caffeic acid ND ND ND 17.87 ± 0.09 ND 23.26 ± 0.21 17.14 ± 0.41 13.07 ± 2.09 ND

Syringic acid ND ND ND ND ND 1.13 ± 0.07 6.74 ± 0.21 ND ND

P-coumaric acid ND ND ND 24.42 ± 0.31 15.95 ± 1.25 15.74 ± 0.14 38.83 ± 0.84 18.66 ± 0.00 18.24 ± 1.64

Sinapic acid ND ND ND ND 45.03 ± 0.23 ND ND ND ND

Ferulic acid ND ND ND 16.27 ± 0.12 16.27 ± 0.75 3.07 ± 0.09 32.11 ± 1.10 14.44± 1.53 16.19 ± 1.71

Rutin ND ND ND ND 22.71 ± 2.05 263.22 ± 0.12 ND ND 18.77 ± 0.00

Rosmarinic acid ND ND ND 65.72 ± 0.38 55.82 ± 1.15 ND 37.99 ± 0.66 ND 57.58 ± 2.06

Quercetin 3.87 ± 1.13 ND ND 121.92 ± 0.17 47.15 ± 0.74 2.66 ± 0.09 187.26 ± 0.66 105.25 ± 1.63 49.651 ± 2.06

Thymol 23.62 ± 0.94 ND 13.11 ± 0.11 106.74 ± 0.38 76.55 ± 0.74 2.66 ± 0.10 208.65 ± 0.43 91.82 ± 2.04 85.39 ± 1.64

3.4. Potential Antimicrobial Effects

The bacteria strains showed variable responses to the plant extracts of S. chamaecy-
parissus treated with various doses of the biostimulants (Table 3). B. subtilis, S. aureus, and
P. aeruginosa did not exhibit activity in response to plant extracts derived from the three
types of plants treated with biostimulants. On the other hand, the Gram-positive B. cereus
responded to plants derived from 40 and 60 mg−1 L of AgNPs with a smaller zone of
inhibition than in the Gram-negative E. coli. The highest response was obtained using
500 µg−1 mL of S. chamaecyparissus leaf extracts derived from plants subjected to 60 mg−1 L
of AgNPs (23.3 and 28.3 mm corresponding to B. cereus and E. coli, respectively). For E. coli,
inhibition was also induced by leaf extracts of the control and plants treated with a SEW at
1%, with a higher inhibition zone using the 500 rather than 300 µg−1 mL extract. SP was
effective in the inhibition of B. cereus at 1% more than at 2%, with a higher response being
observed at the 500 than at the 300 µg−1 mL extract.

3.5. Principal Component Analysis (PCA)

PC 1 accounted for 60.5% and PC 2 accounted for 31.6% of the variation (Figure 6,
Supplementary File). Treatments B and C were clustered very close to control (A), indicating
that low levels of Ag have minimal effects on our phenolic compounds. On the other
hand, plants that were treated with higher levels of Ag (D) clustered far from the control,
indicating significant effects on our plant phenolic compounds. Plants treated with higher
levels of Ag were higher in most phenolic compounds compared to control (A). The plants
treated with SP3 (i) clustered at the right top of the biplot and were higher in most phenolic
compounds, especially quercetin and thymol (Supplementary File). On the other hand,
plants treated with SP2 (H) clustered at the left top of the biplot and were dramatically
higher in rutin (Supplementary File). Treatments G, F, and E were also separated from the
controls and clustered in the middle of the PCA plot, indicating that they were different
from the controls.
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Table 3. Zone of inhibition (mm) of S. chamaecyparissus extract leaves subjected to different biostimu-
lants using disc diffusion method against the tested isolates. NA: No activity.

Conc. (µg/mL) B. cereus B. subtilis S. aureus E. coli P. aeruginosa

Control 300 NA NA NA 11.33 ± 0.94 NA

500 NA NA NA 19.33 ± 1.25 NA

AgNPs, 20 300 NA NA NA NA NA
500 NA NA NA NA NA

AgNPs, 40 300 10.67 ± 1.15 NA NA 20.33 ± 2.05 NA

500 13.0 ± 0.00 NA NA 24.67 ± 1.69 NA

AgNPs, 60 300 20.0 ± 2.00 NA NA 22± 0 NA

500 23.33 ± 1.15 NA NA 28.33 ± 1.69 NA

1% SP 300 25.66 ± 0.57 NA NA NA NA

500 28.0 ± 0.00 NA NA NA NA

2% SP 300 16 ± 2.00 NA NA NA NA

500 20.33 ± 1.15 NA NA NA NA

3% SP 300 NA NA NA NA NA
500 NA NA NA NA NA

0.5% SEW 300 NA NA NA NA NA
500 NA NA NA NA NA

1% SEW 300 NA NA NA 17.66 ± 0.94 NA

500 NA NA NA 21.33 ± 0.94 NA
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4. Discussion

The application of biostimulants (SEW and SP) and AgNPs as growth stimulators en-
hanced various plant growth parameters, metabolites, phytohormones, and photosynthetic
pigment content and improved resilience to abiotic stress in several crops. These positive
effects were achieved when biostimulants were introduced as foliar applications at very
low concentrations (SEW, <0.3%; SP, <0.9%; and AgNPs, <10 ppm %) [27–30]. The soil
applications of this study with high concentrations reflect the reduction in photosynthetic
pigment contents. However, our detection of the pigment ratio indicates the evaluation of
the Chl a/Chl b ratio, and also the total chlorophyll to total carotenoid ratio, which is an
indicator of the light harvesting efficiency and indicated that the photochemical capacity
was not affected in most treatments except for 60 mg L−1 of AgNPs. Moreover, the levels of
carotenoids are regarded to participate in suppressing the oxidation caused by treatments
that lead to oxidative stress [18].

H2O2 levels in leaves of S. chamaecyparissus changed variably depending on the type
of biostimulant treatment (Figure 3). Treating plants with AgNPs, SP, and SEW caused
significantly higher H2O2 levels than in control plants with the highest response being
observed at 1% SP and 1% SEW. According to reports, variable plant species exposed
to AgNPs experienced dose-dependent increases in H2O2 levels [31–33]. Our findings,
however, show a minor change in H2O2 levels in the relevant dosages of AgNPs that do
not manifest a toxic effect or cause oxidative stress, which may be attributed to various
phytochemicals present in the plant.

The treatment with SP at 3% was notably beneficial in obtaining the highest magni-
tude for 10 compounds out of the 16 phenolic compounds screened (Table 2). Many of
the standards screened in leaf methanolic extracts in the present investigation were not
detected in the control probably because determination involved using HPLC analyses in
the current investigation, which is less sensitive than using GC-MS or HPLC-tandem mass
spectrometry. However, our method was successful in elucidating the influence of the use
of biostimulants on the enhancement of phenolic and antioxidant compound production
in the current study. Previous studies showed that extracts of essential oil of this plant or
prepared by dissolving in organic solvents were found to be a rich source of phytochemicals.
The main constituents of the essential oil were mono- and sesquiterpene [34] analyzed
the ethyl acetate extracts of the leaves of S. chamaecyparissus and found that major bio-
constituents were tetrapentacontane (27.15%), eicosyl acetate (8.40%), 2-methylhexacosane
(6.87%), and n-pentadecanol (5.44%) [3].

The favorable effects of biostimulants on plant physiology are well documented.
Ascophyllum nodosum caused an increase in antioxidant activity, phenolics, chlorophyll, and
flavonoid content of spinach plants in vitro [35]. Foliar spray of Spirulina platensis when
combined with compost affected oil bioconstituents from fennel plants [36]. Cardoon plants
were sprayed with various concentrations of algal extracts, of which S. platensis exhibited
an enhanced growth, and a modified chemical profile: more carbohydrates and total
flavonoids, and higher antioxidant activity [37]. Phenolic compounds, vanillic, chlorogenic,
and caffeic acid, responded positively in the above-mentioned study to algal extracts of
Chlorella vulgaris and Amphora coffeaeformis at 2 to 3 g L−1, whereas in partial agreement,
S. chamaecyparissus leaves in the present study contained the highest amounts of the three
phenolics in response to the only algal extract used, S. platensis at 2–3%. Nanomaterials
have been reported to modify the environment of plants by provoking antioxidant enzymes,
enhancing leaf health (photosynthetic pigments), total phenolics, proteins, and proline
content [38]. The present results showed that phenolics contributed to the antioxidant
activity of the biostimulants, though they were not correlated, but it was controversial
for the control plants, where high phenol content, low inhibition of free DPPH radicals
(Figures 4 and 5), and high carotenoid content were observed. Non-measured secondary
metabolites in the current study such as flavonoids, ascorbic acid, and anthocyanins may
provide more explanations for this gap if investigated in future studies. The authors of [39]
designed models to analyze the contribution of designated polyphenolics to the antioxidant
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activity in wine and found that similar constitutes to the present study as vanillic acid,
catechin, quercetin, syringic acid, and gallic acid were correlated to antioxidant activity.
The remaining compounds in that study did not correlate to the antioxidant potential.
In fact, the polarity and structure of phytoconstituents in a plant extract will affect their
synergetic influence and thus their part in the antioxidant potency [40,41]. Thus, the results
of the present study showed that biostimulants improved overall the antioxidant activity
of S. chamaecyparissus and induced variable detectable amounts of phenolic compounds in
response to the concentrations of each biostimulant, a result that can be further exploited
by examining their potential biological activity as microbial agents.

Plant extracts of S. chamaecyparissus treated with various doses of the biostimulants
induced variable responses on bacterial strains (Table 3). While B. subtilis, S. aureus, and
P. aeruginosa showed no activity in response to the plant-derived extracts, AgNP-derived
plant extracts at 40 and 60 mg−1 L had antimicrobial activity against B. cereus and E. coli,
and SEW at 1% had activity against E.coli. The deleterious effects of AgNPs at the same
concentration on E. coli compared to on B. cereus can be explained by the thinner cell wall
of the Gram-negative compared to the Gram-positive bacteria [42].

5. Conclusions

In the present study, the impact of different concentrations of SEW, SP, and green-
synthesized AgNPs on the phytochemical components and potential biological activities of
S. chamaecyparissus was examined. Our findings revealed a dose-dependent improvement
in H2O2 content, staying below toxic levels and not inducing oxidative stress. This can
be attributed to the diverse phytochemicals present in the plant. Concentrations of bios-
timulants and AgNP treatments influenced antioxidant activity, with the 3% SP treatment
notably increasing content for 10 out of 16 phenolic compounds. Overall, biostimulant treat-
ment enhanced S. chamaecyparissus antioxidant activity and induced phenolic compounds
based on each treatment’s concentration. Extracts from biostimulant-treated plants showed
limited inhibition of bacterial growth, especially in B. subtilis, S. aureus, and P. aeruginosa,
while B. cereus responded with a smaller inhibition zone than E. coli to 40 and 60 mgL−1 of
AgNPs. The most significant response was observed with 500 µgmL−1 of S. chamaecyparis-
sus leaf extracts from plants treated with 60 mgL−1 of AgNPs. These results underscore the
therapeutic potential of S. chamaecyparissus and the positive impact of biostimulants on
its biological properties, influenced by treatment concentrations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/horticulturae10010026/s1, Figure S1: Principal Component Anal-
ysis (PCA) and its associated biplot showing the distribution of 314 phenolic compounds using
different biostimulants. The following labels were used for the treat- 315 ments: a for control, b for
AgNPs 20, c for AgNPs 40, d for AgNPs 60, e for 0.5% SEW, f for 1% SEW, 316 g for SP1, h for SP2,
and i for SP3.
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Growth and Flowering of Potted Oriental Lilies. Agronomy 2019, 9, 610. [CrossRef]
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