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Abstract: Spent coffee waste is the most common by-product of coffee processing, and it has the
potential to be used as a source of organic compounds for ruminant diets. The objective of this study
was to evaluate the optimal inclusion level and method for using spent coffee waste (SCW) as a
ruminant feed and investigate its effects on rumen fermentation characteristics and methane (CH4)
production. The present in vitro batch culture study was conducted using two different experimental
designs. The first experimental design (TRIAL. 1) was performed using a control diet of 500 mg
of fresh matter basal diet (60% hay/40% concentrate), with SCW being used as a feed additive at
1%, 10% and 20% of the substrate. The second experimental design was performed using the same
control diet, with spent coffee waste replacing either part of the hay (TRIAL. 2) or some of the
concentrate mixture (TRIAL. 3) at four different dosages (30:70, 50:50, 70:30 and 100). When SCW was
supplemented as a feed additive, there were increases in the production of volatile fatty acids and gas;
however, it did not show any suppressive effects on CH4 production. In contrast, when SCW was
included as a replacement for hay or concentrate, there were significant reductions in CH4 production
with increasing levels of SCW inclusion. These reductions in CH4 production were accompanied
by negative effects on nutrient digestibility and total volatile fatty acid production. These findings
demonstrate that SCW could potentially be used as a prebiotic feed additive. Additionally, when
SCW is used as a replacement for silage at 70:30 and 50:50 dosages appear to be feasible as a substitute
for animal feed (hay and concentrate).

Keywords: by-products; methane emission; rumen fermentation; spent coffee waste; sustainability

1. Introduction

The world population is expected to reach approximately 9.7 billion people by 2050 and
10.4 billion people by 2100 [1]. This growing population needs to be fed, so the prevalence
of animal products, such as meat and milk, in human diets needs to be considered [2].
Ruminants play an important role in animal production and contribute significantly to the
overall quantity of animal products on the market. In the future, there will be an increased
demand for ruminants in order to meet the food requirements of the growing global
population. However, ruminants are also the most significant contributors to greenhouse
gas (GHG) emissions, particularly methane (CH4). When their numbers increase, this
has a significant effect on global warming [3]. In addition, the production of CH4 during
the fermentation process in the rumen is correlated with the loss of energy from the
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consumed feed. Moreover, CH4 is 25 times more potent than CO2 in terms of trapping heat
from the sun [4]. Therefore, reducing CH4 emissions from ruminants would significantly
decrease the associated environmental impacts, as long as energy utilization efficiency is
not affected [5]. Thus, there is a need to find strategies that improve feed efficiency, balance
the supply of nutrients to meet animal requirements, reduce environmental impacts and
achieve economic benefits [3]. So, it is important for animal nutrition researchers to focus
on finding alternative options to replace conventional resources and feed additives [6].

Accordingly, using by-products from human food as feed for livestock is considered to
be a possible solution. Coffee is one of the most popular beverages in the world, and several
by-products are generated throughout its processing stages. One of the major by-products
of coffee is spent coffee waste (SCW), which contains large amounts of organic compounds,
particularly lipids, polyphenols and polysaccharides [7]. Due to the presence of these
bioactive compounds, SCW is used in several industries, including biodiesel, cosmetics,
construction and animal feed [8–12]. Moreover, the utilization of spent coffee waste as
an alternative feed source for ruminants could help to mitigate CH4 emissions, reduce
waste and improve the environmental sustainability of livestock production; however, the
dosages, processing methods and effects on animal health and performance need to be
carefully considered.

Previously, researchers [7,11,13,14] have extensively explored the potential of raw
or ensiled spent coffee waste (SCW) as a feed source for ruminants. Their investigations
revealed that SCW offers both advantages and disadvantages, with the outcomes depending
significantly on the dosage. Specifically, the presence of compounds like polyphenols,
which are abundant in SCW, has been shown to have a substantial impact. At higher
dosages, polyphenols can hinder nutrient digestibility, potentially affecting animal health
and production. Moreover, elevated levels of fatty acids in SCW, particularly at higher
concentrations, have their own set of challenges. These fatty acids can alter the feed’s
overall nutritional composition, potentially impacting ruminant performance and health.
Therefore, a nuanced understanding of the dosage effects of polyphenols and fatty acids
is crucial when considering the inclusion of SCW in ruminant diets. Additionally, the
use of SCW as a feed source for ruminants depends on a number of factors, such as cost,
availability, processing and compatibility with other dietary components. Furthermore,
appropriate processing methods (such as ensiling) need to be determined to mitigate any
negative effects of compounds on animal performance and nutrient utilization. Large
quantities of high-moisture by-products are produced in many countries, including Japan;
therefore, there is the need to develop technologies to design superior animal feed using
SCW and enable the long-term storage of the resulting silage [15,16]. In Japan, there
is an increasing interest in making silage by mixing wet and dry by-products, which
offers a number of advantages, such as the reduced risk of effluent production, stabilized
rumen function and extended storage periods [15]. The addition of lactic acid and soybean
curd to silage when ensiling it with fresh grass or certain vegetable residues can improve
fermentation quality. Moreover, when mixed with silage, these additives can also increase
dry matter digestibility and reduce ruminal CH4 production [16,17]. Therefore, the objective
of this in vitro study was to assess the impact of using raw or ensiled SCW as a feed additive
or a partial replacement for the basal components (hay or concentrate) in ruminant diets on
rumen fermentation profiles and CH4 production. Moreover, it is also important to establish
the optimal level of SCW in animal diets [11,14]. However, there are still limitations to
the potential use of SCW as a feed additive or replacement for conventional feed and
the exact optimal dosages and methods remain unclear. Our hypothesis for Trail 1 was
that the addition of SCW would improve rumen fermentation characteristics and mitigate
CH4 emissions. In Trails 2 and 3, we hypothesized that SCW would effectively replace
the conventional feed ingredients in ruminant diet without adverse impact on rumen
fermentation profile.
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2. Materials and Methods
2.1. Basal Diet and Spent Coffee Waste

The basal diet consisted of ground Kleingrass (Panicum coloratum) hay with a particle
size of 1 mm and a concentrate mixture (Alpha-Kotan, Chubu Shiryo Co., Ltd., Nagoya,
Aichi, Japan). The SCW, both raw and ensiled, was provided in powder form by Sanyu
Group Co., Ltd., Sagamihara City, Kanagawa, Japan. The chemical compositions of the
SCW and basal diet components are detailed in Table 1.

Table 1. Chemical composition of the feed used in this study.

(g/kg Dry Matter) Klein Grass Concentrate Coffee (Raw) Coffee (Silage)

Dry Matter (g/kg in fresh matter) 908.6 884.4 961.3 956.6
Organic Matter 909.1 943.6 978.2 961.8

Crude ash 87.2 52.8 17.6 34.5
Crude Protein 140.8 180.0 126.0 154.9
Ether Extract 20.6 35.0 140.0 146.3

NDF 1 696.2 524.4 708.0 792.9
ADF 2 366.7 97.0 442.4 422.8
ADL 3 89.6 20.0 232.2 234.0

1 NDF = neutral detergent fiber. 2 ADF = acid detergent fiber. 3 ADL = acid detergent lignin.

2.2. Preparation of the Silage

The silage preparation was conducted at Sanyu Group Co., Ltd., Sagamihara City,
Kanagawa, Japan. Spent coffee waste was obtained from Starbucks coffee stores across
Japan. After being stored at the Customer Futures Distribution Center by Starbucks’ chilled
logistics, samples were collected at the factory by Sanyu Group logistics. After being
drained at the stores, the spent coffee waste was packed in plastic bags, sprayed with
vinegar spray and sealed for storage. The collected substrates were mixed with dried bean
curd, bran, soy sauce dregs, vinegar and lactic acid bacteria. Then, the mixture was put in
the polyethylene bags and placed into a stainless steel container for incubation. The entire
ensiling process lasted for 14 days and was performed in the Sanyu Group factory.

2.3. Rumen Fluid Collection

The experimental animals for this study were housed and cared for at the Field
Science Center, Obihiro University of Agriculture and Veterinary Medicine, Japan. The
animal management and sampling procedures were approved by the Obihiro University
of Agriculture and Veterinary Medicine’s Animal Care and Use Committee (Approval
number: 21-212).

In this study, two rumen-fistulated, non-lactating Holstein cows, which were about
9 years old, were used as rumen fluid donor animals. The cows were fed at maintenance
level on a diet of orchard grass (Dactylis glomerata) hay (organic matter (OM), 980 g/kg;
crude protein (CP), 132 g/kg; neutral detergent fiber (NDF), 701 g/kg; acid detergent fiber
(ADF), 354 g/kg; acid detergent lignin (ADL), 40 g/kg; dry matter (DM) base), with free
access to clean drinking water and mineral blocks (Koen® SELENICS TZ, Nippon Zenyaku
Kogyo Co., Koriyama, Fukushima, Japan). About 1.3 L of rumen fluid was collected from
4 different places in rumen of both cows, and the then strained fluid was placed into a
pre-warmed Thermos flask. The collected rumen fluid was immediately transferred to the
laboratory within 15 min.

2.4. Experimental Design

This study was conducted using three experimental designs. The first experimental
design (TRIAL. 1) was performed using a control diet (control group) of 500 mg of fresh
matter basal diet (60% hay/40% concentrate). The SCW (both raw and ensiled) was added
directly to the bottles (outside the nylon bag) and used as a feed additive at 1%, 10%, and
20% of the substrate. In this trial, using the raw and ensiled SCW were conducted separately.
The second (TRIAL. 2) and the third (TRIAL. 3) experimental designs were con-ducted
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using the same control diet as TRIAL. 1, but the SCW (both raw and ensiled) was included
in the basal diet (in the nylon bag) to replace either hay or concentrate. TRI-AL. 2 and
TRIAL. 3 were carried out on different days. TRIAL. 2 focused on replacing part of the hay
with SCW, while TRIAL. 3 examined the replacement of a proportion of the concentrate
with SCW. In TRIAL. 2, four different dosages of SCW (raw and ensiled) were included in
the basal diet to replace the hay at different inclusion levels: 70:30 (42% hay/18% SCW/40%
concentrate); 50:50 (30% hay/30% SCW/40% concentrate); 30:70 (18% hay/42% SCW/40%
concentrate); and 100 (60% SCW/40% concentrate). In TRIAL. 3, another four dosages of
SCW (raw and ensiled) were used to replace a proportion of the concentrate as follows:
70:30 (60% hay/28% concentrate/12% SCW); 50:50 (60% hay/20% concentrate/20% SCW);
30:70 (60% hay/12% concentrate/28% SCW); and 100 (60% hay/40% SCW). In TRIAL. 1,
each group had four replicates and the experiment was repeated on four separate days. In
TRIAL. 2 and TRIAL. 3, each group had three replicates and the experiments were repeated
on three different days. In all of the trials, each run included two bottles for blank.

2.5. In Vitro Incubation Procedure

In the present study, 500 mg of the substrate was added to pre-weighed and nylon
bags that has a fixed size and a pore size of 53 ± 10 µm (BG1020, Sanshin Industrial Co.,
Ltd., Yokohama, Kanagawa, Japan). These bags were sealed using a heat-sealer and then
placed into 120 mL glass fermentation bottles. Via continuous CO2 flushing, 40 mL of
artificial saliva [18] and 20 mL of rumen fluid were added to each fermentation bottle.
The bottles were then reinjected with CO2 before being sealed with rubber and aluminum
caps (Maruemu Co., Ltd., Osaka, Japan). The incubation procedure was as described by
Ahmed et al. (2022) [19].

After 24 h of incubation, total gas production was measured using a gas-tight syringe,
and headspace gas was collected from each bottle and stored in a vacuum tube (BD Vacu-
tainer, Becton Drive, Franklin Lakes, NJ, USA). Then, the gas composition was analyzed
via gas chromatography (GC-8A, Shimadzu Corp., Kyoto, Japan), as described previously
by Ahmed et al. (2022) [19]. Next, the bottles were opened, the pH was measured immedi-
ately using a pH meter (LAQUA F-72, HORIBA Scientific, Kyoto, Japan), and 1 mL of the
culture medium was collected in an Eppendorf tube (Eppendorf AG, Hamburg, Germany)
and centrifuged at 16,000× g at 4 ◦C for 5 min. Following the centrifugation, the super-
natant was gathered for further volatile fatty acid (VFA) analysis, which was measured
via high-performance liquid chromatography (Shimadzu LC-20 HPLC, Shimadzu Corp.,
Kyoto, Japan). To determine the in vitro dry matter digestibility (IVDMD), the nylon bags
containing the substrate were rinsed with tap water until the effluent became clear. They
were then dried at 60 ◦C for 48 h to enable us to measure the IVDMD, which was calculated
as the percentage of DM that disappeared from the initial DM weight that was input into
the bags.

2.6. Chemical Analysis

The chemical composition analyses of the SCW, hay and concentrate mixture were
performed according to the Association of Official Analytical Chemists procedures [20]. The
DM content was determined by drying the matter in an oven at 135 ◦C for 2 h (930.15). The
OM and ash contents were measured by placing the samples in a muffle furnace at 500 ◦C
for 3 h (942.05). Nitrogen (N) content was measured according to the method of Kjeldahl
(984.13) using an electrical heating digester (DK 20, VELP Scientifica, Usmate (MB), Monza,
Italy) and an automatic distillation apparatus (UDK 129 VELP Scientifica, Usmate (MB),
Monza, Italy), and CP was then estimated as N × 6.25. The NDF and ADF contents were
estimated and expressed as the inclusive residual ash values using an ANKOM200 fiber
analyzer (Ankom Technology, Methods 6 and 5, respectively; ANKOM Technology Corp.,
Macedon, NY, USA). NDF content was measured using sodium sulfite without heat-stable
α-amylase (FSS, ANKOM Technology).



Fermentation 2023, 9, 858 5 of 11

2.7. Statistical Analysis

All data were analyzed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).
For all experiments, the data were analyzed using PROC MIXED models, including the
treatments as fixed effects, whereas the experimental runs were considered random effects.
The values are presented as the means with the pooled standard errors of the means. Any
differences in means between the experimental groups were estimated using Tukey’s test.
Statistical significance difference was declared at p < 0.05, and a tendency was noted when
p-value was between 0.05 and 0.10.

3. Results
3.1. TRIAL. 1

The inclusion of both the raw and ensiled SCW as an additive at 1%, 10% and 20%
levels resulted in increased total gas production (8.7–11.8%) compared to the control diet
(Tables 2 and 3). The IVDMD was significantly lower (p < 0.008) with the addition of
raw SCW at the 10% and 20% levels compared to the control diet (3.4–12.06%; Table 4),
while ensiled SCW did not show any significant effects on digestibility (Table 5). The total
VFA production was significantly increased in the raw SCW groups (p < 0.04, Table 4).
Additionally, the raw SCW groups showed increases in propionate production, while the
ensiled SCW groups demonstrated increased butyrate production (Tables 4 and 5). Notably,
none of groups showed any significant effects on pH or acetate to propionate (A:P) ratio
(Tables 4 and 5). However, more significant effects on rumen parameters were observed
when raw SCW was used as a feed additive.

Table 2. Effect of raw SCW as feed additive on gas production profile.

Item Control 1% 10% 20% SEM p-Value

Total gas (mL/day) 52.9 c 56.0 ab 57.5 ab 58.7 a 1.26 <0.001
Total gas/DDM 1 (mL/g) 108.1 b 111.5 b 125.0 153.8 a 6.08 0.001

CH4 (%) 5.2 4.8 4.8 4.9 0.07 0.060
CO2 (%) 94.8 95.2 95.2 95.1 0.07 0.060

CH4/DDM (mL/g) 5.5 bc 5.3 bc 5.9 b 7.5 a 0.26 0.004
CH4 (mL/day) 2.7 2.7 2.8 2.9 0.07 0.150

CO2/DDM (mL/g) 102.5 bc 106.2 bc 119.0 b 146.3 a 5.83 0.001
CO2 (mL/day) 50.2 c 53.3 ab 54.8 ab 55.8 a 1.21 <0.001

1 DDM, Digestible dry matter. SEM: Standard error of the mean. a,b,c means in the same row with different
superscript differ significantly (p < 0.05).

Table 3. Effect of ensiled SCW as feed additive on gas production profile.

Item Control 1% 10% 20% SEM p-Value

Total gas (mL/day) 56.5 bc 54.5 c 61.7 ab 63.2 a 1.14 0.003
Total gas/DDM 1 (mL/g) 103.2 ab 97.3 b 112.1 ab 118.9 a 2.80 0.010

CH4 (%) 4.0 c 7.0 a 5.7 a–c 6.0 ab 0.35 0.005
CO2 (%) 96.0 a 93.0 bc 94.3 ab 94.0 bc 0.35 0.005

CH4/DDM (mL/g) 4.1 c 6.8 ab 6.4 a–c 7.2 a 0.40 0.011
CH4 (mL/day) 2.2 b 3.8 a 3.5 ab 3.8 a 0.21 0.009

CO2/DDM (mL/g) 99.1 ab 90.5 b 105.7 ab 111.1 a 2.65 0.010
CO2 (mL/day) 54.3 a–c 50.7 c 58.2 ab 59.4 a 1.06 0.002

1 DDM, Digestible dry matter. SEM: Standard error of the mean. a,b,c means in the same row with different
superscript differ significantly (p < 0.05).
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Table 4. Effect of raw SCW as feed additive on rumen fermentation characteristics.

Item Control 1% 10% 20% SEM p-Value

pH 6.7 6.7 6.7 6.7 0.006 0.090
IVDMD% 48.8 ab 50.3 a 47.2 a–c 42.9 c 1.21 0.008

Acetate (mM) 164.6 166.8 166.8 168.2 3.51 0.080
Propionate (mM) 53.9 b 55.4 ab 56.0 ab 56.4 a 1.54 0.020

Butyrate (mM) 20.0 20.5 20.4 20.6 0.58 0.300
TVFA 1 (mM) 238.6 b 242.7 ab 243.1 ab 245.1 a 4.45 0.040
Acetate (%) 69.0 68.8 68.6 68.6 0.67 0.210

Propionate (%) 22.6 22.7 23.0 23.0 0.46 0.110
Butyrate (%) 8.4 8.5 8.4 8.4 0.2 0.820

A:P 2 3.1 3.1 3.1 3.1 0.1 0.200
1 TVFA: total volatile fatty acids. 2 A/P: acetate/propionate. SEM: Standard error of the mean. a,b,c means in the
same row with different superscript differ significantly (p < 0.05).

Table 5. Effect of ensiled SCW as feed additive on rumen fermentation characteristics.

Item Control 1% 10% 20% SEM p-Value

pH 6.7 6.6 6.7 6.7 0.005 0.460
IVDMD% 54.7 56.0 55.3 53.8 0.84 0.850

Acetate (mM) 151.5 148.1 152.3 156.9 1.42 0.180
Propionate (mM) 66.0 64.7 63.7 67.7 1.28 0.750

Butyrate (mM) 25.2 ab 24.7 b 27.3 a 27.4 a 0.39 0.009
TVFA 1 (mM) 242.8 237.5 243.3 251.9 2.72 0.320
Acetate (%) 62.4 62.3 62.7 62.3 0.17 0.890

Propionate (%) 27.2 27.3 26.1 26.8 0.31 0.550
Butyrate (%) 10.4 10.4 11.7 10.9 0.16 0.150

A:P 2 2.3 2.3 2.4 2.3 0.03 0.600
1 TVFA: total volatile fatty acids. 2 A/P: acetate/propionate. SEM: Standard error of the mean. a,b means in the
same row with different superscript differ significantly (p < 0.05).

3.2. TRIAL. 2 and TRIAL. 3

The inclusion of both the raw and ensiled SCW resulted in decreases in CH4 pro-
duction and total gas production compared to the control group when they were used
as replacements for grass hay and concentrate (Tables 6 and 7). When hay was replaced
with SCW, there were significant reductions in total gas production (p < 0.001, 5.4–27.2%).
However, the reductions in CH4 production (mL/day) were more pronounced when the
concentrate was replaced by either raw or ensiled SCW, with reductions ranging from
6% to 59%, compared to the grass diet replacement groups, which showed reductions of
1.9–38% (Tables 6 and 7). The IVDMD was also significantly reduced by the inclusion of
SCW, with the hay replacement groups showing reductions of 3–27% (p < 0.001) and the
concentrate replacement groups showing reductions of 3.8–33.5% (p < 0.001, Tables 8 and 9).
However, the lower dosage of SCW as a concentrate replacement did not show signifi-
cant reductions in IVDMD in any groups (Table 9). The individual VFA production was
significantly reduced in all tested groups when raw SCW was used to replace both hay
and concentrate (p < 0.001, Tables 8 and 9), but there were no significant effects on VFA
production in some of the ensiled SCW groups (Tables 8 and 9). Additionally, butyrate
production was increased specifically when ensiled SCW was used to replace hay (Table 7).
In contrast, when SCW was used to replace the concentrate, all groups showed significant
reductions in butyrate production (Table 9). The acetate to propionate ratio (A:P) increased
in all groups when raw SCW used to replace hay, except for the 70:30 raw SCW group
(Table 8), while none of the ensiled SCW groups showed any significant effects. In contrast,
when the concentrate was replaced with SCW, most groups showed significant increases in
A:P ratio, except for the 70:30 ensiled group (Table 9).
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Table 6. Effect of SCW as replacing grass hay on gas production profile.

Item Control
Raw Silage

SEM p-Value
30:70 50:50 70:30 100 30:70 50:50 70:30 100

Total gas (mL/day) 53.9 a 50.4 b 47.4 c 46.1 c 39.2 d 50.9 b 51.0 bc 49.0 bc 44.9 d 0.52 <0.001
Total gas/DDM 1 (mL/g) 207.6 ab 211.9 bc 215.4 b–d 208.4 b–e 199.5 be–g 199.4 a–c 200.0 ab 201.2 bcef 188.9 g 1.39 <0.001

CH4 (%) 4.8 4.6 4.8 4.7 4.1 4.7 5.0 4.6 4.3 0.09 0.300
CO2 (%) 95.2 95.4 95.3 95.3 95.9 95.3 95.0 95.4 95.7 0.09 0.300

CH4/DDM (mL/g) 10.0 9.8 10.2 9.8 8.2 9.4 10.0 9.2 8.1 0.19 0.030
CH4 (mL/day) 2.6 a 2.3 a 2.2 a 2.2 a 1.6 b 2.4 a–c 2.6 ab 2.2 a–c 1.9 c 0.05 <0.001

CO2/DDM (mL/g) 197.6 ab 202.1 ab 205.2 a 198.6 ab 191.3 b 190.0 a–c 189.9 a–c 192.0 ab 180.8 c 1.33 <0.001
CO2 (mL/day) 51.3 a 48.1 b 45.2 c 43.9 c 37.6 d 48.5 b 48.5 bc 46.8 bc 43.0 d 0.49 <0.001

1 DDM: Digestible dry matter. SEM: Standard error of the mean. a,b,c,d,e,f,g means in the same row with different
superscript differ significantly (p < 0.05).

Table 7. Effect of SCW as replacing concentrate on gas production profile.

Item Control
Raw Silage

SEM p-Value
30:70 50:50 70:30 100 30:70 50:50 70:30 100

Total gas (mL/day) 48.2 a 45.7 bc 42.1 d 38.4 d 31.0 e 47.6 b 45.7 bc 41.1 d 36.6 d 0.65 <0.001
Total gas/DDM 1 (mL/g) 205.0 ab 201.7 bc 198.3 b–d 197.2 b–e 183.9 be–g 207.0 a 204.8 ab 194.2 bcef 180.1 g 1.54 0.004

CH4 (%) 4.8 a 4.4 a 4.2 a 3.9 b 3.1 c 4.6 ab 3.9 b 4.1 b 3.6 b 0.09 <0.001
CO2 (%) 95.2 a 95.6 a 95.8 a 96.1 b 96.9 b 95.4 b 96.2 ab 95.9 ab 96.4 a 0.09 <0.001

CH4/DDM (mL/g) 9.7 a 8.7 ab 8.2 bc 7.6 bc 5.7 d 9.3 ab 8.7 a–c 7.9 c 6.7 d 0.19 <0.001
CH4 (mL/day) 2.3 a 2.0 ab 1.8 bc 1.5 c 1.0 d 2.2 ab 2.0 b 1.7 c 1.3 d 0.05 <0.001

CO2/DDM (mL/g) 191.7 187.8 187.0 186.3 181.8 194.4 192.7 186.2 178.1 1.42 0.150
CO2 (mL/day) 45.9 a 43.6 a 40.3 b 36.9 c 30.1 d 45.4 ab 43.7 ab 39.4 c 35.2 d 0.61 <0.001

1 DDM: Digestible dry matter. SEM: Standard error of the mean. a,b,c,d,e,f,g means in the same row with different
superscript differ significantly (p < 0.05).

Table 8. Effect of SCW as replacing grass hay on rumen fermentation characteristics.

Item Control
Raw Silage

SEM p-Value
30:70 50:50 70:30 100 30:70 50:50 70:30 100

pH 6.6 b 6.6 ab 6.6 ab 6.6 ab 6.6 a 6.6 b 6.6 b 6.6 b 6.6 b 0.004 0.001
IVDMD% 58.1 a 52.6 b 48.3 c 48.1 c 42.3 d 56.4 ab 56.1 a–c 53.2 cd 51.6 d 0.570 <0.001

Acetate (mM) 37.2 a 35.7 b 34.2 c 33.8 c 31.5 d 36.5 a–c 36.2 ab 35.2 bc 34.2 d 0.680 <0.001
Propionate (mM) 14.0 a 13.0 b 12.1 c 11.6 c 10.4 d 13.6 ab 13.6 a–c 13.4 a–d 12.8 d 0.240 <0.001

Butyrate (mM) 6.0 a–e 6.0 a–e 5.8 de 5.9 a–e 5.8 e 6.0 a–d 6.2 ab 6.1 a–c 6.2 a 0.070 <0.001
TVFA 1 (mM) 57.1 a 54.6 b 52.0 c 51.4 c 47.7 d 55.8 a–c 56.0 ab 54.8 b–d 53.1 d 0.860 <0.001
Acetate (%) 64.8 d 65.0 b–d 65.4 a–c 65.5 ab 65.7 a 64.5 ab 64.3 ab 64.1 b 63.9 b 0.300 <0.001

Propionate (%) 24.4 a 23.7 ab 23.1 bc 22.6 c 21.9 d 24.3 a 24.3 a 24.5 24.2 0.110 <0.001
Butyrate (%) 10.9 d 11.3 c 11.4 b 11.9 b 12.4 a 11.2 bc 11.4 bc 11.5 ab 11.9 a 0.320 <0.001

A:P 2 2.7 d 2.7 cd 2.8 bc 2.9 b 3.0 a 2.7 2.7 2.6 2.7 0.020 <0.001

1 TVFA: total volatile fatty acids. 2 A/P: acetate/propionate. SEM: Standard error of the mean. a,b,c,d,e means in
the same row with different superscript differ significantly (p < 0.05).

Table 9. Effect of SCW as replacing concentrate on rumen fermentation characteristics.

Item Control
Raw Silage

SEM p-Value
30:70 50:50 70:30 100 30:70 50:50 70:30 100

pH 6.6 d 6.7 c 6.7 ab 6.7 ab 6.7 a 6.7 a–d 6.7 a–c 6.7 ab 6.7 a 0.01 <0.001
IVDMD% 53.5 a 51.2 a 47.2 b 43.2 c 35.6 d 51.5 ab 49.8 b 46.2 c 42.7 d 0.65 <0.001

Acetate (mM) 39.3 a 38.0 b 37.0 b 35.7 c 33.5 d 38.7 b 38.0 bc 37.2 cd 36.1 d 0.94 <0.001
Propionate (mM) 14.2 a 13.2 b 12.2 c 11.2 d 9.7 e 13.7 ab 13.1 bc 12.5 c 11.7 d 0.27 <0.001

Butyrate (mM) 3.7 a 3.4 b 3.1 bc 2.7 c 2.2 d 3.4 b 3.2 bc 2.9 cd 2.5 d 0.18 <0.001
TVFA 1 (mM) 57.2 a 54.6 b 52.2 c 49.6 d 45.4 e 55.8 ab 54.3 bc 52.6 c 50.3 d 1.13 <0.001
Acetate (%) 68.1 e 69.2 d 70.2 c 71.4 b 73.2 a 68.9 c 69.5 b 70.3 b 71.8 a 0.41 <0.001

Propionate (%) 25.0 a 24.3 a 23.5 b 22.6 c 21.4 d 24.7 ab 24.4 a–c 23.9 cd 23.2 d 0.16 <0.001
Butyrate (%) 6.8 a 6.8 ab 6.3 bc 6.0 cd 5.4 e 6.4 ab 6.2 bc 5.9 cd 5.6 d 0.36 <0.001

A:P 2 2.7 e 2.9 d 3.0 c 3.2 b 3.4 a 2.8 cd 2.9 bc 3.0 b 3.1 a 0.03 <0.001

1 TVFA: total volatile fatty acids. 2 A/P: acetate/propionate. SEM: Standard error of the mean. a,b,c,d,e means in
the same row with different superscript differ significantly (p < 0.05).
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4. Discussion
4.1. Nutritive Value

In the present study, the proximate analysis showed that SCW has high nutritive
value (NDF > 650 g/kg; ADF > 350 g/kg; CP > 120 g/kg). Previously, coffee grounds
have been shown to contain high protein, fat and fiber levels, meaning that it can be
considered as a feed source for ruminants [21]. Several studies have used coffee pulp and
husk as feed for ruminants [13,22]. Additionally, some previous studies have reported
that coffee residue contains high levels of organic compounds and is an appropriate
substrate for fermentation processes [11,13,14]. Although it was reported that SCW is
rich in fatty acids and phenolic compounds [23,24] and their significant role in altering
rumen fermentation, their concentrations were not evaluated in the current study due to a
shortage of material availability after completing the proximate analysis and the in vitro
trials. In the forthcoming research, evaluating the content of fatty acids and phenolic
compounds is strongly recommended to be considered for better understanding their mode
of action.

4.2. SCW as a Feed Additive at the 1%, 10%, 20% Levels of DM

In the present study, the addition of raw SCW resulted in increased gas production and
improved rumen fermentation parameters. The addition of raw SCW also led to increases
in total VFA production and propionate production, with no changes in acetate produc-
tion. These findings could be attributed to the presence of polyphenols and fatty acids in
SCW, which have been shown to exhibit anti-methanogenic effects in the rumen [25–27].
However, the decrease in IVDMD with higher dosages of raw SCW was consistent with
previous studies, which have indicated that plant secondary metabolites, including phe-
nolic compounds and fatty acids, can slow intake degradation while improving ruminant
production. These products can reduce the nutritive value of SCW at increased dosages but
they can also exhibit other beneficial rumen modulation effects, such as reduce protein and
starch degradation and inhibited amino acid degradation, via selective actions on certain
rumen microorganisms. Some in vivo studies have reported that these compounds can
improve live weight, milk production and ovulation rate in ruminants [27,28].

The addition of ensiled SCW resulted in increased gas production without any sig-
nificant effects on the IVDMD or rumen fermentation parameters. However, there were
increases in butyrate production with higher dosages of ensiled SCW. This could be at-
tributed to the presence of certain compounds in the silage, which can affect the diversity
of ruminal bacteria and the ability of certain bacterial taxa to degrade lignocellulosic ma-
terial, ultimately leading to increased butyrate concentrations [29,30]. The results from
both the raw and ensiled SCW groups were almost the same, but the addition of raw
SCW had stronger impact on rumen parameters. In addition, both raw and ensiled SCW
can be considered as good sources of energy and protein, as previously described by
Senevirathne et al. (2012) [31]. Therefore, they could potentially be used as prebiotic feed
additives to enhance the health status of animals.

4.3. SCW as a Feed Replacement

In the present study, significant reductions in CH4 production were observed in
almost all groups in TRAIL. 3. Previous studies have reported that coffee grounds contain
significant amounts of lipids, particularly palmitic acid (C16:0) and linoleic acid (C18:2),
which can contribute to reductions in CH4 production [23,32]. Dietary lipids, especially
medium-chain fatty acids (MCFAs) and long-chain unsaturated fatty acids (UFAs), have
been shown to decrease CH4 production in ruminants [27,33]. The addition of 1% fat,
the most common source MCFAs, can reduce CH4 production by 3.1% to 9.1% [34,35].
Similarly, McGinn et al. (2004) [36] found that the addition of sunflower oil decreased CH4
production by 22% per 5% of DM. The results of the present study confirmed that SCW,
with its high fat content (up to 140 g fat/kg DM), increased dietary fat concentrations by
1.8% and suppressed CH4 emissions by 12.9%.
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In our findings, the use of SCW to replace hay or concentrate in the diet of ruminants
resulted in significant decreases in IVDMD in almost all groups. High lipid contents in
ruminant diets have been shown to reduce DM, OM and fiber digestibility [33,37]. Previous
studies have also reported that spent coffee waste contains a maximum of 14.7 wt% oil
and high concentrations of tri- and monoglycerides (wt%), which can hinder feed particle
adhesion and reduce nutrient availability for ruminal bacteria [32]. Furthermore, the
decreases in total gas and VFA production could be attributed to the interference of glycerol
in SCW, which lead to slow feed particle adhesion and reduced degradability [33,38].

Contrary to expectations, the addition of SCW resulted in reduced VFA production and
increased pH compared to control, particularly in the concentrate replacement groups. This
finding contradicted the results of some previous studies that showed little or no impact
of spent coffee waste on ruminal pH or VFA production [14,31]. The reductions in VFA
production and increases in pH could be attributed to certain polyphenolic compounds,
such as tannins, lignans and caffeic acids, that are present in SCW. These compounds have
been shown to reduce total VFA concentrations and alter ruminal microbial diversity [13,25].
These reductions in total VFA could also be related to the structures of tannin carbohydrate
and protein compounds that cannot be degraded by rumen microbes or are toxic to ruminal
microbes [25]. The changes in the rumen microbial community caused by the SCW could
also have led to altered rumen fermentation.

In previous studies, researchers have explored the use of coffee grounds to silage
as a strategy to increase the nutritional value of animal diets and address environmental
concerns [11,13,14]. The ensiling process involves fermenting and preserving the cof-
fee grounds, which potentially enhancing their digestibility, nutrient profile and storage
time [11]. However, in the present study, no significant effects of ensiled SCW were ob-
served on rumen fermentation parameters. This suggested that ensiled SCW did not have
any notable impacts on rumen microbial activity, gas production or volatile fatty acid
production under the specific experimental conditions of this study.

Additionally, the use of SCW (raw or ensiled) as a replacement for hay or concentrate
led to significant decreases in IVDMD and total VFA production, mostly at higher dosages.
However, at lower dosages of ensiled SCW (specifically 70:30 and 50:50), there were no
significant reductions in some ruminal fermentation parameters. Thus, these dosages could
be feasible as a replacement for traditional animal feed.

5. Conclusions

The study suggests that SCW has potential as an alternative ruminant feed due to its
nutrient composition, reducing CH4 emissions and benefiting the environment. However,
high SCW doses may affect animal production, while lower doses could be viable. As a feed
additive, SCW improves ruminal parameters, making it a promising prebiotic. When used
as a feed replacement (70:30 and 50:50 ensilage groups), no significant effects on rumen
fermentation and digestibility were observed. Thus, it is advisable not to exceed these
dosages when replacing conventional feed. Further research is needed to assess SCW’s
impact and optimal usage methods, offering potential for sustainable feeding strategies,
optimizing animal health and enhancing environmental sustainability in agriculture.
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