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Abstract: The current study investigated the feasibility of developing and adopting a few state-of-
the-art fermentation techniques to maximize the efficiency of the lignocellulosic waste bioconversion.
There have been various efforts towards utilizing the fermentable sugars released from the specific
parts of lignocellulose, i.e., cellulose and hemicellulose. However, complete utilization of carbon
sources derived from lignocellulosic biomass remains challenging owing to the generated glucose
in the presence of β-glucosidase, which is known as glucose-induced carbon catabolite repression
(CCR). To overcome this obstacle, a novel simultaneous saccharification and fermentation (SSF) of
lactic acid was designed by using Celluclast 1.5L as a hydrolytic enzyme to optimize the generation
and utilization of pentose and hexose. Under the optimal enzyme loading and pH condition, 53.1 g/L
optically pure L-lactic acid with a maximum volumetric productivity of 3.65 g/L/h was achieved
during the SSF from the brewer’s spent grain without any nutrient supplementation. This study
demonstrated the potential of lactic acid production from the designed lignocellulosic substrate.

Keywords: lactic acid; brewer’s spent grain; carbon catabolite repression; simultaneous
saccharification and fermentation; enzymatic hydrolysis

1. Introduction

Lignocellulosic materials are the most abundant, economical and bio-renewable nat-
ural resource on earth. Among the diverse types of lignocelluloses, brewer’s spent grain
(BSG), the barley malt residue generated from the brewing industry, is a potential ligno-
cellulosic substrate for bioconversion of various added-value chemicals owing to its high
carbon content [1]. Along with each 100 L of brewed beer produced, approximately 20 kg of
BSG is generated as a by-product [2]. It is estimated that more than 30 million tons of BSG
are produced annually worldwide, which is expected to further increase with the blooming
micro-brewery market. Most of the BSG are discarded directly into landfills or used as
animal feed [3]. The chemical composition of BSG depends on the variety of the barley
grains and hops, harvest time, and of course the conditions for brewing [4]. In general,
BSG is rich in insoluble fiber, i.e., husk, testa and pericarp, as well as storage protein of
endosperm cells, which account for around 70 and 20% of its composition, respectively [2].
The fiber consists mainly of cellulose, hemicellulose (i.e., arabinoxylan) and lignin. Thanks
to its high carbohydrate content (up to 50%; w/w, dry weight), the BSG is attractive for
several biotechnological production processes such as energy and biofuels [5], biogas [6],
antibiotics [7], enzymes [8] and some important organic acids [9,10].

Fermentation 2023, 9, 744. https://doi.org/10.3390/fermentation9080744 https://www.mdpi.com/journal/fermentation

https://doi.org/10.3390/fermentation9080744
https://doi.org/10.3390/fermentation9080744
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com
https://orcid.org/0000-0001-8287-9298
https://doi.org/10.3390/fermentation9080744
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com/article/10.3390/fermentation9080744?type=check_update&version=2


Fermentation 2023, 9, 744 2 of 12

Recently, environmental pollution caused by littering of plastics is more than just an
unsightly problem. Especially, microplastics are accessible and seriously harmful to aquatic
organisms in the oceans, with potential threats to human health [11,12]. Lactic acid, the
monomer of polylactic acid, has gained increasing attention since it serves as feedstock
for the manufacturing of biodegradable plastics [13]. As one of the naturally occurring
organic acids, lactic acid has also been widely applied in food, cosmetic, leather, textile
and pharmaceutical industries [14,15]. Global lactic acid demand is expected to reach
1960.1 kilotons by 2020. Lactic acid can be manufactured by both chemical synthesis and
biorefinery-based lactic acid fermentation. Compared to chemical synthesis, the biotechno-
logical process offers several advantages including utilization of renewable substrate, low
energy requirements, mild production temperature and high purity of final products [16].
Although more favorable than the chemical method, the biorefinery process is economically
less viable owing to its high cost of food-based substrate in lactic acid fermentation. Thus,
the abundant availability and non-edible characteristics of lignocellulosic biomass make
them competitive substrates for sustainable lactic acid production [17].

To date, a few works have reported the potential of lactic acid bacteria-based biorefiner-
ies from BSG [18–20]. Generally, supplementation of several nutrients to the fermentation
substrates is crucial for the utilization of BSG by lactic acid bacteria [21]. While carbon
sources in lignocellulosic hydrolysate are required to generate energy for proliferation,
other nutrients such as nitrogen sources, metal ions and vitamins are always supplemented
to compensate the nutritional deficiencies [14]. Researchers have supplemented yeast ex-
tract [16,20], MRS broth medium components (except the carbon source) [16], malt rootlets
extract or soybean meal extract [17], and thin stillage [19] to BSG hydrolysate so as to
enhance lactic acid production. Although supplementation of these nutrients seems to
be beneficial for lactic acid fermentation with BSG, industrialized biorefineries should be
preferable to avoid nutrient supplementation to reduce the overall cost and simplify the
substrate composition.

On the other hand, lactic acid fermentation starts from pretreated BSG followed by
enzymatic saccharification. Enhanced lactic acid production needs to be achieved by over-
coming the incomplete utilization of sugar derived from BSG. However, the hydrolysates
of lignocellulosic materials are composed not only of hexoses (such as glucose and cel-
lobiose) but also pentoses (such as xylose and arabinose). Lactic acid bacteria demonstrate
utilization of glucose as a preferred sugar over other sugars that might be present and will
suppress their catabolism until glucose is fully consumed [22,23]. The carbon catabolite
repression (CCR) mechanism is responsible for the bioconversion of carbon sources in
a sequential manner, which in turn is expressed as delays in both sugar consumption
and final lactic acid generation [23]. In order to achieve efficient lactic acid fermentation
from a lignocellulose-derived sugar mixture, we recently established a unique strategy to
co-ferment cellobiose and xylose to overcome glucose-induced CCR by Enterococcus mundtii
in batch fermentation. As a result, 163 g/L lactic acid with a yield of 0.87 g/g consumed
sugars was observed by using simulated energy cane hydrolysate [23]. Moreover, this pre-
vious work also proved an opportunity for a hydrolysis step without involving exogenous
β-glucosidase loading, which would greatly simplify the lignocellulosic biorefinery process
and get more cost-effective lactic acid production.

Production of commercial cellulase enzyme depends on its extracellular secretion by
common natural habitats of selected microbes such as Trichoderma reesei and Aspergillus
niger [24]. However, most of these enzyme products consist primarily of endo-β-1,4-glucanases
(EG, EC 3.2.1.3) and exo-β-1,4-glucanases (or cellobiohydrolases) (CBH, EC 3.2.1.91.), while
lacking sufficient activity of β-glucosidases (β-G, EC 3.2.1.21), which play a key role during
the final conversion of cellobiose into glucose [25]. The low production of β-glucosidases
becomes the major limitation for efficient and complete industrial cellulose hydrolysis [26].
Although numerous studies have succeeded in demonstrating enzymatic hydrolysis of
lignocellulosic substrates by supplementing β-glucosidases into commercial cellulase,
it involved extra costs and efforts [27,28]. Hence, the aim of this present work was to
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establish a novel biorefinery-based lactic acid production from BSG hydrolysate without
any nutrient supplementation. The enzymatic hydrolysis was designed by using cellulase
without additional β-glucosidases, and CCR in the co-fermentation with generated pentose
and hexose therein was evaluated.

2. Materials and Methods
2.1. Alkaline Pretreatment

Brewer’s spent grain was obtained from the Hong Kong Beer Company. The laboratory-
scale alkaline pretreatment was performed in a 4-L rotary electric heating digester made
by Xian Yang Tong Da Light Industry Equipment Co., Ltd. (Shanxi, China). BSG of 500 g
oven dry weight was mixed with 1% sodium hydroxide solution at a 1:10 solid-to-liquid
ratio. In the alkaline treatment, the loaded BSG was subjected to a temperature of 121 ◦C
for 15 min. The pretreated BSG was then washed with water until near neutral pH, dried at
50 ◦C to 50% moisture content, and stored at 4 ◦C for further enzymatic hydrolysis. The
composition of glucan and hemicellulose of the pretreated dry matter were estimated as
18.2% and 20.4%, respectively, based on Laboratory Analytical Procedures (LAPs) standard
protocols of the National Renewable Energy Laboratory (NREL) [29,30].

2.2. Enzymatic Hydrolysis

Commercial cellulase Celluclast 1.5L and Cellic CTec2 were kindly provided by
Novozymes (China) Investment Co. Ltd. These two kinds of commercial cellulase addi-
tions have no negative effect on subsequent lactic acid fermentation by E. mundtii [31,32].
Cellic CTec 2 has a specific activity of 150 filter paper units (FPU)/mL, while Cellulast
1.5L has a specific activity of 60 FPU/mL. These two cellulase resources were used in the
enzymatic hydrolysis separately. Different cellulase dosages were estimated as 5.0, 7.5, 10.0,
and 15.0 FPU/g-dry biomass. Presently, few reports have focused on the biorefinery of
lignocellulosic biomass with high solid loading (>10% solid content) [33,34]. A high lactic
acid concentration would be obtained with high solid loading of BSG substrate, which
resulted in lower costs for the subsequent purification process [35]. Therefore, 10% solid
content (solid-to-liquid ratio at 1:10) was selected in BSG pretreatment and enzymolysis
experiments. Alkaline pretreated BSG slurries at 10% solid content were hydrolyzed using
Celluclast 1.5L and Cellic CTec 2 with four different enzyme concentrations after the initial
pH was adjusted to 5.0 with 10 M NaOH. 1 M Sodium acetate (NaAc) was added as buffer
to maintain an optimum pH of 4.8–5.2 for enzymes function. All setups were put into a
constant temperature orbital shaking incubator (HZQ-X100, PeiYing Co., Suzhou, China)
at 50 ◦C for 72 h with an agitation speed of 200 rpm. Samples were taken at different
time intervals and analyzed for sugar generation. After the enzymatic hydrolysis, the BSG
slurries were centrifuged at 2000× g at 4 ◦C for 30 min to separate the supernatant from
solid residues. The supernatants were further filtrated through a 0.45-µm membrane filter
to remove the suspended particles. The BSG hydrolysates were prepared for the separate
hydrolysis and fermentation processes.

2.3. Microorganism and Inoculum Cultivation

E. mundtii CGMCC 22227 was used exclusively in this study. The stock of the strain
was maintained at −80 ◦C in vials containing 15% (v/v) glycerol. For the seed refresh, 1 mL
of the glycerol stock was aseptically transferred into 9 mL of modified Man, Rogosa, and
Sharpe (mMRS) medium as described previously [23], and then incubated at 43 ◦C for
24 h. Then the pre-culture was conducted by transferring 10 mL of the refreshed seed to
a 300-mL flask with 90 mL mMRS medium and incubating for 8 h at 43 ◦C. The mMRS
medium contains the following components per liter of deionized water: 10 g peptone,
8 g beef extract, 5 g CH3COONa·3H2O, 4 g yeast extract, 2 g K2HPO4, 2 g C6H5O7(NH4)3,
0.2 g MgSO4·7H2O, 0.05 g MnSO4·4H2O, 1 mL Tween 80, 10 g cellobiose and 10 g xylose.
The medium was adjusted to an initial pH of 7.0 using 10 M NaOH prior to autoclaving at
115 ◦C for 15 min.
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2.4. Lactic Acid Fermentation
2.4.1. Separate Hydrolysis and Fermentation (SHF)

SHF for lactic acid production was conducted in 100-mL serum bottles containing
50 mL BSG hydrolysates by 5 FPU/g-dry biomass of Celluclast 1.5L or Cellic CTec2 loading
without any nutrient supplementation. Hydrolysis steps were performed at 50 ◦C and
200 rpm for 96 h, initial pHs of the BSG substrates were adjusted to 5.0 and maintained
at 4.8–5.2 with 1 M Sodium acetate. Subsequently, fermentation steps were initiated by
inoculating 10% (v/v) of the pre-culture broth into the BSG hydrolyzed substrates [23].
Batch fermentations were carried out at 43 ◦C with stirring (200 rpm), and the pHs were
maintained by adding 30 g/L CaCO3 as a neutralizing agent in the substrates.

2.4.2. Simultaneous Saccharification and Fermentation (SSF)

For SSF tests with serum bottle, the procedures were the same as described for SHF
except the pre-culture broth was inoculated at the beginning of the SSF processes. All the
SSF cultures were grown at 43 ◦C and indicated pH with an agitation speed of 200 rpm by
adding 30 g/L CaCO3 as a neutralizing agent.

For SSF experiments with jar fermenter, fermentations were carried out in 1-L jar
fermenters containing 0.4 L of pretreated BSG slurry. 5 FPU/g-dry biomass of Celluclast
1.5L or Cellic CTec 2 were added into the BSG substrates to initiate pre-hydrolysis. Main
cultures were started with inoculating 10% (v/v) of the pre-culture broth. The batch
fermentations were performed with agitation of 200 rpm at 43 ◦C, equipping an automatic
pH control at 7.0 by 10 M ammonium hydroxide addition [23]. Samples were taken at
different time intervals and analyzed for sugars and products.

2.5. Analytical Methods

The collected samples were centrifuged at 10,000× g for 10 min to remove solids, and
the supernatants were filtered through a 0.45 µm filter and determined concentrations
of sugars and products by high-performance liquid chromatography (HPLC, Shimadzu;
Kyoto, Japan) equipped with an Aminex HPX-87H column (Bio-Rad; Hercules, CA, USA).
HPLC analysis was conducted at the column temperature of 60 ◦C with 5 mM H2SO4 as a
mobile phase at a flow rate of 0.6 mL/min using an injection volume of 50 µL. The lactic
acid productivity (g/L/h) was calculated as the ratio of total lactic acid produced (g/L)
to the fermentation time (h). Maximum lactic acid productivity (g/L/h) was calculated
between each sampling period within the exponential growth phase. The lactic acid yield
(g/g) was calculated based on carbohydrate content as the total lactic acid produced (g)
per total carbohydrate content (g). Each experiment was performed at least twice to ensure
reproducibility. Values were expressed as means ± standard deviation.

3. Results and Discussion
3.1. Effect of Cellulase on Enzymatic Hydrolysis of Pretreated BSG

The composition and content of cellulase enzymes are considered crucial for enzy-
matic hydrolysis, which affects sugar generation and bacterial fermentation [36]. Thus,
the optimization of enzyme dosages for fermentable sugar yield is one of the most im-
portant stages in the development of an efficient and economical lactic acid production
strategy. Compared to Cellic CTec2, Celluclast 1.5L contains similar contents of endo-β-
1,4-glucanases and exo-β-1,4-glucanases, however, just 15.0 U/mL of β-glucosidase were
detected in Celluclast 1.5L, while 2731 U/mL in Cellic CTec2 [37]. There were no reports on
optimizing enzymatic hydrolysis with Celluclast 1.5L to generate cellobiose as one of the
main products. In this study, the effects of enzymatic saccharification by different Celluclast
1.5L loadings were initially compared with Cellic CTec2.

Figure 1 shows the released sugars during enzymatic saccharification with 5.0, 7.5, 10.0,
and 15.0 FPU/g-dry biomass of Celluclast 1.5L and Cellic CTec2, respectively. Generally,
sugar concentrations increased with the enzyme loadings except cellobiose. Since the exis-
tence of higher β-glucosidase in both Cellic CTec2 and 15 FPU/g-dry biomass of Celluclast
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1.5L, the generated cellobiose would be further hydrolyzed into 2 glucose molecules. The
highest cellobiose concentration of 11.1 g/L was detected at 70 h enzymatic hydrolysis
by 15 FPU/g-dry biomass of Celluclast 1.5L. Arabinose had an average concentration of
around 1–2 g/L for all enzymatic hydrolysis processes.
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Figure 1. Sugar concentrations from enzymatic hydrolysis of pretreated BSG with different loadings
of Celluclast 1.5L (a,c) and Cellic CTec2 (b,d). Data points represent the mean values from three
control experiments.

In order to estimate the hydrolysis rate of cellobiose, the parameter RC/G (ratio of
cellobiose-to-glucose) was induced to express the concentration ratio of cellobiose to glu-
cose (Figure 2). According to the results, RC/G decreased with both Celluclast 1.5L and
Cellic CTec2 loadings. A maximum RC/G up to 0.494 was observed by setting Celluclast
1.5L loading at 5 FPU/g-dry biomass, compared to 0.150 by the same loading of Cellic
CTec2. Owing to the low β-glucosidase activity, the cellobiose was accumulated in the
BSG hydrolysate, which made the low enzyme loading of Celluclast 1.5L a preferable
candidate for avoiding glucose-induced CCR in the lactic acid fermentation process. It was
reported that the lactic acid production cost had increased from US$ 944 to US$ 3692 per
metric ton with the increasing price of commercial enzymes [38]. Therefore, the optimized
5 FPU/g-dry biomass Celluclast 1.5L for BSG hydrolysis provided a less expensive way to
reduce the overall cost of biorefinery-based lactic acid production. On the other hand, it was
noticed that total sugars released by Celluclast 1.5L were slightly lower compared to Cellic
CTec2 with the same enzyme loadings. It has been identified that the feedback inhibition
by cellodextrins on enzymatic cellulose hydrolysis reactions imposed potential limitations
on the efficient lignocellulose utilization [39]. Consequently, a bioconversion process that
can reduce generated sugars should be crucial for bypassing the feedback inhibition.
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3.2. Comparison of SHF and SSF Processes for Lactic Acid Production

The hydrolysis experiment proved that Celluclast 1.5L should be a better option com-
pared with Cellic CTec2 for BSG hydrolysis by our proposed co-fermentation strategy [23].
The formed BSG hydrolysates were further observed in SHF and SSF processes by using E.
mundtii. SSF means the enzymatic hydrolysis and fermentation are conducted in the same
reactor under the same conditions, while SHF refers to processes of enzymatic hydrolysis
and fermentation that were conducted separately, each process could thereby be carried
out under optimal conditions. Compared with SHF, SSF is usually preferred in industry
processes due to lower cost, reduced contamination risk, and lower sugar inhibitory effects.
Other advantages of SSF over SHF include the usage of a single reactor for both steps,
rapid processing time, reduced feedback inhibition by the generated sugars, and increased
productivity [14,40]. However, the requirement for different optimal temperatures and pHs
for saccharification and fermentation is the main limiting factor for SSF [14].

In a preliminary fermentation experiment, batch SHF and SSF were performed in
serum bottles containing 10% solid content of BSG slurries supplemented with 5 FPU/g-dry
biomass of Celluclast 1.5L or Cellic CTec2, respectively. Based on the previous hydrolysis
results, the composition of BSG hydrolysate mainly consists of glucose, cellobiose and
xylose. As shown in Table 1, higher glucose accumulated at the end of SHF compared
to those in SSF processes. For SHF and SSF with Celluclast 1.5L, similar amounts of
residual cellobiose (5.99 ± 1.42 and 5.70 ± 1.02 g/L, respectively) were generated. One
difference was that cellobiose and xylose were slowly consumed during SSF but almost
not in SHF. Due to CCR, bacteria would feed on preferable glucose, instead of cellobiose
and xylose [23]. As saccharification and fermentation were simultaneously undergoing in
SSF, lower concentrations of sugars were accumulated. Studies showed that CCR can be
prevented by retaining glucose less than a certain concentration in the substrate for lactic
acid fermentation [14]. In other words, when glucose concentration remains at a relatively
low level (i.e., 25 g/L) that does not exceed the threshold of CCR, bacteria would feed
on any sugar that was freshly produced from hydrolysis. For Celluclast 1.5L, the lactic
acid production of SSF was 25.7 ± 2.27 g/L, while that of SHF was 21.9 ± 3.47 g/L. For
Cellic CTec2, the lactic acid production of SSF was 23.1 ± 4.01 g/L, while that of SHF was
20.8 ± 1.62 g/L. Owing to the glucose-induced CCR, a large amount of pentose would
not be utilized in the presence of high glucose concentration. Thus, the most efficient
composition of hydrolyzed glucan for lactic acid production should keep glucose stay at
its disaccharide form, i.e., cellobiose, so that all sugar consumption can be improved more
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effectively. In summary, saccharification of pretreated BSG slurries using 5 FPU/g-dry
biomass of Celluclast 1.5L in an SSF process enhanced both the utilization of mixed sugars
and the production of lactic acid by E. mundtii.

Table 1. Lactic acid fermentation with pretreated BSG by SHF and SSF processes.

Fermentation Hydrolytic CGlc
1 Ccel

2 CXyl
3 CLA

4 YLA
5

Mode Enzyme (g/L) (g/L) (g/L) (g/L) (g/g)

SHF (121 h) Celluclast 1.5L 23.0 ± 3.43 5.99 ± 1.42 10.4 ± 0.88 21.9 ± 3.47 0.287
SHF (121 h) Cellic CTec2 35.9 ± 4.02 3.18 ± 0.33 13.0 ± 1.73 20.8 ± 1.62 0.273
SSF (145 h) Celluclast 1.5L 18.2 ± 1.97 5.70 ± 1.02 7.38 ± 0.79 25.7 ± 2.27 0.337
SSF (145 h) Cellic CTec2 20.2 ± 0.73 4.15 ± 1.83 8.96 ± 1.65 23.1 ± 4.01 0.303

1 Residual glucose concentration; 2 Residual cellobiose concentration; 3 Residual xylose concentration; 4 Maximum
lactic acid concentration; 5 Lactic acid yield. Averages with standard deviations are based on three independent
fermentations.

3.3. Optimal pH for Lactic Acid Production from Pretreated BSG

In addition to the enzyme loading, maintaining optimal operating conditions such
as pH is also crucial for the performance of SSF. The typical operating pH for enzymatic
hydrolysis ranges between 4.5 and 5.5 [41,42], in contrast to E. mundtii exhibited the optimal
pH of around 7.0 for lactic acid production [23]. Thus, compromises between the conditions
for enzymatic hydrolysis and fermentation are necessary to achieve high sugar utilization,
lactic acid accumulation and yield during the SSF process [43]. In an attempt to study the
effect of pH on lactic acid fermentation, SSF cultures were conducted under initial pH at
5.5, 6.0, 6.5, 7.0 and 7.5 in serum bottles to verify the optimal pH for lactic acid production.

Table 2 shows the kinetic parameters of SSF at different pH values by using pretreated
BSG. Under pH values from 5.5 to 6.0, glucose, cellobiose and xylose consumptions were
very slow and almost not utilized until the end of fermentations. Whereas sugar consump-
tion rates were higher from pH 7.0 to 7.5. Although lower residual sugars were observed
at pH 7.5, the lactic acid concentration and yield did not exhibit maximum values. After
120 h duration of cultivation, 22.30 ± 3.02 g/L of lactic acid with a yield of 0.292 g/g
was achieved at pH 7.0. A small amount of 1.03 ± 0.08 g/L acetic acid was detected as
a by-product in this process. Increases in sugar utilization and lactic acid production in
SSF of lactic acid with an initial pH of 7.0 have been also reported for other lactic acid
producers, including Bacillus coagulans [44].

Table 2. Effects of pH on SSF of lactic acid from pretreated BSG.

pH CGlc
1 (g/L) CCel

2 (g/L) CXyl
3 (g/L) CLA

4 (g/L) YLA
5 (g/g)

5.5 38.7 ± 3.13 5.64 ± 1.50 16.8 ± 2.22 5.61 ± 0.53 0.074
6.0 29.6 ± 1.37 6.86 ± 0.16 14.9 ± 1.03 13.83 ± 2.18 0.181
6.5 22.0 ± 3.28 5.87 ± 1.76 12.5 ± 1.83 18.15 ± 1.79 0.238
7.0 16.2 ± 0.93 4.32 ± 0.69 9.36 ± 0.73 22.30 ± 3.02 0.292
7.5 14.2 ± 2.34 4.27 ± 1.02 7.94 ± 0.34 19.77 ± 1.28 0.259

1 Residual glucose concentration; 2 Residual cellobiose concentration; 3 Residual xylose concentration; 4 Lactic
acid concentration at 120 h; 5 Lactic acid yield. Averages with standard deviations are based on three independent
fermentations.

3.4. Improved SSF of Lactic Acid from Designed BSG Substrates

It was reported that the viscosity of the fermentation medium and initial concentration
of fermentable sugars in SSF was associated with the performances of the inoculated
bacteria [45,46]. Lower initial sugars would limit cell growth and lactic acid production,
whereas higher initial sugars would impose higher osmotic stress [47]. Since a relatively
high cellobiose concentration was detected around 20 h of hydrolysis with 5 FPU/g-dry
biomass of Celluclast 1.5L, to verify the improved lactic acid production in SSF with
prehydrolysis compared with ordinary SSF, 20 h of prehydrolysis prior to the main SSF
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was investigated in this study. During the BSG hydrolysis step, pH and temperature
were set to the optimum for the hydrolytic enzyme (50 ◦C, pH 5.0) to ensure the speed of
saccharification was maximal, then they were shifted to the optimum of the bacteria (43 ◦C,
pH 7.0) to maximize lactic acid conversion rate during SSF.

The sugar consumption and product concentration of the ordinary SSF and SSF with
prehydrolysis processes are presented in Figure 3. Sugars were released and accumu-
lated along with the 20 h of prehydrolysis in SSF, and their consumption was initiated
by bacterial inoculation (Figure 3a). The SSF with prehydrolysis exhibited simultaneous
consumption of glucose, cellobiose, and xylose during the early phase of fermentation. The
released glucose and xylose were depleted in both SSF with prehydrolysis and the ordinary
SSF processes, while a low amount of 2–3 g/L of cellobiose was observed and the end of
fermentations. Glucose-induced CCR had less effect in this scenario and high sugar uti-
lizations were demonstrated. Correspondingly, the SSF with prehydrolysis could improve
L-lactic acid production (maximum concentration, 53.1 ± 2.83 g/L, maximum productivity,
3.65 ± 0.22 g/L/h, and yield, 0.696 g/g) at an optical purity of ≥99.4% compared to those
parameters (44.9 ± 1.78 g/L, 3.06 ± 0.40 g/L/h, and 0.588 g/g, respectively) in the ordinary
SSF. Both of the two fermentations were homolactic processes since only small amounts of
by-product (1–2 g/L acetic acid) were observed. It thus appears that prehydrolysis prior to
main SSF can significantly increase the lactic acid production in SSF. This work succeeded
in establishing SSF conditions for homolactic fermentation of mixed sugars derived from
BSG with low effect of CCR, which have not been previously reported.
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There is currently great interest in efficient SHF or SSF of carbohydrates in hydrolysates
derived from lignocellulosic biomasses for lactic acid production. Table 3 summarizes the
results of recent reports on lactic acid fermentation by using grain biomass as substrates.
Basically, most of these studies investigated lactic acid fermentation from grain-derived
lignocellulosic hydrolysates by supplementing the cultures with several nutrients such
as MRS broth [17,48], yeast extract [21,49,50] and nitrogen gas [51] for improving the cell
growth and lactic acid production. As shown in Figure 4, the yields and productivities
of lactic acid vary with different substrates, fermentation modes, as well as producers.
Generally, the glucose and starchy substrates usually result in faster lactic acid produc-
tion [49,50]. To the best of our knowledge, the present study is the first to investigate lactic
acid conversion from mixed sugars of glucose-cellobiose-xylose dissolved in lignocellulosic
hydrolysate and to minimize glucose-induced CCR under optimized hydrolysis conditions,
which led to relatively high productivities of lactic acid and fewer by-products. Our results
exposed a great potential for lactic acid bioconversion by using the designed lignocellulosic
substrate. Furthermore, a novel biorefinery approach for BSG resource recovery with
high-value-added chemical lactic acid production was revealed in this work. The residues
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divided from lactic acid fermentation with BSG could be reused as a kind of substrate for
composting, which provide a full resource processing technology for BSG valorization.

Table 3. Lactic acid fermentation with grain biomass hydrolysates.

Microorganism Substrate Fermentation
Mode

Nutrients Sup-
plementation

CLA
1

(g/L)
YLA

2

(g/g)
PLA

3

(g/L/h) Ref.

E. mundtii
BSG SSF No 44.9 0.588 3.06 This study

BSG SSF with
prehydrolysis No 53.1 0.696 3.65 This study

L. delbrueckii BSG SHF MRS broth 35.5 0.485 0.82 [17]

L. rhamnosus BSG SHF 50 g/L yeast
extract 39.4 0.913 1.69 [21]

L. delbrueckii
UFV H2b20 BSG SHF No 5.4 0.074 0.11 [18]

L. rhamnosus
ATCC 7469

BSG supplemented
with glucose SHF 50 g/L yeast

extract 116.1 0.933 2.0 [50]

L. plantarum ∆ldh1 Corn stover SSF mMRS broth 21.1 0.505 0.5 [48]

L. bifermentans
DSM 20003T Wheat bran SHF No 62.8 0.647 1.2 [52]

L. delbrueckii IFO 3202 Rice bran SSF N2 gas 28.0 0.483 0.78 [51]

L. sp. MKT-878
Wheat starch SHF 6 g/L yeast

extract 118 0.908 3.57 [49]

Wheat starch SSF with
prehydrolysis

6 g/L yeast
extract 121 0.931 4.32 [49]

1 Maximum lactic acid concentration; 2 Lactic acid yield based on carbohydrate content; 3 Maximum lactic acid
productivity.
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4. Conclusions

This study demonstrated the feasibility of lignocellulosic waste fermentation derived
from BSG by using E. mundtii. Celluclast 1.5L at an enzyme loading of 5 FPU/g biomass
was optimized for BSG hydrolysis to generate pentose and hexose at a preferred RC/G.
SSF process enhanced the utilization of fermentable sugars in fermentation. Maximum
volumetric productivity of 3.65 g/L/h was achieved with 53.1 g/L optically pure L-lactic
acid produced by controlling pH at 7.0 during the SSF with 20 h of prehydrolysis. The
glucose-induced CCR was successfully minimized in lactic acid production with cellulose
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and hemicellulose-derived carbon sources. Lactic acid producing strain could grow in BSG
hydrolysate even without any nutrient supplementation might be due to that BSG is not
only used as carbon source but also supplied nitrogen source for lactic acid producing
strain. Finally, an efficient biorefinery of lactic acid production based on SSF of mixed
sugars in BSG hydrolysate was successfully established.
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