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Abstract: A randomized, double-blind, placebo-controlled trial was designed to assess the efficacy
of the parabiotic Bifidobacterium breve IDCC 4401, named BBR 4401, for lowering cholesterol levels.
The 66 subjects (per protocol set, n = 60) with low-density lipoprotein-cholesterol (LDL-C) levels
between 100 mg/dL and 150 mg/dL were enrolled after a 4-week run-in period (e.g., no probiotics,
low cholesterol diet and no food affecting lipid profiles). The two groups were prescribed 1 × 1010

(low-dose) and 1 × 1011 CFU (high-dose), whereas the placebo group was prescribed 97% (w/w) of
maltodextrin for 4 weeks. The compliance rates exceeded 97% in the subjects who completed the
study. Comparison of the mean changes from baseline between the placebo group and test groups
after the 12 weeks of BBR 4401 consumption showed a statistically significant reduction in LDL-C
(up to −10.8%, p-value = 0.008) and apolipoproteinB (up to −8.1%, p-value = 0.008). Meanwhile,
there were no clinically significant changes in vital signs, clinical pathology tests or electrocardio-
grams and no significant adverse events were reported during the study period. Concerning bowel
habits, the consumption of BBR 4401 alleviated defecation strain, distension and watery feces in
the high-dose group. Thus, BBR 4401 may be a safe and functional food for adults with moderate
hypercholesterolemia.

Keywords: Bifidobacterium breve; probiotics; parabiotics; cholesterol; bile acid; hypercholesterolemia

1. Introduction

Cholesterol is a ubiquitous component of the body and its main function is to regulate
membrane integrity, fluidity and microstructure. It also plays an important role as a precur-
sor of steroid hormones, bile acids and vitamin D [1,2]. Although cholesterol deficiency,
called “hypolipidemia” (i.e., a very low level of HDL and LDL), rarely causes serious
illness [3], excessive cholesterol accumulation, called “hyperlipidemia”, is considered a
higher risk factor for cardiovascular disease and chronic kidney disease [4]. Typically,
cholesterol levels are balanced by regulating its influx, efflux and synthesis in enterocytes
and hepatocytes [5]. However, cholesterol accumulation increases ROS levels in the mito-
chondria of hepatocytes owing to mGSH depletion and causes the secretion of TGF-β in
Kupffer cells, resulting in inflammation. Subsequently, increased TGF-β is sensitized by
stellate cells, which induces liver fibrogenesis [6]. With regard to cardiovascular disease,
excessive cholesterol (i.e., LDL-C, low-density lipoprotein cholesterol) frequently causes
artery-clogging plaque in the blood [7]. Although chemical-based therapeutic drugs (e.g.,
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statins, fibrates and niacin) have been developed to lower cholesterol levels, their long-term
adverse effects include liver enzyme abnormalities, increased blood glucose levels and
muscle pain [8,9]. Thus, alternatives (e.g., food supplements) with lower costs and fewer
adverse events are being considered.

Recently, probiotics have been introduced as cholesterol-lowering agents [10], which are
live microorganisms that confer health benefits when administered in sufficient amounts [11].
The mechanisms underlying cholesterol-lowering by probiotics are briefly explained by
(1) BSH (bile salt hydrolase) activity of probiotics (e.g., the genus Lactobacillus) for inhibition
of readsorption of free bile acid (insoluble form), resulting in the synthesis of bile acids from
cholesterol in the liver; (2) the cell wall of probiotics capable of incorporating cholesterol,
causing depletion of cholesteryl ester from LDL particles; and (3) enzymatic conversion of
cholesterol into coprostanol (excretable form) by probiotics. Based on these mechanisms,
early studies have suggested that the cholesterol-lowering effect of probiotics could be due
to the components of probiotic bacteria. Thereafter, studies of cell walls of probiotics (or
dead cells) concerning cholesterol-lowering effects have been reported [12–14].

Indeed, components of probiotics and their metabolites have been proven to exert
beneficial effects in many other fields, such as gut health, immunity, obesity and skin
health [15,16]. In 2022, a postbiotic was newly defined as “a preparation of inanimate
microorganisms and/or their components that confers a health benefit on the host [17]”. The
inanimate form of probiotics is now called “parabiotics,” long recognized as “dead cells” or
“cell walls”. Parabiotics are advantageous because they have direct and specific mechanisms
of action and better interactions with pattern recognition receptors [18]. Previously, we
selected the parabiotic BBR 4401 for its potential to improve hypercholesterolemia based
on the following criteria: (1) cholesterol-scavenging ability; (2) serum and hepatic lipid
profiles; and (3) fecal bile acid profiles in a hypercholesterolemia-induced rat model [19,20].
Next, we further proved that BBR 4401 improved dyslipidemia in rat models by showing
(1) increased bile acid content in feces; (2) increased expression levels of LDL-receptor,
bile acyl-CoA synthetase and CYP7α1 in the liver; and (3) decreased apoA and apoB
contents in blood and liver, respectively [19,21]. Consequently, we demonstrated that the
cholesterol-lowering cascade is triggered by the cohesion of bile acids and cholesterol with
BBR 4401.

We conducted a randomized, double-blind, placebo-controlled clinical trial to eval-
uate the cholesterol-lowering efficacy of BBR 4401 in adults with moderate hypercholes-
terolemia. Sixty-one subjects were prescribed low- and high-dose BBR 4401 (1 × 1010 and
10 × 1011 CFU of parabiotics, respectively) for 12 weeks. Blood lipid and apolipoprotein
profiles were measured. Furthermore, adverse events and bowel habit changes caused by
BBR 4401 consumption were investigated. Therefore, this study has significant implications
that might lead to the further development of parabiotics for health benefits.

2. Materials and Methods
2.1. Process of Manufacturing for Investigation Product

For seed culture, 1% (v/v) of glycerol stock of Bifidobacterium breve IDCC 4401 was
suspended and statistically incubated in De Man, Rogosa and Sharpe (MRS) broth at 37 ◦C
in a 40 L fermenter for 18 h. An amount of 10% (v/v) of the seed culture was transferred into
a commercial medium (data not shown) and incubated in a 400 L fermenter with 30 rpm
for 10 h. The main culture was performed with 2% of preculture under the conditions
mentioned for 18 h in a 16 kL fermenter (Figure 1). The biomass and culture media were
separated by continuous centrifugation at a constant rate of 8 kL/h and 8000 rpm, yielding
290 kg of B. breve IDCC 4401 with an approx. 52% (w/w) moisture content. Next, the
obtained cells were treated at 80 ◦C for 8 h to collect heat-killed and concentrated cells. The
heat-killed cells were mixed with 10% (v/v) maltodextrin of total volume in a 1 kL mixer
and freeze-dried at a temperature range of −80–25 ◦C under less than −300 mmHg. Finally,
the heat-killed cells were grilled, finely ground and sieved to obtain <50 µm particles. The
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particles were then encapsulated and the compositions of the investigational and placebo
products are listed in Table S1.
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2.2. Subjects and Study Design

This double-blind, parallel-group, placebo-controlled, randomized trial was conducted
between May 2018 and October 2019 at the Seoul National University Hospital, Seoul, Ko-
rea. The participants were informed of the purpose, expected effects, unexpected side
effect(s) and study method before giving their consent. The hospital recruited the subjects
via advertisements (e.g., subway stations), and those who consented to participation and
signed a written informed consent form were included in this study. Individuals qualified
for randomization met the following criteria: (1) age group ≥ 20 years; (2) LDL-cholesterol
group ≥ 100 mg/dL and group ≥ 150 mg/dL; and (3) not using drugs or health-functional
foods that influence lipid metabolism within one month before the screening visit. The ex-
clusion criteria were as follows: individuals with (1) cardiovascular, renal or hepatic disease
and diabetes (fasting glucose ≥ 180 mg/dL), hypertension, endocrine disorders, autoim-
mune disease, gastrointestinal disorder or cancer; (2) hypertriglyceridemia (≥500 mg/dL);
(3) hypersensitivity associated with probiotics; (4) alcohol abuse, pregnancy or breastfeed-
ing; and (5) participation in other studies within one month. Eligibility criteria were
reviewed at −4 weeks. After a 4-week run-in period, individuals following low total fat,
saturated fat and cholesterol diets were enrolled before the randomization process.

The trial consisted of two phases: a 4-week baseline run-in observation period (weeks
−4 to 0); a 12-week intervention period (weeks 0 to 12) (Figure 2). All participants com-
pleted a series of questionnaires [22,23] and the Schedule for data collection are summarized
in Table 1.
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Table 1. Schedule for data collection.

Item
Visit

1(−4 week) 2(0 week) 3(4 week) 4(8 week) 5(12 week)

Informed consent
√

Demographic information
√

Anthropometric measurement
√ √ √ √

Vital signs
√ √ √ √ √

Medical and operational history
√

Medication and dietary
supplement use

√ √ √ √ √

Blood and urine test
√

Eligibility assessment
√ √

Random allocation
√

MEDFICTS and recommended
food score

√ √ √

Physical activity survey
√ √ √

Drinking and smoking history
survey

√ √ √

Guidelines for diet and lifestyle
habits

√ √ √ √

Dietary record and lifestyle
√ √ √

Supply with test/placebo food
√ √ √

Compliance
√ √ √

Lipid profile and analysis
(TG, TC, LDL-C, HDL-C,
VLDL-C, non HDL-C,
ApoAI, Apo AII, ApoB, ApoE)

√ √ √ √

Bowel habit satisfaction
√ √ √ √

Hematologic tests
√ √

Urine analysis
√ √

Electrocardiogram
√ √

Adverse events
√ √ √ √ √

Abbreviations: MEDFICTS, meats, eggs, dairy, frying foods, in baked goods, convenience foods, table fats,
snack; TG, triglyceride; TC, total cholesterol; LDC-C, low-density lipoprotein-cholesterol; HDL-C, high-density
lipoprotein-cholesterol; VLDL-C, very-low-density lipoprotein-cholesterol; Apo, apolipoprotein.

All participants were enrolled based on the inclusion and exclusion criteria and
randomly divided into 3 parallel groups of 22 people using a “computer generated ran-
dom list” with a blocked randomization method (Figure 3). After allocation, six partici-
pants were excluded because of withdrawal of consent or participation in another clinical
trial. Participants were prescribed a low dose of B. breve IDCC 4401 parabiotics (BBR-L,
1.0 × 1010 CFU/day), a high dose of parabiotics (BBR-H, 1.0 × 1011 CFU/day) and placebo
products. Postentry visits were conducted at the end of weeks 4, 8 and 12. Moreover,
compliance conformed to the percentage of remnants of investigational products returned.
The full analysis set was defined as 61 participants who had visited at week 4, while the
per-protocol set was defined as 60 participants who completed the clinical test. The safety
set was defined as 66 participants who had consumed investigation products at least 1 time
after randomization.
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2.3. Statistical Analysis

All the statistical analyses were performed using SAS (version 9.4, SAS Institute Inc.,
Cary, NC, USA). One-way analysis of variance (ANOVA), chi-square test, McNemar’s
test and Fisher’s exact test were performed to compare the significance, relationship and
differences between (or within) continuous and categorical independent variables. Compli-
ance of the groups was analyzed using ANOVA. A linear mixed-effects model was used
to analyze the continuous variables of dietary intake, physical activity, functionality (i.e.,
lipid and apolipoprotein profiles) and safety. Furthermore, McNemar’s and Fisher’s exact
tests (or Chi-square tests) were used to compare values from blood and urine samples
and adverse events within (independent of each group) and between groups, respectively.
Statistical significance was determined when the p-value was <0.05.

2.4. Metabolites Analysis

Lyophilized B. breve IDCC 4401 parabiotic (0.1 g) was suspended in 1 mL of ice-cold
methanol and sonicated for 1 h, whereas 20 mL of the culture medium (control) was diluted
in 1 mL of ice-cold methanol and sonicated for 1 h, followed by concentration in a vacuum
concentrator. Two hundred microliters of supernatants were collected and concentrated us-
ing a vacuum concentrator, followed by centrifugation at 13,000× g for 10 min at 4 ◦C. The
samples were derivatized by the addition of 50 µL of 20 mg/mL methoxyamine hydrochlo-
ride in pyridine (Sigma-Aldrich, Burlington, MA, USA) and incubated at 30 ◦C for 90 min.
Then, the samples were added with 50 uL of N,O-bis(trimethylsilyl)trifluoroacetamide
(BSTFA; Sigma-Aldrich) and further incubated at 30 ◦C for 90 min. A mixture of alkane
standards (Sigma-Aldrich) and fluoranthene (Sigma-Aldrich) was used as the retention
index and internal standard, respectively. The GC-MS analysis was performed using a
Thermo Trace 1030 GC-MS (Trace 1030) (ThermoFisher, Waltham, MA, USA) coupled with
an ISQ LT single quadrupole mass spectrometer (ThermoFisher Scientific, Waltham, MA,
USA). The derivatized sample (0.1 µL) was injected into the GC system equipped with a
DB-5MS capillary column (60 m length, 0.25 mm ID, 0.25 µm film thickness) (Agilent, Santa
Clara, CA, USA) at 300 ◦C in a 1:20 split ratio. Metabolites were separated using a helium
flow of 1.5 mL using the following oven temperature program: 50 ◦C for 2 min, 50 ◦C to
180 ◦C at a rate of 5 ◦C/min, 180 ◦C for 8 min, 180 ◦C to 210 ◦C at a rate of 2.5 ◦C/min,
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210 ◦C to 320 ◦C at a rate of 5 ◦C/min and 320 ◦C for 20 min. Mass spectra were acquired
in the mass range at 35–650 m/z in electron impact ionization mode (70 eV) and ion source
temperature of 270 ◦C. MS-DIAL software (version 4.92) was used for the deconvolution
of mass spectrometry (MS) data and identification of metabolites. The latest FienhnLib RI
Libraries provided by MS-DIAL were used to identify metabolites by matching MS peaks.
Hierarchical cluster analysis (HCA) and volcano plots were generated using MetaboAnalyst
version 5.0.

3. Results and Discussion
3.1. Lipids and Apolipoprotein Profiles

The baseline characteristics of the study participants are presented in Table S2. The
number of participants in the placebo, BBR-L (low-dose) and BBR-H (high-dose) groups
were 22, 22 and 22, respectively, and the ages were 52.1± 2.9, 51.5± 1.6 and 50.8 ± 2.5 years,
respectively. LDL-cholesterol was 124.7 ± 2.0 mg/dL, 131.1 ± 2.8 mg/dL and
127.4 ± 3.0 mg/dL, respectively, and total cholesterol was 201.0± 2.4 mg/dL, 212.8± 4.2 mg/dL
and 207.8 ± 5.7 mg/dL, respectively (Table S2). There were no significant differences in any
baseline characteristics between the groups. The compliance, including taking investiga-
tional products and following a diet, was measured at >97% in all 3 groups after 12 weeks
(Table S3). Furthermore, dietary intake, including carbohydrates, protein, fat, fatty acids,
cholesterol and physical activity, are shown in Table S4. None of the variables differed
significantly between groups. Higher compliance (i.e., >80%) in clinical trials generally
indicates that the primary assessment variable to determine the efficacy, reproducibility and
transparency of an investigational product is reliable [24]. Based on insignificant baseline
characteristics and high compliance, it was implied that this study is conducted under
systematic control by investigators and that the primary variable of BBR 4401 is reliable in
the analysis stage.

With regard to lipid profiles, LDL-cholesterol was significantly decreased compared
to the placebo group in the low- and high-dose groups at weeks 4–12 (Figure 4). More
specifically, 8.1% and 10.8% of LDL-cholesterol were decreased compared to the placebo
group at 12 weeks. As expected, apoB showed a significant decrease in both the low- and
high-dose groups after 12 weeks (Figure 5). A clinical study exploring the cholesterol-
lowering effects of Lactobacillus paracasei N1115 in adults with dyslipidemia also showed
a decrease in LDL-cholesterol and apoB [25]. In this study, the significant decrease in
LDL-cholesterol and apoB clearly supports the cholesterol-lowering effect of BBR 4401.
Statins, a hyperlipidemia drug, can reduce LDL-cholesterol levels by 15% to 20% [26,27].
Based on an approximately 10% reduction in LDL-cholesterol, it can be suggested that BBR
4401 should be a functional food to reduce blood cholesterol levels.

In contrast, triglyceride (TG) increased in the high-dose group at 4 and 8 weeks
(Figure 4), whereas non-HDL-cholesterol decreased only at 12 weeks. Given that the
normal range of TG in the blood is less than 150 mg/dL [28], the increased concentration of
TG, 128.7 mg/dL, in the high-dose group would not be an issue. Additionally, to decrease
blood TG levels, a reduction in the non-HDL-cholesterol level is recommended by Adult
Treatment Panel III guidelines of the National Cholesterol Education Program (NCEP) [29].
Considering that trends in TG level deescalated from 0 to 12 weeks (Figure 4), BBR 4401
consumption might be suggested for more than 12 weeks, with a significant decrease in TG
levels expected.

Typically, VLDL-cholesterol comprises abundant TG and its secretion from the liver
into the blood increases blood TG levels [30]. Although overall TG and VLDL-cholesterol
showed a slight increase compared to the placebo group (p > 0.05), both TG and VLDL-
cholesterol tended to decrease in the high-dose group during the prescription. Thus, it
can be assumed that the liver regulates the LDL-cholesterol level, which senses TG and
VLDL-cholesterol [31]. Meanwhile, ratios of TC/HDL-c, TG/HDL-c, non-HDL-c/HDL-
c and LDL-c/ApoB did not significantly decrease, whereas those of LDL-c/HDL-c and
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ApoB/ApoA1 were significantly decreased by 12.2% (p = 0.018) and 11.2% (p = 0.029) at 4
weeks and 12 weeks, respectively, only in the high-dose group.
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3.2. Metabolites Analysis

To elucidate the mechanism underlying the cholesterol-lowering effects of BBR 4401,
a metabolite analysis was performed using BBR 4401 and its culture medium (negative
control). A total of 108 metabolites were identified, including amino acids, sugars, organic
acids, fatty acids and polyamines. The metabolic profiles of BBR 4401 and the negative
control were clearly separated using hierarchical clustering analysis (Figure 6A). Among
the 108 metabolites, 86 were significantly decreased, while 14 were significantly increased
in BBR 4401 compared to those in the control. The metabolites with increased metabolites
were 2-hydroxyhexanoic acid, 2-methyl-nonadecane, α-lactose, D-3-phenyllactic acid,-
hydroxybutyric acid, D-xylulose, galactitol, lactic acid, l-ascorbic acid, L-iditol, ribitol,
shikimic acid and threitol (Figure 6B). Meanwhile, no distinct clues were found in the
decreased metabolites regarding the cholesterol-lowering effect of BBR 4401.
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L-ascorbic acid supplementation lowers the plasma cholesterol concentration in hy-
percholesterolemic adults with low vitamin C and its recommended concentration is at
least 500 mg/day for 3–24 weeks [32]. Although the role of L-ascorbic acid is still ar-
guable, its cholesterol-lowering effects might be due to its antioxidant properties, which
are involved in essential metabolic pathways [33]. In previous study, the metabolomic
analysis indicated that shikimic acid levels dramatically increased following statin adminis-
tration in adults with hypercholesterolemia [34]. Shikimic acid is an enterobacteria-derived
precursor of aromatic and indole-containing amino acids [35], implying that cholesterol
reduction is associated with gut microbiome modulation. Furthermore, shikimic acid is
reported to suppress lipid accumulation in 3T3L-1, HepG2 and Huh7 and down-regulate
mRNA expression of lipogenesis-related genes such as SREBP-1c, LXR-α and FAS in HepG2
cells [36]. Previously, mice were fed either the standard diet or a high-fat diet (HFD) with
or without dark-phase restricted feeding (12 h) in a spontaneous metastasis model of
Lewis lung carcinoma (LLC) [37]. As expected, the number and size of lung metastases
were significantly greater in the HFD group than in the standard diet group. However,
time-restricted feeding (TRF) significantly attenuates high-fat diet-enhanced spontaneous
metastasis. Through blood analysis, it was found that HFD-induced glucose, proinflam-
matory cytokines and angiogenic factors were significantly decreased in the TRF group.
Furthermore, 2-hydroxyhexanoic acid significantly increased metabolite in BBR 4401, which
also increased in the time-restricted feeding (TRF) group with the HFD diet. Thus, BBR
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4401 containing 2-hydroxyhexanoic acid might play an important role in obesity-associated
symptoms along with a cholesterol-lowering effect.

3.3. Changes in Bowel Habits

Considering that (1) BBR 4401 hydrolyzes conjugated bile, promoting de novo syn-
thesis of bile acids from cholesterol and (2) BBR 4401 interacts with cholesterol physio-
chemically, resulting in the excretion of cholesterol into feces [21], BBR 4401 may induce
adverse events such as indigestion and colic [38]. Thus, we investigated whether BBR 4401,
originating from the Bifidobacterium breve 4401 probiotic, would improve gut health using
a bowel activity questionnaire including abdominal pain, discomfort, distention, incom-
plete evacuation and the Bristol Stool chart [22,23]. The results showed that defecation
strain, distension and runny feces significantly improved after a 12-week prescription of
BBR 4401 in the low- and high-dose groups, except for the defecation strain (only in the
high-dose group) (Figure 7). This result may be explained by the beneficial effects of the
heat-killed cells and their components. For example, heat-killed Lactobacillus rhamnosus
GG exhibited anti-inflammatory effects in a rat model, and heat-killed Lactobacillus brevis
SBC8803 ameliorated intestinal injury by enhancing the intestinal barrier in a colitis mouse
model [39,40]. Furthermore, the membrane surface proteins of Lactiplantibacillus plantarum
423 exert antiadhesion effects against pathogens in Caco-2 cells [41].
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*** (p < 0.001). BBR-L, low dose of B. breve IDCC 4401 parabiotics (1.0 × 1010 CFU/day); BBR-H, high
dose of B. breve IDCC 4401 parabiotics (1.0 × 1011 CFU/day).

Regarding safety, there were no clinically significant changes in vital signs, clinical
pathology tests or electrocardiograms in either the low- or high-dose groups and no
significant adverse reactions were reported (Table S5); thus, BBR 4401 was regarded as a
safe food supplement.

4. Conclusions

The relationship between the homeostasis of gut microbiota and human health be-
comes more important according to published articles in the last decades. In this study,
BBR 4401 (parabiotic of Bifidobacterium breve IDCC 4401) exerted a cholesterol-lowering
effect in adults with moderate hypercholesterolemia as well as an improvement in bowel
activity. Thus, these results suggested BBR 4401 as a multifunctional food supplement for
human health.
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