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Abstract: This study aimed to investigate the effects of ultra-long-term fermentation on the forma-
tion of non-volatile metabolites of Chinese solid-fermented kohlrabies. Liquid chromatography-mass
spectrometry/mass spectrometry (LC-MS/MS) based non-targeted metabolomics coupled with multi-
variate statistical analysis were employed to respectively analyze the kohlrabies solid fermented for
5 years (5Y), 8 years (8Y), and 11 years (11Y). The results showed that 31, 169, and 123 differential
metabolites were identified in the three groups of 5Y and 8Y (A1), 5Y and 11Y (A2), and 8Y and 11Y
(A3), respectively (VIP > 1, p < 0.05 and |log2FC| > 1). The differential non-volatile metabolites were
mainly organic acids and derivatives, organoheterocyclic compounds, benzenoids, lipids and lipid-like
molecules, and organicoxygen compounds. Furthermore, 11 common differential metabolites were
screened in the three groups, including diaminopimelic acid, ectoine, 9,10,13-TriHOME, and 9 others.
The citrate cycle, glycine, serine and threonine metabolism, pantothenate and CoA biosynthesis, and
glyoxylate and dicarboxylate metabolism were the four pathways most significantly correlated with the
differential non-volatile metabolites based on the Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis (p < 0.05). The present study describes the effects of ultra-long-term fermentation periods on
the formation of non-volatile metabolites in solid fermented kohlrabies, providing a theoretical basis
for cooking with the three solid fermented kohlrabies to make different Chinese dishes.

Keywords: kohlrabi; metabolomics; LC-MS/MS; differential metabolites; metabolic pathway

1. Introduction

Kohlrabi (Brassica juncea var. megarrhiza Tsen et Lee), belonging to the cruciferous fam-
ily, is mainly grown in Sichuan, Guangxi, Jiangsu, and Henan provinces in China [1]. The
national production of kohlrabi in 2017 was approximately 7,998,000 tons, according to
the cultivated area [2]. Kohlrabi is rich in proteins, vitamins, minerals, and many other
bioactive components, which is also an excellent source of carotenoids and glucosinolates,
exhibiting good nutritional and medical values [3–5]. However, raw kohlrabi typically has
a strong mustard spicy taste, which will become crisp and tender, with a rich aroma and a
delicious taste after solid fermentation [6]. Fermentation is the commonly used strategy to
improve the nutritional value and organoleptic properties of foods by converting organic
compounds [7]. In China, solid fermented kohlrabi is usually used to prepare side dishes.
Moreover, the solid fermented kohlrabi can also be used, as an ingredient, to cook many
kinds of favorite dishes in China [8].

Currently, researches on kohlrabi are mainly focused on flavor components [9], nutri-
tional functions [10], and microbial diversity [11]. For example, the volatile flavor substances
of low-temperature and low-salt solid-fermented Chinese kohlrabi (LSCK) and traditional
high-salt solid-fermented Chinese kohlrabi (HSCK) have been investigated [12]. Sixteen
volatile flavor substances were identified, which could be used as the potential biomarkers to
distinguish the two different kinds of solid fermented kohlrabies. It has been reported that
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kohlrabi is rich in serotonin and melatonin, which contribute to preventing cardiovascular
diseases such as obesity and dyslipidemia [13]. On the other hand, previous studies sug-
gested that lactic acid bacteria, including Enterococcus, Streptococcus, Leuconostoc, Lactobacillus,
and Pediococcus [14], were the dominant bacteria in kohlrabi fermentation.

Normally, the kohlrabies fermented for 3–5 months are used to prepare side dishes
in China. However, the 5Y and 8Y kohlrabi are suitable for cooking braised dishes and
sour soup, respectively. In contrast, the 11Y kohlrabi is usually used for making fresh soup.
Metabolites are essential factors affecting the flavor of fermented foods. However, the
effects of ultra-long-term solid fermentation on the formation of non-volatile metabolites in
kohlrabi still remain unclear. In this study, the non-volatile metabolites of the 5Y, 8Y, and 11Y
solid fermented kohlrabi were analyzed by LC-MS/MS-based non-targeted metabolomics
technology. The differential metabolites were subsequently screened by multivariate
statistical analysis such as principal component analysis (PCA) and orthogonal partial
least squares discrimination analysis (OPLS-DA). Furthermore, the metabolic pathways
were enriched by the KEGG database to better analyze the possible pathways significantly
correlated with the differential metabolite biosynthesis. This study reveals the effect of
ultra-long-term fermentation on the formation of non-volatile metabolites in Chinese solid-
fermented kohlrabi, providing a theoretical basis for developing different dishes with
ultra-long-term solid-fermented kohlrabi used as an ingredient.

2. Materials and Methods
2.1. Production of Ultra-Long-Term Solid Fermented Kohlrabi

The ultra-long-term solid fermented kohlrabies were produced according to our
previous study [15]. The raw kohlrabies were washed with water and subsequently air-
dried outside for about 30 days at an average temperature of 7–12 ◦C. Then, the air-dried
kohlrabies were transferred into 200 kg-fermentation tanks. Eight percent (w/w) salt (upper
layer 60%, middle layer 30%, and lower layer 10%) was added to the kohlrabies, followed
by 5 days of pickling. Then, 5% (w/w) salt (upper layer 10%, middle layer 30%, and lower
layer 60%) was added to the pickled kohlrabies, followed by 4 days of pickling. Finally, the
pickled kohlrabies were respectively fermented for 5 years (5Y), 8 years (8Y), and 11 years
(11Y) at room temperature.

2.2. Extraction of Metabolites from Kohlrabi

Extraction of metabolites from 5Y, 8Y, and 11Y kohlrabi was performed as described
in our previous study [16]. Kohlrabi (50 mg) was transferred into a 2 mL microtube,
and a 6 mm grinding bead was added to each tube. Then, 400 µL of extraction solu-
tion (methanol/water = 4:1, (v:v)) containing 0.02 mg/mL of internal standard (L-2-
chlorophenylalanine) was used for metabolite extraction. Kohlrabi was ground by the
frozen tissue grinder (Wonbio-96C, Shanghai Wanbo Biotechnology, Shanghai, China)
for 6 min at −10 ◦C and 50 Hz, followed by low-temperature ultrasonic extraction
(KW-100TDV, Kunshan Shumei, Kunshan, China) for 30 min at 5 ◦C and 40 kHz. The
samples were stored at −20 ◦C for 30 min and centrifuged (H1850R, Cence, Changsha,
China) at 13,000× g for 15 min at 4 ◦C. Finally, 100 µL of the supernatant was transferred
to the injection vial for LC-MS/MS analysis.

2.3. Detection of Non-Volatile Metabolites by LC-MS/MS

The LC-MS/MS analysis for kohlrabi extract was performed on a Thermo UHPLC-Q
Exactive HF-X system equipped with an ACQUITY HSS T3 column (100 mm × 2.1 mm
i.d., 1.8 µm; Waters, Milford, MA, USA) at Majorbio Bio-Pharm Technology Co., Ltd.
(Shanghai, China). The mobile phases consisted of 0.1% formic acid in water/acetonitrile
solution (95:5, v/v) (solvent A) and 0.1% formic acid in acetonitrile:isopropanol/water
solution (47.5:47.5:5 , v/v/v) (solvent B). Positive ion mode separation gradient: 0–3 min,
mobile phase B increased from 0% to 20%; 3–4.5 min, mobile phase B raised from 20% to
35%; 4.5–5 min, mobile phase B increased from 35% to 100%; 5–6.3 min, mobile phase B
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maintained at 100%; 6.3–6.4 min, mobile phase B decreased from 100% to 0%; 6.4–8 min,
mobile phase B maintained at 0%. Separation gradient in negative ion mode: 0–1.5 min,
mobile phase B raised from 0% to 5%; 1.5–2 min, mobile phase B increased from 5% to
10%; 2–4.5 min, mobile phase B enhanced from 10% to 30%; 4.5–5 min, mobile phase
B increased from 30% to 100%; 5–6.3 min, mobile phase B linearly maintained 100%;
6.3–6.4 min, the mobile phase B decreased from 100% to 0%; 6.4–8 min, the mobile phase B
linearly maintained at 0%. The flow rate was 0.40 mL/min, and the column temperature
was 40 ◦C.

MS conditions:
The mass spectrometric data were collected using a Thermo UHPLC-Q Exactive HF-X

Mass Spectrometer equipped with an electrospray ionization (ESI) source operating in
positive and negative modes. The optimal conditions were source temperature at 425 ◦C;
sheath gas flow rate at 50 arb and aux gas flow rate at 13 arb; ion-spray voltage floating
(ISVF) at −3500 V in negative mode and 3500 V in positive mode, respectively. Normalized
collision energy, 20–40–60 V rolling for MS/MS. Full MS resolution was 60,000, and MS/MS
resolution was 7500. Data acquisition was performed with the Data Dependent Acquisition
(DDA) mode. The detection was carried out over a mass range of 70–1050 m/z.

2.4. Data Analysis

The pretreatment of LC/MS raw data was performed by Progenesis QI (Waters Cor-
poration, Milford, MA, USA) software, and a three-dimensional data matrix in CSV format
was exported. Internal standard peaks, as well as any known false positive peaks, were
removed from the data matrix, deredundant and peak pooled. At the same time, the metabo-
lites were identified by searching databases. The primary databases used were the HMDB
(http://www.hmdb.ca/ (accessed on 9 January 2023)), Metlin (https://metlin.scripps.edu/
(accessed on 18 March 2023)), and Majorbio Database.

The R package “ropls” (Version 4.2.1, R Foundation for Statistical Computing, Vienna,
Austria) was used to perform PCA and OPLS-DA and 7-cycle interactive validation evalu-
ating the stability of the model. The non-volatile metabolites with VIP > 1, p < 0.05 were
determined as significantly differential non-volatile metabolites based on the Variable Im-
portance in the Projection (VIP) obtained by the OPLS-DA model and the p-value generated
by Student’s t test.

Differential non-volatile metabolites among the three groups were mapped into their
biochemical pathways through metabolic enrichment and pathway analysis based on the
KEGG database (http://www.genome.jp/kegg/ (accessed on 21 February 2023)). Python
packages “scipy.stats” (https://docs.scipy.org/doc/scipy/ (accessed on 5 March 2023))
was used to perform enrichment analysis to obtain the most relevant biological pathways
for experimental treatments.

3. Results and Discussion
3.1. PCA Analysis for Metabolomics of Kohlrabi

Based on LC-MS/MS combined with multivariate statistical methods, the differential
non-volatile metabolites of the three kohlrabies were investigated. Quality control (QC)
is usually required to obtain high-quality metabolomic data. In this work, 20 µL of each
extract from 5Y, 8Y, and 11Y kohlrabi were mixed, and the obtained mixture was used as a
QC. The aggregation degree of the QC was better than that of the 5Y, 8Y, and 11Y kohlrabi
(Figure 1A), suggesting that the obtained experimental data were reliable. All data for the
5Y, 8Y, and 11Y kohlrabi were well distributed in different regions, indicating significant
differences in the non-volatile metabolites among the kohlrabies. R2

X and Q2 were the
main parameters for judging the PCA model. In this study, R2

X = 0.628 > 0.5 and Q2 = 0.367,
indicating that the PCA model could well interpret the significant differences among the
differential non-volatile metabolites in the kohlrabies. Figure 1B showed the distribution
and contribution of metabolites on different principal components.

http://www.hmdb.ca/
https://metlin.scripps.edu/
http://www.genome.jp/kegg/
https://docs.scipy.org/doc/scipy/
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Figure 1. The scatter plots (A) and loading plots (B) of the PCA model for the 5Y, 8Y, and 11Y
fermented kohlrabi. 5Y: 5-year, 8Y: 8-year, 11Y: 11-year.

3.2. OPLS-DA Analysis of Non-Volatile Metabolites from Kohlrabi by LC-MS/MS

For further precise analysis of the three groups of kohlrabi (A1, A2, and A3), OPLS-DA
analysis was consequently employed, as shown in Figure 2. Figure 2A,C,E implied the
OPLS-DA score maps for the three groups of kohlrabi, respectively. It can be seen clearly
that all groups were significantly separated, suggesting that the significant differences in
non-volatile metabolites were caused by the different fermentation periods. Moreover,
it has been reported that changes in metabolites in fermented kohlrabi might be due to
the long-term strong activity of salt-tolerant microorganisms [17]. The OPLS-DA model
parameters are listed in Table 1. The R2

X and R2
Y values for A1, A2, and A3 were over 0.5.

The Q2 values for the three groups of kohlrabi were nearly 1.0, which could explain and
predict the differences between every two kohlrabies’ non-volatile metabolites.

In order to further demonstrate that the model was reliable, 200-loop-iteration
permutation tests were consequently conducted (Figure 2B,D,F). All the intersections
for the Q2 regression line and Y-axis were on the negative half-axis, suggesting that the
OPLS-DA model was stable and reliable. On the other hand, no overfitting phenomenon
was observed.

Table 1. Parameters of the OPLS-DA models for the three different groups of kohlrabi.

Group R2
X (cum) R2

Y (cum) Q2 (cum)

A1 0.728 1.000 0.984
A2 0.751 1.000 0.986
A3 0.678 1.000 0.969

3.3. Screening of Differential Non-Volatile Metabolites in Kohlrabi

A total of 601 non-volatile metabolites were detected (Table S1), and 444 non-volatile
metabolites were identified in the three groups, as shown in Figure 3. Organic acids and
derivatives, organoheterocyclic compounds, benzenoids, lipids and lipid-like molecules,
and organic oxygen compounds were the main metabolites, accounting for 27.93%, 16.22%,
15.54%, 14.64%, and 14.19%, respectively. Organic acids and derivatives accounted for the
highest proportion, and a total of 124 metabolites were matched.
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In this study, the non-volatile metabolites with VIP > 1, p < 0.05, and |log2FC| > 1
were defined as significantly differential metabolites. According to the set standards, 31,
169, and 123 differential non-volatile metabolites were, respectively, screened from the
three groups, as shown in Figure 4A. With the extension of fermentation, microorganisms
metabolized proteins, polysaccharides, fat and other nutrients in kohlrabi to produce or-
ganic acids, amino acids, fatty acids, and other products through enzyme catalysis [18]. A2
(5Y–11Y) had a longer fermentation interval than A1 (5Y-8Y) and A3 (8Y-11Y); the types
and quantities of differential metabolites were consequently more abundant than those
in A1 and A3. The differential non-volatile metabolites of the three groups were ana-
lyzed using a Venn diagram, as seen in Figure 4B. Eleven differential metabolites were
screened from the three groups, including four organic acids and derivatives (ectoine,
aminomalonic acid, diaminopimelic acid, and L-phenylalanine), two lipids and lipid-like
molecules (androsterone and 9,10,13-TriHOME), two organoheterocyclic compounds
(biotin and 6-hydroxymelatonin), two benzenoids (labetalol and 4-nitrocatechol), and one
organic oxygen compounds (suprofen). On the other hand, these differential metabolites
increased with the extension of the fermentation period, which was consistent with Liu’s
study [19].

The composition and content of organic acids are important factors affecting the
flavor of fermented foods. Lactic acid, acetic acid, malic acid, citric acid, tartaric acid,
fumaric acid, and other organic acids were detected in the fermented kohlrabi. Lactic acid
and acetic acid are the most important organic acids, usually produced by Lactobacilli,
and participate in a variety of biochemical reactions. It has been well documented that
lactic acid is the main source of flavor, which is crucial for the formation of the sour
taste in fermented foods [20]. In this work, the lactic acid content in 8Y kohlrabi was
significantly higher than those in 5Y and 11Y kohlrabi (p < 0.05), suggesting that the
lactic acid content probably increased in the earlier stage and decreased in the later
stage. It might be due to the large amount of lactic acid accumulated by lactic acid
bacteria metabolizing carbohydrates in the earlier stage. However, in the later stage
of fermentation, due to the reduction of nutrients, the lactic acid was metabolized as a
carbon source by microorganisms, decreasing the lactic acid [21]. The higher amount of
lactic acid in 8Y kohlrabi made it more suitable for making appetizing acid soup. It is well
known that acetic acid mainly comes from Bifidobacterium fermentation. The increase of
acetic acid enhanced the sour taste of kohlrabi and gave the flavor characteristics related
to vinegar, spicy and sour taste at high concentrations [22]. The acetic acid content in
the three fermented kohlrabies was higher than that of lactic acid, probably due to the
difference in lactic acid bacteria in the fermentation system [23]. In addition to giving a
unique sour taste to fermented foods, organic acids can also serve as substrates to form
various flavor substances such as ketones, alcohols, aldehydes, and esters.

On the other hand, organic acids have a significant impact on plant life metabolism. It
has been suggested that citric acid can act as a chelating agent to enhance the absorption
of iron and manganese by reeds [24]. In contrast, malic acid was considered to increase
the tolerance of plants to water stress [25]. In this study, a lot of free acid acids were also
detected, among which L-leucine, L-methionine, L-phenylalanine, L-proline, L-aspartic
acid, L-tryptophan, L-tyrosine, L-valine, and L-glutamic acid increased continuously with
the extension of fermentation. The fresh taste is a pleasant salty taste, and L-aspartic acid
and L-glutamic acid are considered the main sources of fresh taste [26]. The 11Y kohlrabi
had the highest L-aspartic acid and L-glutamic acid content, possibly explaining why the
11Y kohlrabi was more suitable for cooking fresh soup.
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Organoheterocyclic and organic oxygen compounds mainly come from microbial
metabolism, including carbohydrates, nucleic acids, alkaloids, pigments, vitamins, and
other secondary metabolites. Carbohydrates are the basis for the sweetness of fermented
kohlrabi. In this study, glucose, sucrose, fructose, lactose, and other substances were de-
tected in the fermented kohlrabi. Glucose and fructose are commonly considered the main
available energy and carbon sources for Lactobacillus, most of which were utilized during
the fermentation. However, the soluble reducing sugar such as glucose, fructose, galactose,
and xylose gradually increased during the fermentation of kohlrabi, which was inconsistent
with Hashemi’s experimental results [27]. This was probably due to the microorganisms
related to starch metabolism, and amylase maintained high activity during fermentation, and
thus the starch in kohlrabi was constantly used to produce carbohydrates [28]. Xylose is an
excellent catalyst for inducing the Maillard reaction, which can significantly improve the fresh
taste and meat flavor of foods [29]. Alkaloids are heterogeneous families of plant secondary
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metabolites, mainly including isoquinoline, pyridines, and others, with nitrogen-containing
heterocycles in their basic structures. In this study, three alkaloid differential metabolites,
termed harmala, ecgonine methyl ester, and morphinone, were detected. Secondary metabo-
lites are synthesized into organic compounds with a large number of primary metabolites as
precursors through sugar metabolism, Shikimic acid extension, acetic acid derivation, and
amino acid derivation [30]. Biotin is an important auxiliary factor for many carboxylation
and decarboxylation reactions, which increased significantly during the fermentation of
kohlrabi. In addition, biotin plays an essential role as a carboxyl carrier in the carboxylation
reaction of metabolic pathways such as gluconeogenesis, fatty acid synthesis, and amino acid
decomposition [31].

Benzenoids were the primary differential metabolites detected in this study, most of
which were phenolic compounds. Phenols are important secondary metabolites and natural
antioxidant components in plants, exhibiting strong antioxidant activity in the metabolic
process [32]. During the fermentation, phenolic compounds significantly increased, possibly
due to the high permeability environment caused by high salt content and the release of
phenolic substances from the kohlrabi substrate [33]. Moreover, microorganisms in the
fermentation system could convert bound phenols and macromolecular phenols into free
and small molecule phenols through metabolic pathways [34].

Lipids are the main components of eukaryotic cell membranes in plants, which are
crucial for the life activities of plants [35]. The main lipid metabolites detected in fermented
kohlrabies were fatty acyls, steroids, and steroid derivatives. Most of the fatty acyls increased
during the fermentation, with fatty acids and aggregates accounting for a higher proportion.
Among the detected differential non-volatile metabolites, only 13-L-hydroperoxylinoleic acid
and 9(S)-HPODE were lineolic acids and derivatives. They significantly increased with the
extension of the fermentation period, with the highest content in the 11Y kohlrabi. The 13-L-
hydroperoxylinoleic acid and 9(S)-HPODE in 11Y kohlrabi were 2.82 and 8.09 times higher
than those in 5Y kohlrabi, respectively. Lipids are used as precursors for many compounds
during fermentation, which can be metabolized to substances such as lactic acid, acetic acid,
and acetone by microorganisms [36]. Lactobacilli, Staphylococcus, Enterococcus, and Pediococcus
are demonstrated to correlate with lipid metabolism [37]. It has been reported that lactobacilli
can produce fatty acid hydratases, participating in synthesizing fatty acid derivatives [38].

There were significant differences in metabolite content among the three different
groups of kohlrabi, leading to different diets. Free amino acids are the main contributors
to flavor formation, mainly derived from protein degradation. The free amino acids, in-
cluding L-leucine, L-methionine, L-phenylalanine, L-proline, L-threonine, L-tryptophan,
L-tyrosine, L-valine, and leucine, increased with the extension of fermentation. Further-
more, the 11Y kohlrabi had the highest lineolic acids and derivatives, and soluble sugars,
such as sucrose, glucose, fructose, and galactose, compared to 5Y and 8Y kohlrabies.
11Y kohlrabi was usually used for cooking fresh soups, possibly due to the abundant
L-aspartic acid and L-glutamic acid, as well as soluble sugars, which were beneficial for
improving the freshness and flavor of soups. 8Y kohlrabi produced more organic acids
than that of 5Y and 11Y kohlrabi, with the highest lactic acid content among the three
groups of kohlrabi. Lactic acid provides a sour taste and can interact with alcohols, alde-
hydes, and ketones to produce various new flavor substances during the fermentation
of vegetables [39]. Consequently, 8Y kohlrabi was suitable for making sour soups. 5Y
kohlrabi had more proteins and carbohydrates, which would be utilized through the
Maillard reaction to form a large number of products, contributing to forming unique
volatile flavor substances of kohlrabi [29] since higher moisture content will dilute
the concentration of Maillard reaction substrate, which thus will inhibit the reaction
process [40,41], making 5Y kohlrabi suitable for cooking braised dishes.

3.4. The Common Differential Metabolites in the Three Groups of Kohlrabi

Eleven common differential metabolites in the three groups of kohlrabi were screened
(VIP > 1, p < 0.05, and |log2FC| > 1), as shown in Figure 5. The contents of the 11 metabo-



Fermentation 2023, 9, 753 9 of 14

lites in the three groups of kohlrabi varied significantly, which could be used as potential
biomarkers to distinguish the 5Y, 8Y, and 11Y kohlrabi. 5Y kohlrabi had the highest levels
of diaminopimelic acid, ectoine, and labetalol. Diaminopimelic acid and ectoine decreased
significantly with the extension of fermentation. Diaminopimelic acid might be used to
synthesize lysine, leading to its decrease [42]. Ectoine is generally produced by some
halophilic and salt-tolerant microorganisms and serves as an efficient solute with osmotic
regulation. In addition, it is also used as an effective stabilizer for nucleic acids, DNA
protein complexes, and enzymes [43]. The differential metabolite with higher content in
the 8Y group was 9,12,13-TriHOME, which increased in the earlier stage and decreased in
the later stage. The main product of linoleic acid oxidation is trihydroxyoctadecenoic acid
(TriHOMEs), which is the isomer of 9,10,13-TriHOME [44]. Linoleic acid of kohlrabi was
probably oxidized and decomposed into TriHOMEs with a bitter taste during fermentation.
However, the TriHOMEs decreased with the extension of fermentation. It was possibly due
to the lack of enzymes required for oxidizing and decomposing linoleic acid to generate Tri-
HOMEs in the later stage of fermentation, agreeing with a previous study [45]. 11Y kohlrabi
had more 4-nitrocatechol, biotin, aminomalonic acid, 6-hydroxymelatonin, androsterone,
suprofen, and L-phenylalanine, which increased gradually during the fermentation.
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3.5. Metabolic Pathway Analysis for Differential Metabolites in Kohlrabi

Based on the selected 11 differential metabolites, a general overview of the pathways of
the differential metabolite enrichment is shown in Figure 6. Six pathways were enriched with
p-value < 0.01 and impact value >0.1, termed aminoacyl-tRNA biosynthesis (Impact = 0.11),
pantothenate and CoA biosynthesis (Impact = 0.14), citrate cycle (Impact = 0.24), glyoxylate
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and dicarboxylate metabolism (Impact = 0.21), glycine, serine and threonine metabolism
(Impact = 0.18), and lysine biosynthesis (Impact = 0.36).
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Four metabolic pathways were integrated (Figure 7 and Table S2): citrate cycle, glycine,
serine and threonine metabolism, pantothenate, CoA biosynthesis, glycoxylate, and di-
carboxylate metabolism. Citrate cycle metabolized pyruvate produced by the glycolysis
pathway as the substrate to generate acetyl-CoA under the catalysis of pyruvic acid de-
carboxylase complex [46]. L-malate was converted into oxaloacetate catalyzed by malate
dehydrogenase, which reacted with acetyl CoA to produce citrate under the induction of
citrate synthase. Citrate subsequently entered the glyoxylate cycle to generate isocitrate,
which was then converted into oxaloacetate under the catalysis of isocitric acid dehydro-
genase. The α-ketoglutaric acid was finally produced by β-decarboxylation. The glycine,
serine, and threonine metabolism pathway used L-serine as substrate. Some of the L-serine
was converted into pyruvate catalyzed by serine dehydratase and subsequently entered
the citrate cycle. While part of the L-serine was combined with indole, converted into L-
tryptophan, and then entered tryptophane metabolism. The rest of the L-serine exchanged
acyl groups with phosphatidyl ethanolamine to generate phosphatidylserine and then
entered the glycerophospholipid metabolism pathway to produce choline. Choline was
oxidized to betaine aldehyde under the catalysis of choline monooxygenase, which was
finally converted into betaine by the catalysis of betaine dehydrogenase. The pantothenate
and CoA biosynthesis pathways metabolized pyruvate as substrate, which was converted
into (S)-2-acetolactate catalyzed by acetate synthesis. The (S)-2-acetolactate was reduced
to (R)-2,3-dihydroxyisovaleric acid by ketol-acid reductoisomerase, which subsequently
converted into α-ketovaline by dihydroxy acid dehydratase. Finally, the L-valine was
generated by branched-chain amino acid aminotransferase from α-ketovaline. L-malate,
oxalacetate, citrate, cis-aconate, isocitate, and glyoxylate in the glyoxylate and dicarboxylate
metabolism pathways formed the glyoxylate cycle, which interconnected with the citrate
cycle pathway through glyoxylate.
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In this study, the content of pyruvate showed a trend of increasing first and then
decreasing. It might be because, in the earlier stage, microorganisms decomposed sugars
in kohlrabi through glycolysis and other metabolic pathways to generate pyruvic acid.
However, in the later fermentation stage, organic acids greatly accumulated due to the
growth of microorganisms, leading to decreased pH. As a weak acid, pyruvic acid was
prone to protonation at a low pH value; thus, its content was decreased [47]. The pyruvic
acid was decomposed and utilized to produce new products, such as various amino acids.
This could be confirmed by the significant increase in the content of various metabolites
and L-valine on the pantothenate and CoA biosynthesis pathways. Therefore, the content
of pyruvic acid was consequently relatively reduced in the later stage of fermentation.

Environmental stress, especially salt stress, adversely affects plant carbohydrate
metabolism, and the accumulation of sugars and alcohols plays a vital role in osmotic
regulation and carbon storage [48]. It has been reported that citrate cycle activity will
undergo significant changes to adapt to the environment under various stress condi-
tions [49]. α-ketoglutamic acid is a key compound in the nitrogen and carbon metabolic
pathways, which connects the citrate cycle with other metabolic pathways, such as
amino acid, gibberellin, glucosinolate, and alkaloid biosynthesis [50]. Abiotic stress,
such as salinity and dryness, can induce the accumulation of proline, glycine, betaine,
and sugar, which act as osmotic protective agents in different halophytes [51]. Glycine,
serine, and threonine metabolic pathways are probably related to salt stress [52]. The
flavor of fermented kohlrabi mainly comes from the metabolism of microorganisms,
including organic acids, aldehydes, and esters. Under a high salt environment, the
metabolism of many microorganisms is inhibited. However, betaine can significantly
promote the maintenance of osmotic balance to remove this inhibition, which makes the
microorganisms can carry out normal metabolism to synthesize rich flavor substances
in the fermentation of kohlrabi [53]. Betaine is a secondary metabolite produced by
choline oxidation on the glycine, serine and threonine metabolism pathway and widely
exists in animals and plants [54].

4. Conclusions

In this study, LC-MS/MS coupled with multivariate statistical analysis was employed
to explore the non-volatile differential metabolites of 5Y, 8Y, and 11Y Chinese kohlrabi.
With the standard of VIP > 1, p < 0.05, |log2FC| > 1, 31, 169 and 123 differential metabolites
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were identified in A1 (5Y–8Y), A2 (5Y–11Y), and A3 (8Y–11Y). The differential metabolites
were organic acids and derivatives, organoheterocyclic compounds, benzenoids, lipids and
lipid-like molecules, and organic oxygen compounds. Eleven common metabolites were
screened from the Veen diagram, and four key metabolic pathways significantly correlated
with the differential metabolites were then enriched.

Complex biochemical reactions took place during the ultra-long-term fermentation of
kohlrabi. A large amount of free amino acids and soluble sugars made 11Y kohlrabi suitable
for making fresh soup. There were more organic acids and the highest content of lactic acid
in 8Y kohlrabi, making it suitable for cooking appetizing sour soups. The 5Y kohlrabi was
rich in protein and sugar substances, which could form unique flavors through the Maillard
reaction, making it suitable for the processing of braised dishes. Deeply investigating the
metabolites and their changes during ultra-long-term fermentation is the next step of work,
which is important for the development of kohlrabi-containing dishes.
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