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Abstract: The International Water Association’s (IWA) established Anaerobic Digestion Model No. 1
(ADM1) was created to serve as a backup for experimental findings regarding the actual anaerobic
digestion process. The previous model idea was adjusted and used to simulate an anaerobic digestion
process in this study. Testing procedures, such as benchmark tests and balance checks, were performed
in order to verify the accuracy of the implementation. These measures worked in tandem to ensure
that the model was implemented flawlessly and without inconsistencies. The primary objective
of this article is to construct a method that is based on the ADM1 for evaluating co-digestion and
predicting the performance of the digestion process or methane yield based on the analyzed substrates’
physicochemical properties. Additional equations and simulations have been added to the standard
model to create tools for evaluating the feasibility of anaerobic co-digestion. The study’s two most
intriguing aspects are the optimal mixture and parameter dependence. The adjusted ADM1 is
accurate in predicting the measured values of effluent COD, pH, methane, and produced biogas
flows with a reasonable degree of accuracy, according to the validation results. This research shows
how to use ADM1 in a wastewater treatment plant and other settings where anaerobic digestion is
of interest.

Keywords: Anaerobic Digestion Model No. 1 (ADM1); MATLAB simulation; anaerobic co-digestion;
sewage sludge; dairy waste

1. Introduction

Anaerobic digestion is a well-known biological treatment process that results in the
production of valuable methane gas through the degradation and stabilization of municipal
sewage sludge [1–3]. The need to reduce operating costs, as well as changing standards
for the use and disposal of sewage sludge, has sparked interest in more effective sewage
sludge treatment processes [4]. One method for increasing efficiency is to physically
divide the single-stage anaerobic digestion process into two process stages: a thermophilic
pre-treatment stage followed by a mesophilic main treatment stage [5].

The advancement of a different mathematical model for a variety of substrates has
resulted from the growing interest in anaerobic digestion modeling in recent years. The
Anaerobic Digestion Model 1 (ADM1) was published in the IWA’s Scientific and Technical
Report No. 9 and has since become the most relevant model developed for the simulation of
anaerobic treatment [6,7]. The ADM1 was designed in such a way that a standard parameter,
Chemical Oxygen Demand (COD), and the process configuration of a continuously stirred
tank reactor were used to determine the composition of various wastes [8].

Fermentation 2023, 9, 833. https://doi.org/10.3390/fermentation9090833 https://www.mdpi.com/journal/fermentation

https://doi.org/10.3390/fermentation9090833
https://doi.org/10.3390/fermentation9090833
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com
https://doi.org/10.3390/fermentation9090833
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com/article/10.3390/fermentation9090833?type=check_update&version=1


Fermentation 2023, 9, 833 2 of 20

The biochemical activities covered in the ADM1 are classified as composite disinte-
gration, substrate degradation mechanisms, hydrolysis of particulate COD, and particular
biomass growth and decay processes (see Figure 1). In complex particulate waste, carbohy-
drate, protein, and lipid particle substrates, as well as particulate and soluble inert material,
dissolve first. The disintegration step was largely implemented to facilitate the modeling of
activated sludge digestion. This allows for the lysis of biological sludge and complicated
organic matter, with the composites acting as a pre-lysis store for degrading biomass [9].
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Figure 1. Anaerobic digestion process—composites degrade to inerts and hydrolysis reactants
through a disintegrating step.

The enzymes degrade proteins, carbohydrates, and lipids into monosaccharides,
amino acids, long-chain fatty acids (LCFAs), and other molecules, which are subsequently
hydrolyzed into monosaccharides, amino acids, LCFAs, and other molecules, see Figure 1.
Monosaccharides and amino acids are absorbed and converted into VFAs and hydrogen
during the acidogenesis step [10,11]. Molecular hydrogen and acetate are produced via
anaerobic LCFA oxidation. In the acetogenesis stage, propionate, valerate, and butyrate are
decomposed to produce molecular hydrogen and acetate. Methane is produced via both
aceticlastic methanogenesis (the cleavage of acetate to methane) and hydrogenotrophic
methanogenesis (the reduction of carbon dioxide to methane) [10,12].

Similar to ADM1, Anaerobic Digestion Model No. 2 (ADM2) is an advanced mathemat-
ical model that describes the complex biochemical processes in anaerobic digesters, primar-
ily for treating organic materials and producing biogas, primarily containing methane [13].
ADM2 is a valuable tool for understanding and optimizing anaerobic digestion processes
and accommodates a wider range of substrates. It incorporates more microbial groups
and interactions and employs more detailed kinetic equations [14]. However, ADM2 is
more complex than its predecessor ADM1, which means it requires a larger number of
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parameters to be estimated. Parameter estimation can be challenging and time-consuming,
as obtaining accurate parameter values often requires extensive experimental data [14]. The
increased complexity of ADM2 compared to ADM1 can make simulations computationally
intensive, particularly for larger and more intricate systems. This can be a limitation when
trying to model real-time or large-scale processes [15]. The model represents microbial
growth and metabolic kinetics using mathematical equations [15]. However, microbial
activity can vary significantly due to factors such as pH, temperature, and changes in
substrate composition, making it more complicated to modify to suit a specific application,
such as co-digestion; hence, ADM1 was used for this study [14,16,17].

ADM1 has its own disadvantages, including parameter uncertainty, model calibration
and validation, sensitivity to initial conditions, limited representation of microbial diversity,
inadequate handling of process dynamics, incomplete kinetics, and lack of specificity
for different feedstocks [18]. Complexity in ADM1 involves numerous equations and
parameters, making it challenging to parameterize, calibrate, and use effectively. Parameter
uncertainty can lead to significant uncertainties in model predictions, and model calibration
and validation require high-quality experimental data [19]. Sensitivity to initial conditions
and parameter values can also limit the model’s reliability and applicability. It often has a
limited representation of microbial diversity, inadequate handling of process dynamics, and
inability to incorporate external factors that can limit the model’s accuracy in predicting
metabolic activities [20]. Researchers continuously work on refining ADM1 and developing
more advanced models to better capture the complexity of anaerobic digestion processes
while considering diverse operational and environmental conditions.

The Modified ADM1 Model is an adaptation of the original ADM1 model to address
the anaerobic co-digestion of sewage sludge for methane production [21]. The Modified
ADM1 Model includes core components of the original ADM1, including biochemical reac-
tions, microbial populations, and parameters describing substrate degradation, biomass
growth, and biogas production [22]. The model incorporates the specific characteristics
and composition of sewage sludge and other co-substrates used in the co-digestion pro-
cess, including organic matter content, nutrient composition, and inhibitory substances
that might affect the digestion process. It accounts for the interactions between different
microbial groups involved in the co-digestion process, such as breaking down complex
organic compounds into simpler compounds and producing methane [23,24].

Kinetic parameters in the Modified ADM1 Model are adjusted to reflect the specific
behavior of microorganisms in the co-digestion process, such as determining the rate at
which different substrates are degraded and converted into biogas [25]. The model also
accounts for inhibition effects, such as heavy metals or toxic compounds, if present in the
sewage sludge or co-substrates [26]. The Modified ADM1 Model can be used to predict
the performance of the anaerobic co-digestion process, estimating the amount of biogas
(methane) produced, the rate of digestion, and the dynamics of microbial populations over
time. It can also be utilized for process optimization, allowing operators and researchers
to explore different scenarios to enhance biogas production efficiency and overall process
performance [27,28].

The Modified ADM1 Model applied to the anaerobic co-digestion of sewage sludge
for methane production serves as a valuable tool for understanding and optimizing the
complex interactions and processes involved in waste-to-energy technology. The modified
ADM1 model accounts for the co-digestion of sewage sludge with organic substrates, in-
troducing greater complexity and complexity [29]. This model can simulate interactions
between different substrates and their impact on methane production. The model’s incor-
poration of multiple substrates improves prediction accuracy, process optimization, and
biogas composition. It also predicts changes in biogas composition due to co-digestion,
which is crucial for energy generation quality [30]. The model is flexible for research and
design, allowing researchers and engineers to explore different scenarios and substrates
without trial-and-error experimentation. It also allows for environmental and economic
impact assessment, helping decision-makers understand the potential benefits of anaerobic
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co-digestion compared to traditional single-substrate digestion. The modified ADM1 model
can be adapted to accommodate advancements in anaerobic digestion technologies and the
inclusion of new substrates, making it a versatile tool for long-term planning [31].

The study focuses on defining the biodegradation kinetics of anaerobic digestion
using the ADM1 simulation approach. This mathematical framework describes biological,
chemical, and physical processes during anaerobic digestion, considering parameters
like substrate composition, reaction kinetics, and microbial interactions. The primary
objective is to estimate the performance of anaerobic digestion, predicting outcomes like
methane production, biogas composition, and substrate degradation rates. The study
focuses on sewage sludge, a by-product of wastewater treatment, and aims to define the
biodegradation kinetics of sewage sludge during anaerobic digestion. Parameterization
and calibration are crucial for accurate simulation and performance estimation. The results
could have implications for wastewater treatment plants and anaerobic digestion facilities,
influencing process optimization, reactor design, substrate selection, and overall efficiency
improvement. Biogas production and energy generation are also potential benefits, as
methane-rich biogas is a main by-product of anaerobic digestion. The study contributes
to the field of anaerobic digestion by refining our understanding of the biodegradation
kinetics of sewage sludge and advancing our knowledge of organic compounds degrading
in anaerobic conditions.

2. Materials and Methods
2.1. Substrate and Inoculum

The sewage sludge was collected at random from municipal WWTWs in Gauteng
Province, South Africa, over six months. The manure was collected from the Cavalier
abattoir in Pretoria, Gauteng, South Africa. The sampling points were carefully selected, as
they are representative of the entire flow’s cross-section, resulting in a well-mixed sample.
A grab sampling technique from anaerobic digestion influent streams was used as the
standard sampling method. Prior to analysis, the samples were kept in a cold room inside
a 4 ◦C laboratory fridge. On the AD feedstock, samples were set aside for metagenomics
analysis and physicochemical tests.

2.2. Batch and Semi-Continuous Tests

The collected substrates were tested in batches to obtain the kinetic constants and as-
sess their mechanism. Since the substrates were gathered over a lengthy span of time, batch
studies were also used to verify the activity fluctuation of the substrates. More information
on the batch and semi-continuous study arrangement can be found in Mudzanani et al. [4].

2.3. Analytical Method

The VS, TS (VSS, TSS), TA, TKN, and concentrations of N—NH3, N—NO2, and N—
NO3 were determined using Standard Methods (APHA, 2012); COD was determined using
Cell Tests on samples centrifuged (10 min at 4000 rpm) and filtered at 0.45 µm (MERCK-
referring to EPA 410.4 method). Based on the total COD of the sewage sludge, organic
matter was fractionated into 40% inert particulate COD, 30% hydrolysis products, and 30%
particulate degradable COD. These were further divided into 9% amino acids, 6% sugars,
13.5% LCFA, and 1.5% inert soluble COD [20]. The inputs that were applied to the different
factors of the constructed model are listed in Table 1.
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Table 1. Measured parameters as inputs for ADM1.

Component Description Min Max Average

Flow (m3/day) Influent Flow 165 170 167.5
pH 5.1 7 6.05

Temperature (◦C) 31 37 34
TCOD (mg/L) Total COD 7940 10,500 9220
SCOD (mg/L) Soluble COD 5342 8500 6921
PCOD (mg/L) Particulate COD 2598 1000 1799

TSS (mg/L) Total Suspended Solids 603.44 750.03 676.735
VSS (mg/L) Volatile Suspended Solids 573.268 609.23 591.249

VFA (meq/L) Volatile Fatty Acids 721.3 821.56 771.43
Total Alkalinity as CaCO3 584 589 586.5

TOC Total Organic Carbon 25 31 28
TKN (mg N/L) Total Kjeldahl Nitrogen 925 946.3 935.65

NH4-N (mg N/L) Ammonium Nitrogen 127 129 128
NO2-N (mg N/L) Nitrate 54 54.3 54.15
NO3-N (mg N/L) Nitrite 190 197 193.5
Total-P (mg P/L) Total Phosphorus 3.69 6 4.845
PO4-P (mg P/L) Orthophosphates 0.1 0.12 0.11

Ca (mg/L) Calcium 5.4 5.4 5.4
Mg (mg/L) Magnesium 0.87 0.87 0.87
SO4 (mg/L) Sulphates 0.32 0.45 0.385

CH4 content (%) Methane % 65 71 68
CO2 content (%) Carbon dioxide 31 32 31.5

2.4. Mathematical Model Development

Mathematically, ADM1 is described as a non-linear structured ODE model that de-
picts the anaerobic digestion reaction in a CSTR by incorporating several biological and
physicochemical phenomena [32]. In this process, biodegradable organic compounds are
transformed into carbon dioxide and methane with a trace of inert by-products. The key bio-
chemical processes studied start with the disintegration stage, followed by the hydrolysis
step, acidogenesis, and acetogenesis until methanogenesis, refer back to Figure 1.

2.4.1. Model Structure Philosophy

International collaboration on anaerobic process technology developed the ADM1
model, aiming to overcome the limitations of previous models due to their specialized
nature. This ADM1 generally has biochemical and physical mechanisms that are widely
accepted, similar to those applied in Alzheimer’s research [33]. The Petersen matrix, which
describes stoichiometric conversions and kinetic rates, has the same format. ADM1’s
general framework allows for uniform representation of precipitation, complexation, and
adsorption models. To introduce the basic methodology of modeling conceptualized ADM1,
a simple representation of the soluble component, I (Si), particulates (Xi), and gas compo-
nent (SGAS) is presented. The model was built by first defining the various reactions that
will be considered. As shown in Figure 2, substrates are taken up by cells in a particulates-
containing liquid influent stream [7]. The AD reaction takes place, converting the substrate
to products (gas phase) and various biomass constituents (liquid and particulates phase).
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Figure 2. Mass balance boundary around CSTR in the anaerobic digestion system, adapted from
Batstone et al. [7].

Mass balance equations govern the particulate and soluble component concentrations
in the liquid phase. According to Batstone et al. [7], a description of each component is
required to implement the model and complete mass balances for all model components.
As a result, ADM1 grouped these particulates into a state variable termed composite
particulates (Xc) [33]. Carbohydrates (XCh), lipids (XL), proteins (Xpr), soluble inerts (S1),
and particulate inerts (XI) are also defined as disintegration particulates, as shown in
Figure 2.

Provided that one COD mass unit of XC disintegrates, the following results will
be obtained:

fSI XC SI + fXI XCXI + fch XCXch + fpr XCXpr + fli XCXli
= 0.1SI + 0.25XI + 0.2Xch + 0.2Xpr + 0.25Xli

(1)

The COD balance matters as much as the sum of all fi;xc = 1. However, it is proposed
that the nitrogen concentration of XC (Nxc) be 0.002 kmol N/kg COD. Instead, the nitro-
gen concentration is 0.0021(kmol N) based on the disintegration output and parameter
values from Batstone et al. [7]. Thus, it indicates that 0.1 mole of nitrogen is produced for
every kilogram of COD that degrades, 5% more than the original. Although the “default”
parameter values should automatically close the mass balances, the nitrogen content and
production from composites are likely to vary and may need to be adjusted for each specific
case study [8].

2.4.2. Mathematical Equations

For each component considered in the liquid phase and particulates, the mass balance
equations can be written in the general form of Equations (2) and (3).

d
dt

(
Sliq,i

)
=

Q
Vliq

(
Sin,i − Sliq,i

)
+ ∑19

j=1 ρjvi,j (2)

d
dt

(
Xliq,i

)
=

Q
Vliq

(
Xin,i − Xliq,i

)
+ ∑11

j=1 ρjvi,j (3)

where Sliq,i = Soluble state variables no. 1 to 12, 25, and 26; Xliq,i = particulate state
variables no. 13–24; Q = influent or feed volumetric flow, equal to outflow (assuming
no accumulation); Vliq = volume of the digester; Sin,i = soluble component concentration,
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influent stream; Xin,i = concentration of influent stream, particulate components; ρj =
specific kinetic rates, calculated as:

ρj = Km

(
S

Ks + S

)
X (4)

where KM = Monod kinetic rate; KS = substrate concentration.

Gas Calculations

The rate equations for the gas phase are quite similar to the rate equations for the
liquid phase. In ADM1, mass balance for the gas phase components considers methane,
hydrogen, and carbon dioxide, with the assumption of no heat transfer in the influent
flow. Anaerobic digestion system has continuous gas volume; thus, Equations (5) and (6)
represent the remaining three state variables, 27 to 29.

d
dt
(
Sgas,i

)
=

qgas

Vgas

(
Sgas,i

)
+

Vliq

Vgas
ρT,i (5)

where Sgas,i = gas phase variables no. 27–29; qgas = total gas outflow; Vgas = volume of gas
occupying the digester headspace; ρT,i = specific mass transfer rate of gas.

ρT,i = KLa

(
KHSgas,i − Sliq.i

)
(6)

where kLa = mass transfer coefficient in gas–liquid volume; KH = Henry’s law coefficient.
The gas law can be used to calculate the pressure of each gas, with all gases being

interpreted as an ideal gas at the equivalent temperature with the liquid phase components.
As a result, each gas component’s partial pressure is governed by the ideal gas law, as shown
in Equations (7)–(9). The denominators 16 and 24 are COD equivalents for unit conversion.

Pgas,H2 = Sgas,H2 ·
RTgas

16
(7)

Pgas,CH4 = Sgas,CH4 ·
RTgas

64
(8)

Pgas,CO2 = Sgas,CO2 (9)

Assuming that water vapor has saturated the reactor headspace.
Too often, the headspace is saturated with water vapor; therefore, the maximum

headspace pressure is determined by the water vapor (Pgas) along with CH4, CO2, and
H2. Thus, its partial pressure (Pgas, H2O) needs to be subtracted from Pgas. Hence, the gas
production rate, qgas, can be calculated using Equation (10).

qgas =
R·T

Pgas − Pgas,H2O
Vliq

(ρT,H2

16
+

ρT,CH4

64
+ ρCO2

)
(10)

Equation (11) is used to modify the benchmark water vapor pressure at 25 ◦C to the ap-
parent temperature because water vapor pressure is significantly reliant on temperature (T).

Pgas,H2O = 0.0313 · e(5290( 1
298 )+

1
T ) (11)

pH Calculations

H+ ion calculations are performed using the “pH solver” found in Rosén and Jeps-
son [34]; this is because Batstone et al. [7] are not particularly precise on how to compute
pH for the DE-implementation. As recommended by Rosén et al. [34], acid concentrations
were determined by summing up the number of acid-base pairs and the negative concen-
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trations of base in an acid-base pair. The differential equation for determining the amount
of negatively charged particles in an acid-base pair is shown in Equation (12). According to
Rosén et al. [34], the pH inhibitory impact is also considered (see Table 2).

dSacid,i

dt
= −KA,B ;i(Sacid−,i(Kaacid + SH+)−KaacidSacid,total) (12)

where Sacid-,i = negatively charged acid pair; acid number I, ion number i; Ka,i = acid-base
equilibrium coefficient for acid i; kA;B;i = acid-base reaction kinetic parameter for acid i;
SH

+ = concentration of H+ ions; Sacid,total = acid-base pair sum; Ka,acid = acid-base equilib-
rium co-efficient.

Table 2. Inhibition factors and equations summarized.

Type of Inhibition Description Equation Affected Process

pH Inhibition

pH inhibition at both
low & high pH IpH = 1 + 2 × 100.5(pHLL−pHUL )

1 + 10(pH−pHUL ) + 10(pHLL−pH)

All substrate uptake
pH inhibition at low

pH only

IpH = exp
(
−3
(

pH−pHUL
pHUL−pHLL

)2
)
|pH<pHLL

IpH = 1 |pH>pHLL

Competitive Inhibition Valerate & Butyrate
competes for C4 I1 = 1

1 + S1/S Butyrate, valerate, C4 uptake

Non-competitive
Inhibition

Hydrogen and free
ammonia inhibition Ih2 = 1

1 + Sh2/KI,h2
INh3 = 1

1 + SNh3/KI,Nh3

LCFA, Acetate, Butyrate,
valerate, propionate uptake

Secondary substrate Inhibition due to limited
inorganic nitrogen IIN,lim = 1

1 + KS,IN /SIN
All substrate uptake

Inhibition

Toxicity and inhibition may have an impact on the degradation process. The incremen-
tal loss effect noticed on the kinetic rates can be explained by using the applicable inhibition
factors (I1, I2, . . ., In) in conjunction with the specific kinetic rates stated in Equation (4).
The model’s inhibition factors are the result of combining one or more of the inhibition
equations listed in Table 2. Even though the default version of ADM1 only includes four
types of inhibition, it is thought to be sufficient for treating common substrates.

2.4.3. Model Assumptions

A simplified model based on the scientific and mathematic fundamentals of mass
balance was constructed in this work. For the anaerobic treatment unit’s kinetic model,
assumptions were made with caution, and system observations were reported for mass
balance calculations around the digester. The first assumption was that sewage sludge from
municipal wastewater treatment comprises organic matter in a soluble state and thus does
not comprise organic and inorganic suspended particles. The digester is entirely homoge-
nized, and the wastewater is heated to 37 ± 2 ◦C, with consistent substrate concentration
throughout the experiment [24,34].

Only acidogenic microbes are thought to be present in the hydrolysis process, whereas
both methanogenic and acidogenic microorganisms are present in the remaining AD
reactions [7]. Acidogenic bacteria decompose dissolved organic material to volatile fatty
acids and CO2 during hydrolysis. Volatile fatty acids (VFA) are transformed into acetic
acid, hydrogen, and carbon dioxide in the second stage, which are the key substrates for
methanogenesis, resulting in CH4. The hydrolysis process is primarily responsible for the
formation of VFA from sugar monomers. However, it is anticipated that unhydrolyzed
glucose is transformed into VFA and methane in the anaerobic digester at the same time [7].

In this study, the microbiology of anaerobic digestion focuses on the entire conversion
of organic matter to methane by primarily two bacteria populations. Acetogenic and
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methanogenic microorganisms are inhibited by unionized acetic acid, which results in
methane generation. As a result of the high VFA concentration expressed as HAc, unionized
acetic acid (HAc) inhibits the hydrolysis process. Above 200 g N m3, the major source of
nitrogen, ammonium (NH4), also has an inhibitory effect. Because the average influent
NH4–N concentration was measured to be 11.9 g Nm−3, there should be no ammonium
inhibition [34].

Because of the high ion concentration and rising temperature in the digester, it is
safe to infer that CH4 solubility is nearly nil. The pollutant level of wastewater was
measured in terms of glucose, VFA, and volatile organic compounds (VOCs). The total COD
concentration in the influent was subtracted from the VFA, which is a measured system
variable equivalent to COD (1 g HAc l−1), and the residual COD in the wastewater was
converted to glucose equivalent using the formula (1 g glucose equivalent to 1.066 g COD).

2.5. Sensitivity Analysis

The model is comprised of a complex set of variables and parameters. It is critical
to understand how parameters affect the reliability of results when applying simulation
results to real-world implementation in a real plant. The topic that is frequently raised is
whether any parameters define the space in which calculations are performed that have a
bigger impact on findings than others. If this is the case, studying certain parameters to
choose them appropriately is more significant than studying parameters that do not have
the same impact on results.

Generated methane gas was selected as an important model result outcome to investi-
gate the model’s parameter dependence. The effect of methane production was studied by
keeping all parameters constant and gradually increasing them one percent at a time. The
definition of the derivative can be used to investigate parameter dependency from those
recorded effects in gas production; the parameter is denoted by x in Equation (13).

dF
dx

=
f(x + ∆h)− f(x)

∆h
(13)

However, to make calculations simple and feasible, Equation (13) is converted to
Equation (14) instead of utilizing the usual derivative definition:

dF
dx

=
F(1.01x)− F(x)

0.01
(14)

Using this method for measuring sensitivity (using ×1.01 instead of ∆h), the design
for parameter dependence can be thought of as a simplified Jacobian matrix comprising
numerically calculated gas production partial derivatives as a function of each parameter
studied. This can be written for the parameters p1, p2, . . .. . ., pn as:

J =

[
∂qgas,CH4

∂P1
,

∂qgas,CH4

∂P2
. . . . . .

∂qgas,CH4

∂P1

]
(15)

While this is a straightforward and easily justified method of determining variable re-
liance, there can be complexities when comparing different parameter dependents. Because
the denominator of the derivative definition is dimensionally dependent, all sensitivities
have different components, making comparisons of various parameters impractical. A
similar approach is used in the definition, but only the numerator is used. Finite difference
is a term used to describe this procedure, and it has the following equation:

Change in gas production = |f(1.01·x)− f(x)| (16)

The parameters examined will influence the outcome of methane gas generation using
this method. An important feature of this numerical approach to determining parameter
dependency is that it is only valid in a single parameter space position; altering any of
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the parameters renders the result invalid and needs a new analysis. This holds true even
if the input variables specifying how the model works are modified. These will have
an effect on the parameter space in which the calculations are performed. As a result,
comparing the outcomes of dependent simulations for different sections of the parameter
space is intriguing.

If a parameter dependency evaluation is carried out prior to the enhancement of biogas
production, the dependence evaluation must be carried out after the optimization to see if
any changes in parameter dependency have occurred. The parameter sensitivity changes
when the input variables are modified dynamically. Sensitivity was calculated to determine
how much a change in input variables affects outflow, and methods for changing input
variables dynamically were developed, the process is detailed in Figure 3.
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Sensitivity Analysis and Variable Dependence of Parameters

Calculated parameter dependence, as previously stated, is valid in a single section of
parameter space only. Nevertheless, there are sporadic inflows that change over time. The
fluxes entering the digester influence the point in parameter space where computations are
conducted. To establish the effects on system sensitivity, multiple analyses, one for each
location investigated, are necessary. By gradually changing the inflow while computing
the sensitivity of significant parameters, the generalized reliance of sensitivity connected to
one variable is investigated. This type of simulation is thus performed using the following
method where p is the parameter value, v is the variable value, and f(v,p) is the quantity of
CH4 gas created as a function of v and p (measured in m3/d) [35].

3. Results and Discussion

A series of simulation tests were performed to evaluate the model implementations
offered in this study. These tests include (1) steady-state simulations for comparing transient
behavior in detail, (2) two variable simulations for comparing total simulation times, and
(3) dynamic simulations for comparing overall simulation times [35,36]. The ODE model is
a differential equation model that was used in this work. The simulations were performed
on a modern PC with Windows 10 and MATLAB/Simulink R2020a Version 9.8. It is
necessary to be familiar with the systems on which the created methods are meant to
be used in order to use them. This requires some lab analysis as well as conversion to
conventional ADM1 units, which are not always the same as those employed in lab-scale
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investigations. As a result, the model can be used to assess and test the compatibility of
different raw materials for digestion methods.

A simplified kinetic model based on unstable material balances was used to predict
mass balance, VFA, and COD equivalent glucose concentration in a hydrolysis tank, as
well as mass balance, VFA, and gas output in a lab-scale anaerobic digester. The algorithm
of the kinetic model simulated factors other than COD in the anaerobic tank. Because the
internal states of anaerobic digestion cannot be measured using ordinary measurement
equipment, the data needed to train and evaluate the pattern recognition systems under
review must be generated synthetically. As a result, in order to create the synthetic dataset,
a full-scale biogas plant simulation model data is created, and a simulation model is created
and calibrated for this biogas plant. Anaerobic digestion modeling using the complex
ADM1 has proven to be an effective all-around technique. The ADM1 is often implemented
as a non-linear differential equation system [37].

The model that has been implemented can be utilized as a stand-alone model for
evaluating a specific system or as the foundation for future applications. This article’s
framework is meant to be simple to understand and adaptable to new applications. As
closely as possible, it follows Rosen and Jeppsson’s [36] proposed implementation. Running
the model with typical values that lead to steady-state solutions, we obtained the plots in
Figures 4–8. Compiling the result to obtain more information from the data gave the plots
shown in Figures 9 and 10 for the produced gas and pH, respectively. Gas production is
shown as gas flow in Figure 11.
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3.1. ADM1 Simulation Using Measure Parameters

Figures 4–8 illustrate the models of the six output predictions when multiple inde-
pendent variables were utilized. This result represents the uncalibrated model. With the
exception of ammonia (SIN), graphic inspection showed that all simulated outputs closely
tracked the pattern of the industrial plant measurements. Because inconsistent responses
were reported across various geographical locations and different timescales, the antici-
pated ammonia trend is considered irregular [38]. This observation could be attributed
to the use of ADM1 on an influent with a highly fluctuating substrate composition. Be-
cause particulate COD concentration is translated into ADM1 state variables that represent
proteins, carbohydrates, and lipids using a constant compositional ratio, disagreement is
inherent when the substrate’s composition ratio varies [38]. In actuality, as in this instance,
the substrate composition can be changed dynamically.

The effect of VSS concentration was greatly understated. Given the projection’s close
similarity in trend, the lack of correlation is most likely owing to inconsistent kinetic
parameters relating to organic particle biodegradation, such as biomass decay, hydrolysis,
or biomass growth [39]. As a result, sensitivity analysis, calibration, and cross-validation
are likely to improve on these discrepancies. Despite the fact that some parameters were
uncalibrated, the pH, methane gas flow (qCH4), and VFA fit well. A good pH match is
expected since Parra-Orobio et al. [40] pointed out that pH in a well-buffered digester will
remain stable. Because the digester has a long hydraulic retention time ((HRT) of ±2 days),
the majority of the alkalinity created during methane production is maintained.

A stable alkalinity buffer is also ensured by the predominantly alkaline substrate. A
stoichiometric process converts the three components, i.e., carbon dioxide, acetate, and
hydrogen, to methane. As a result, the production rate is proportional to the concentration
range of these constituents, which are determined by the kinetics and composition of the
influent. To put it another way, COD fractionation into ADM1 system parameters that are
calibrated, along with state variables, have a big influence. Because, irrespective of how
COD is partitioned, when no inhibition is present, all biodegradability COD will play an
active role in methanogenesis activities unrestrictedly, it is possible to derive a relatively
accurate estimate of methane gas generation even with uncalibrated parameters. Although
the trend was similar, the simulated carbon dioxide flow (qCO2) was continuously higher
than the plant data. This is similar to the results obtained by Danielsson [38], in which
it was explained that it could be owing to a pH prediction that is lower than the real pH
and/or an overestimation of inorganic carbon (SIC).
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pH is the output that was most precisely modeled. Across a wide range of periods of
time and all approaches, including the uncalibrated model, it produced modest residuals.
As seen in Figure 10, the used method overstated pH forecasts. Because pH is linked
to soluble carbon dioxide concentration, in the model created by the approach, reduced
carbon dioxide production explains why pH is higher [40]. The breakdown of monosaccha-
rides, amino acids, and propionate produces carbon dioxide. Nevertheless, as previously
stated, the settings were adjusted so that monosaccharide and amino acid metabolism was
considerably slowed. The resulting amount of carbon dioxide and propionate produced
was lowered [41].

3.2. Model Calibration and Validation
Sensitivity Analysis Results

When the model was applied to an existing plant, the sensitivity analysis revealed
which components were critical in an actual scenario. The technique advises on which
factors are crucial to appropriately select based on their impact on the ultimate result.
The sensitivity analysis was carried out using the finite difference approach. The more
mathematically rational technique of determining the derivative requires dimensionless
units, and because the model was established with dimensional qualities, working with
dimensions is easier; hence, the method is dimensional dependent.

The results were produced by modifying each parameter 1% at a time and then
calculating the impact on methane gas generation with the newly obtained parameter set.
A bar graph was constructed to visualize the data, as shown in Figure 12. If any of the
standard parameter set’s parameters were comparable to zero, they were retained at 0
during comparison, showing no observable change. Large bars for measured sensitivity
were associated with key implementation factors. When the model was applied to a real-
world event, those factors became much more important to define precisely [38]. Figure 12
depicts that most parameters are thought to be relevant and that proper measurements
of each parameter should be applied in real wastewater plant runs. When working with
small volumes, sensitivity is frequently high [37,42]. Low concentrations and quantities
were used in this study; hence, the sensitivity was very high. This is expected to decrease
when applied to a larger scale, i.e., 2500 m3 WWT plant.
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The time required to perform a sensitivity analysis depends on the number of parame-
ters explored, but it usually takes roughly three seconds to evaluate each parameter and
three seconds to evaluate the reference. So, the time consumption may be calculated using
basic math. The Monte Carlo approach was used to produce a random set of parameters
for the evaluation of the model specifications [43,44]. This collection had 500 random
parameter pairings. The parameters were set to their default values in order to simulate
an IWA-recommended medium-temperature, high-rate reactor. Figure 13 depicts a graph
depicting standardized regression, partial correlations, and correlations based on the results
obtained for the evaluation of sensitivity analysis.

Fermentation 2023, 9, x FOR PEER REVIEW 17 of 20 
 

 

basic math. The Monte Carlo approach was used to produce a random set of parameters 
for the evaluation of the model specifications [43–44]. This collection had 500 random pa-
rameter pairings. The parameters were set to their default values in order to simulate an 
IWA-recommended medium-temperature, high-rate reactor. Figure 13 depicts a graph de-
picting standardized regression, partial correlations, and correlations based on the results 
obtained for the evaluation of sensitivity analysis. 

 
Figure 13. Change sensitivity for KS, IN, and Ki, nh3 as a function of SIN. 

The sensitivity analysis performed is only valid in a subset of the parameter space. 
The approach for evaluating this produced data is what occurs if the directional move-
ment owing to variations is inflow, as shown it was shown previously by Zhao et al. [45] 
and Li et al. [46]. This method alters one or more variables while plotting the sensitivity 
of one or more parameters [47]. Figure 13 shows how the sensitivity of two parameters 
changes as the amount of inorganic nitrogen in the input changes. To conduct this analy-
sis, the particulate intake was altered from Rosen and Jeppsson’s [34] variable C to no 
particle component input except Xxc, which was changed to 2.0 kg COD m−3. 

4. Conclusions 
The Modified Anaerobic Digestion Model No. 1 (ADM1) is a promising approach for 

anaerobic co-digestion of sewage sludge for methane production. This model provides a 
comprehensive understanding of the complex biochemical processes involved in co-di-
gestion systems, enabling more informed decision-making, optimization of operational 
parameters, and prediction of process outcomes. It offers several key advantages in anaer-
obic co-digestion, such as: 
• Simulating the interactions between substrates, microbial communities, and environ-

mental factors.  
• The model accurately represents the dynamics of acidogenesis, acetogenesis, and 

methanogenesis stages, identifying potential bottlenecks and opportunities for en-
hancing methane production efficiency. 

Se
ns

iti
vi

ty
Se

ns
iti

vi
ty

Figure 13. Change sensitivity for KS, IN, and Ki, nh3 as a function of SIN.

The sensitivity analysis performed is only valid in a subset of the parameter space.
The approach for evaluating this produced data is what occurs if the directional movement
owing to variations is inflow, as shown it was shown previously by Zhao et al. [45] and
Li et al. [46]. This method alters one or more variables while plotting the sensitivity of one
or more parameters [47]. Figure 13 shows how the sensitivity of two parameters changes
as the amount of inorganic nitrogen in the input changes. To conduct this analysis, the
particulate intake was altered from Rosen and Jeppsson’s [34] variable C to no particle
component input except Xxc, which was changed to 2.0 kg COD m−3.

4. Conclusions

The Modified Anaerobic Digestion Model No. 1 (ADM1) is a promising approach
for anaerobic co-digestion of sewage sludge for methane production. This model pro-
vides a comprehensive understanding of the complex biochemical processes involved in
co-digestion systems, enabling more informed decision-making, optimization of opera-
tional parameters, and prediction of process outcomes. It offers several key advantages in
anaerobic co-digestion, such as:

• Simulating the interactions between substrates, microbial communities, and environ-
mental factors.

• The model accurately represents the dynamics of acidogenesis, acetogenesis, and
methanogenesis stages, identifying potential bottlenecks and opportunities for en-
hancing methane production efficiency.
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• It contributes to a deeper understanding of factors influencing digester performance,
such as pH, temperature, organic loading rate, and substrate composition. This un-
derstanding enables operators to fine-tune operating conditions for optimal methane
yield and digester stability.

• The model can facilitate the assessment of the feasibility and economic viability of
anaerobic co-digestion projects, guiding investments and resource allocation.

• However, challenges remain in accurate calibration and validation for specific co-
digestion systems due to the complexity of microbial interactions and parameter
estimation. Further research is needed to refine and expand the model’s applicability
to various waste streams and co-substrate combinations.
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