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Abstract: Mango juice (MJ) was co-inoculated with Lactobacillus plantarum + Rhodotorula glutinis or
Metschnikowia pulcherrima (LP + RG or LP + MP, respectively) and Lactobacillus casei + Rhodotorula
glutinis or Metschnikowia pulcherrima (LC + RG or LC + MP, respectively) to evaluate their effect on
the physicochemical characteristics, antioxidant capacity, and aroma compounds of MJ after 72 h of
fermentation at 28 ◦C. Results indicated that among the fermented MJ, that which was fermented
with LC + RG yielded the highest content of total acid (15.05 g/L). The pH values of MJ fermented
with LC + MP, LC + RG, LP + RG, and LP + MP were 3.36, 3.33, 3.26, and 3.19, respectively, and
were lower than that of CK (4.79). The juice fermented with LP + MP culture had the lowest sugar
content (73.52 g/L), and those fermented with LP + RG and LP + MP had higher total phenol contents
and stronger DPPH radical scavenging activity, ABTS radical scavenging activity, iron-reducing
antioxidant capacity, and copper reducing antioxidant capacity than the others. Carotenoids in MJ
had varying degrees of degradation after mixed fermentation by using all four combinations. Volatile
compounds revealed that the co-fermentation of LP + RG produced increased norisoprenoid aroma
compounds. The mixed co-inoculation method is a strategy to contemplate for MJ fermentation, but
the modalities of inoculation need further investigation. Success depends on the suitable combination
of non-Saccharomyces and lactic acid bacteria and consideration of strain variation.

Keywords: mango juice; mixed fermentation; lactic acid bacteria; non-Saccharomyces; aroma;
norisoprenoids

1. Introduction

Mango (Mangifera indica L.) is the most important commercial fruit due to its intense
aroma, delicious flavor, and high nutritional value [1]. Among the various processed
mango products, mango juice (MJ) is the most favored because of its pleasing organoleptic
qualities and rich nutritional value [2].

Flavor plays a crucial role in the quality and acceptability of MJ products. MJ is suitable
for use in the production of probiotic beverages via biofermentation. Reddy et al. [3] used
lactic acid bacteria (LAB) to ferment MJ and found that Lactobacillus plantarum (LP) utilizes
the sugar and decreases the pH quickly. The viability of cells is maintained at 107 CFU/mL
throughout the storage period. Coulibaly et al. [4] used non-Saccharomyces-fermented MJ
and observed reduced sugar content, increased contribution of flavor and aroma to the
juice, and suppression of undesirable microorganisms.

The FMJ produced by monocultures of LAB often lacks the complexity of flavor and
character, but monocultures of non-Saccharomyces are sometimes related to low acidity, low
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fermentation power, and poor taste [5]. However, in controlled mixed-culture fermenta-
tion, these disadvantages of non-Saccharomyces and LAB may not be expressed, and the
advantages of having both kinds of microorganisms may be properly manifested.

Recently, more studies highlighted the positive roles of non-Saccharomyces yeast or LAB
in controlled mixed-culture fermentation. The simultaneous and successive inoculations of
Rhodotorula mucilaginosa and Saccharomyces cerevisiae to ferment ecologically dry white wines
revealed that mixed fermentation improves the composition of varietal and fermentation
aromatic compounds and enhances citrus, sweet fruit, tart fruit, berry, and floral aromatic
traits [6]. Sadineni et al. [7] found that Torulaspora delbrueckii/Metschnikowia pulcherrima (MP)
fermentations mixed with S. cerevisiae may be important to the mango winemaking industry.
Mixed cultures can be used to improve product quality, enhance aroma complexity, reduce
volatile acids, and modify some undesired parameters of the final wine. Hu et al. [8] also
pointed out that the selection of non-Saccharomyces yeast strains for co-fermentation with S.
cerevisiae is a promising method for improving the organoleptic quality of fruit wines. Jin
et al. [9] used LP and S. cerevisiae DV10 for the mono- and co-culture fermentation of mango
puree and found that the mixed co-culture reduces terpenes and produces alcohols and
esters. Co-cultures obtain the highest total phenolic content (TPC) and show the strongest
antioxidant activity.

Studies pointed out that many of the important fruit aroma volatiles come from the
degradation of carotenoid pigments [10]. Norisoprenoids are compounds with specific
flavors produced by the degradation of carotenoids and have a low olfactory threshold.
Thus, small amounts of norisoprenoid compounds can have a significant organoleptic
effect on the taste of food [11]. Therefore, the aroma quality of MJ can be improved if the
degradation of carotenoids is fully utilized to increase the aroma of MJ [12].

Probiotic co-fermentation enhances flavor and increases the variety of fermented
products. However, the use of non-Saccharomyces + LAB for the fermentation of MJ has
not received much attention. This study aims to investigate the effect of mixed culture
co-inoculation fermentations by using two non-Saccharomyces yeasts with two LAB on
the physiochemical indices, TPC, antioxidant capacity, and volatile aroma and focuses
on the carotenoid degradation related to the production of norisoprenoid compounds of
fermented MJ. The outcome of this study may help develop different styles of FMJ.

2. Materials and Methods
2.1. Experimental Materials

Mature mango samples (variety: ‘Hong mang’ from a local mango farm in Changjiang,
Hainan, China) used in this study were purchased from a supermarket in Haikou, Hainan,
China. All fruits were free from evident mechanical damage.

MP (GDMCC140157), Rhodotorula glutinis (RG, GDMCC2.27), LP (GDMCC1.140), and
Lactobacillus casei (LC, GDMCC1.159) were purchased from Guangdong Microbial Strain
Conservation Center. YPD liquid medium and MRS broth were obtained from Hope
Biotechnology Co., Ltd. (Qingdao, China).

2.2. MJ Fermentation

MJ was obtained by hand peeling, slicing, and squeezing the fresh and mature mango
‘Hong’ into a juice by using a household juicer (JYZ-E18; Joyoung Co., Ltd., Hangzhou,
China) and mixed well with 50% (v/v) sterile water. The soluble solids of mango juice were
adjusted to around 18 ◦Brix by adding sucrose and sterilized at 88 ◦C for 15 min. Activated
LAB (5%, v/v) and non-Saccharomyces (5%, v/v) were inoculated into MJ at the same time.
Fermentation was carried out at 28 ◦C for 72 h.

2.2.1. Physicochemical Analysis

The total soluble solids (◦Brix) and pH were measured at indicated time points by
using a handheld refractometer (ATAGO PAL-1, Tokyo, Japan) and a pH meter (FE20
laboratory pH meter), respectively.
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The organic acid content was determined using the high-performance liquid chro-
matography described previously [13]. The ZORBAXSB-Aq column (250 mm × 4.6 mm,
5 µm) was attached to a photodiode array detector on the UV spectrum (210 nm). The col-
umn was eluted with a mobile phase containing NH4H2PO4 (0.01 M, pH = 2.62): methanol
at a ratio of 97:3 at 30 ◦C and flow rate of 0.8 mL/min. The peaks of each organic acid were
determined by comparing the sample retention time with those of standards. For each acid,
a standard curve was constructed using standards to determine the relationship between
peak area and concentration.

The sugar concentration was determined by referring to the method of George-
lis et al. [14]. The chromatographic column Anthenanh NH2-RP (4.6 mm × 250 mm,
5 µm) connected to a RID differential detector was used. The column was eluted with a
mobile phase of acetonitrile and water (7:3) at 35 ◦C and flow rate of 1 mL/min. The peaks
of each sugar were determined by comparing the retention time of the sample with that of
the standard.

2.2.2. TPC and Antioxidant Activity Assays

TPC was determined using the Folin–Ciocalteu method modified by Martins et al. [15].
In brief, 0.5 mL of sample and 0.25 mL of Folin–Ciocalteu reagent were added into a test
tube. The mixture was left in the dark for 5 min, added with 0.5 mL of 12% Na2CO3
solution and 3.75 mL of distilled water, and left in the dark for another 2 h. The absorbance
of the mixture was measured at 765 nm. Gallic acid was used as standard, and results were
expressed as gallic acid equivalents (GAE).

The DPPH radical scavenging ability was determined in accordance with the method
described by Escudero-López et al. [16]. The absorbance of the DPPH solution was diluted
to 1.2–1.3 with ethanol at 540 nm. About 3.8 mL of DPPH solution was mixed with 0.2 mL of
sample, and the mixture was left in the dark for 45 min. The absorbance of the mixture was
measured at 540 nm. The DPPH radical scavenging capacity was calculated in accordance
with the following equation:

DPPH (%) = ([A control − A sample]/A control) × 100.

The 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·) radical scavenging
ability of FMJ was assayed using the method described by Thaipong et al. [17] with slight
modifications. The ABTS solution (7 mM) was mixed with potassium persulfate solution
(7.35 mM) and placed at room temperature, and protected from light for 16 h before use.
About 0.1 mL of sample was added with 3.9 mL of ABTS radical solution and mixed well.
Samples were placed in the dark for 10 min, and their absorbance was measured at 734 nm.
The ABTS radical scavenging capacity was calculated using the following equation:

ABTS (%) = ([A control − A sample]/A control) × 100.

The ferric ion-reducing ability was determined in accordance with the method de-
scribed by Vadivel et al. [18]. The FRAP reagent was prepared using acetate buffer solution
(0.3 M, pH 3.6), FeCl3·6H2O solution (20 mM), and TPTZ solution (10 mM) at a ratio of
10:1:1 (v/v/v). The FRAP reagent (3.0 mL) was added to the sample (1.0 mL) and mixed
well. The mixture was allowed to stand in the dark for 50 min. The absorbance of the
mixture was measured at 593 nm. The standard curve was constructed using FeSO4 as
standard, and results were expressed as FeSO4 equivalents.

The copper ion-reducing ability was determined by referring to the method described
by Jin et al. [19]. About 1.0 mL of extracted sample, 1.0 mL of copper sulfate (10 mM), 1.0 mL
of neocuproine solution (7.5 mM), and 1.0 mL of ammonium acetate solution (1 M) were
mixed well. The absorbance of the sample at 450 nm was measured. Water-soluble vitamin
E (Trolox) was used as a standard, and results were expressed as mM Trolox equivalents.
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2.2.3. Carotenoids Degradation Rate Determination

The UV-visible spectra of MJ in the range of 350–600 nm were obtained using the
full-wavelength scanning method. Considering the positive correlation between the mass
concentration of carotenoids and the OD450 nm value, the OD450 nm value of the liquid
culture was measured before and after inoculation.

The degradation of carotenoids in MJ was determined in accordance with the method
of Ordóñez-Santos et al. [20]. About 1 g of MJ was weighed precisely and added with 4 g of
tetrahydrofuran ethanol solution (10%, v/v). The mixture was shaken thoroughly, extracted
by ultrasonication for 30 min, and centrifuged at 8000 r/min and 10 ◦C for 10 min. The
supernatant was collected for the determination of OD450 nm.

Carotenoid degradation rate (%) = ([A0 − A1]/A0) × 100%, where A0 is the light
absorption value of the control at 0 h, and A1 is the light absorption value of the sample
after fermentation.

2.2.4. Aroma Component Analysis

Aroma components were extracted using headspace solid-phase microextraction
and analyzed by gas chromatography–mass spectrometry (Agilent 7890A-5975C).
The quadrupole was in the scanning mode (scanning range, 35–550 da; temperature,
150 ◦C; and electron ionization, 70 eV). The gas chromatographic column HP-5MS
(60 m × 250 µm × 0.25 µm) was used to separate the aromatic compounds. The col-
umn temperature was initially set at 50 ◦C and held for 4 min and then increased to 100 ◦C
for 2 min at a rate of 5 ◦C/min, 140 ◦C for 1 min at a rate of 4 ◦C/min, 180 ◦C for 2 min at
a rate of 4 ◦C/min, and 250 ◦C for 5 min at a rate of 5 ◦C/min. Helium was delivered as
carrier gas at a flow rate of 1.5 mL/min. The inlet temperature was 250 ◦C [21].

2.3. Data Analysis

Experimental data were compiled using the Excel 16 software, and data were processed
and analyzed by one-way analysis of variance by using the SPSS 24.0 software (SPSS Inc.,
Chicago, IL, USA). Results were expressed as mean ± standard deviation by using the
Origin 2019b (OriginLab Co., Northampton, MA, USA). A heatmap was established using
the R software (The University of Auckland, Auckland, New Zealand). The principal
component was analyzed using Excel 16 and Xlstat software.

3. Results and Discussion
3.1. Changes in pH, Soluble Solid Content, and Organic Acid Content

As shown in Table 1, the pH, ◦Brix, and organic acid contents of the LP + RG, LC + RG,
LP + MP, and LC + MP groups were significantly different compared with those of the CK
group after 72 h of fermentation (p < 0.05). The pH values of the LP + RG, LC + RG, LP + MP,
and LC + MP groups decreased from 4.79 to 3.26, 3.33, 3.19, and 3.36, respectively. The pH
of MJ co-cultured with LP decreased rapidly from 4.79 to 3.26 and 3.19. This finding might
be related to the high lactic acid production during fermentation by using LP [22]. The
total soluble solid contents of LP + RG, LC + RG, LP + MP, and LC + MP groups decreased
from 18.37 ◦Brix to 14.67 ◦Brix, 14.80 ◦Brix, 13.83 ◦Brix, and 14.17 ◦Brix, respectively, and
LP + MP showed strong sugar utilization ability.

Lactic acid is the main metabolite produced during the fermentation of LAB. As the
number of LAB increases, the lactic acid content also increases [19]. Lactic acid was not
detected in unfermented MJ. After 72 h of fermentation, the lactic acid concentration of
co-cultured fermented MJ increased significantly (p < 0.05). The lactic acid contents of
the LP + RG, LC + RG, LP + MP, and LC + MP groups increased to 7.77, 5.28, 6.10, and
4.20 g/L, respectively, accounting for about 50% of the organic acid content of each FMJ.
This result indicated that lactic acid was the main organic acid metabolite formed during
the fermentation of MJ.
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Table 1. pH, soluble solids, and organic acids analysis of mango juice.

Index CK LP + RG LP + MP LC + RG LC + MP

pH 4.79 ± 0.03 a 3.26 ± 0.01 c 3.19 ± 0.01 d 3.33 ± 0.01 b 3.36 ± 0.01 b

◦Brix 18.37 ± 0.06 a 14.67 ± 0.06 b 13.83 ± 0.06 d 14.80 ± 0.10 b 14.17 ± 0.05 c

Organic acid (g/L)
Lactic acid - 7.77 ± 0.52 a 6.10 ± 1.23 b 5.28 ± 0.44 c 4.20 ± 0.3 d

Malic acid 5.97 ± 0.22 a 1.81 ± 0.12 c 2.21 ± 0.05 c 5.30 ± 0.44 b 5.31 ± 0.42 b

Citric Acid 3.74 ± 0.07 a 1.45 ± 0.14 c 0.69 ± 0.02 d 2.01 ± 0.09 b 1.38 ± 0.05 c

Acetic acid 1.81 ± 0.07 a 0.24 ± 0.01 e 0.59 ± 0.02 d 1.36 ± 0.04 b 1.27 ± 0.05 c

Tartaric acid 1.50 ± 0.05 b 1.09 ± 0.04 c 2.04 ± 0.32 a 0.66 ± 0.05 d 1.82 ± 0.05 a

Oxalic acid 0.56 ± 0.01 a 0.18 ± 0.05 c 0.31 ± 0.02 b 0.12 ± 0.03 d 0.19 ± 0.04 c

α-Ketoglutaric
acid 0.39 ± 0.01 a 0.30 ± 0.01 c 0.15 ± 0.02 d 0.32 ± 0.01 b 0.13 ± 0.01 d

Total 13.97 12.84 12.09 15.05 14.30

The data of each sample are expressed as mean ± standard deviation (n = 3). Different letters (a–e) in the same
row indicate significant differences at p < 0.05.

Malic and citric acids are the main organic acids in MJ and account for 38.15% and
23.90%, respectively, of the total organic acid content. High malic acid concentration can
have a negative effect on the sensory properties of beverages [23]. When malic acid content
is too high, MJ tastes sour. The use of LAB can convert malic acid into a less coarse and
softer lactic acid [24]. An indicator of the fermentation process is the reduction rate of malic
acid and the conversion of malic acid into lactic acid. For LP + RG, the highest decrease in
malic acid content was observed after 72 h fermentation, showing the strongest reduction
in malic acid [25]. The citric acid contents of FMJ in LP + RG, LC + RG, LP + MP, and
LC + MP groups decreased significantly (p < 0.05) from 3.74 g/L to 1.45, 2.01, 0.69, and
1.38 g/L, respectively. LP + MP had the strongest citric acid utilization of 81.55%, and
organic acid was the second carbon source for microbial reproduction during fermentation.
Thus, this strain presumably uses citric acid as a carbon source to metabolize [26]. This
metabolism in LAB and yeast co-cultures has also been described in other studies [19].

After 72 h of fermentation, the contents of oxalic and tartaric acids in MJ decreased.
The reduction in tartaric acid concentration might be related to the formation of tartaric
acid salt precipitates. During fermentation, these organic acids may interact with other
substances, such as alcohols and aldehydes, to produce other flavor components [27].

Acetic acid was detected in unfermented MJ, but a significant decrease in acetic acid
content occurred after 72 h of fermentation. The acetic acid concentrations of FMJ in
LP + RG and LP + MP groups decreased from 1.81 g/L to 0.24 and 0.59 g/L, respectively.
This result might be due to the consumption of acetic acid by LP as a carbon source. The
decrease in acetic acid may be a positive factor because acetic acid may produce off-flavors
at high concentrations [28].

3.2. Changes in Sugar Content

The consumptions of substrates (i.e., sucrose, fructose, and glucose) for 72 h of fer-
mentation by LP + RG, LC + RG, LP + MP, and LC + MP are shown in Figure 1. The
total sugar levels of FMJ in LP + RG and LC + RG groups decreased from 167.48 g/L to
97.78 and 104.85 g/L, respectively. Fructose, glucose, and sucrose levels were reduced
from 26.68, 41.61, and 99.19 g/L, respectively, to 2.69, 0.47, and 70.36 g/L, respectively,
by LP + MP and to 4.50, 1.88, and 77.79 g/L, respectively, by LC + MP. The sugar con-
sumption of the different mixes revealed that the ability of MP to consume glucose and
fructose was better than that of RG, and this finding was consistent with the results of
Escribano et al. [29]. LP + MP/RG consumed glucose better than LC + MP/RG, and this
finding might be because LP preferred glucose as a carbon source and could easily adapt to
different conditions [30].
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3.3. Changes in Carotenoid Degradation Rate

Peak absorption was found to be at 450 nm by scanning between 350 and 600 nm
(Figure 2a). The magnitude of the absorbance value at 450 nm reflects the carotenoid
content. A high absorbance indicates high carotenoid content and vice versa.
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The changes in the degradation rate of carotenoids in MJ after fermentation are shown
in Figure 2b. The degradation rates of carotenoids in MJ were 14.51% in the unfermented
group and 20.57%, 17.50%, 21.48%, and 18.69% in the LP + RG, LC + RG, LP + MP, and
LC + MP groups, respectively. Muntean et al. [31] evaluated the stability of carotenoids
in courgette during lactic acid fermentation and observed different degradation rates of
carotenoids due to exposure to acidic pH. Liu et al. [32] found that with increasing concen-
trations of lactic and acetic acids, pH and α-carotene residuals decreased. Excess lactic acid
results in the loss of α-carotene, leading to the assumption that lactic acid accumulation has
a facilitative effect on carotenoid degradation. Multari et al. [33] assessed the carotenoid
composition of LAB-fermented ‘Washington Navel’ orange juice and similarly found that
LAB fermentation results in a significant reduction in carotenoids in orange juice samples
(p < 0.05). This result showed that this extensive loss could be due to the isomerization of
molecules during fermentation and consequent oxidative degradation.
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3.4. Changes in TPC and Antioxidant Activity

The changes in the TPC of FMJ are shown in Figure 3. At 0 h, the TPC of MJ (71.24 mg
GAE/100 mL) was at its lowest. After 72 h of fermentation, the TPC of the LP + RG
group was at its highest (123.92 mg GAE/100 mL), followed by the LP + MP (108.73 mg
GAE/100 mL), LC + MP (87.47 mg GAE/100 mL), and LC + RG (84.01 mg GAE/100 mL)
groups. Mashitoa et al. [30] and Hur et al. [34] noted an increase in TPC in lactic acid-
fermented foods. In the present study, the TPCs in the LP + RG and LP + MP groups
were higher than those in other groups. This finding might be due to the ability of LP
to remove the sugar fraction and hydrolyze the glycosyl fraction of phenolic compounds
during fermentation [35]. The increased TPC of fermented blueberry juice by LP is due
to the hydrolysis of glycosides into sapogenins and the possible production of esterases
that hydrolyze glycosidic ester bonds, which contribute to the release of phenolic com-
pounds. Zhang et al. [36] and Minnaar et al. [37] investigated the effect of mixed culture
co-inoculation on the phenolic and sensory characteristics of Syrah wines. A mixed culture
co-inoculation strategy of Syrah wines with non-yeast, yeast, and LAB has resulted in im-
proved phenolic and sensory characteristics compared with wines inoculated with brewer’s
yeast alone. The increase in TPC in FMJ might be attributed to the β-glucosidase produced
by the organism during fermentation that increased the polyphenol content [38,39].
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DPPH is a stable radical with a maximum absorbance of 540 nm in ethanol. When
DPPH encounters a proton donor substance (e.g., antioxidant), the radical acts as a scav-
enger, and the absorbance decreases [40]. As shown in Figure 4A, an increasing trend in
DPPH radical scavenging capacity was observed in all fermentation tests. After 72 h of
fermentation, the DPPH radical scavenging capacities of the four groups of mixed FMJ, i.e.,
LP + RG, LC + RG, LP + MP, and LC + MP groups, increased significantly (p < 0.05) from
9.00% to 25.79%, 17.53%, 33.00%, and 19.55%, respectively. Jin et al. [9] reported that the
DPPH radical scavenging ability of mango pulp decreases after 48 h of fermentation with
LC. Mango pulp fermented with LP for 48 h had the highest scavenging capacity for DPPH
radicals. Chen et al. [41] reported that different LAB-fermented kiwi pulp and LP obtained
a higher scavenging rate than LC. This result was similar to our findings.
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Figure 4. Changes in the antioxidant activities of fermented mango juice: (A) DPPH, (B) ABTS,
(C) FRAP, and (D) CUPRAC assays. Data represent the mean ± standard deviation of each sample
(n = 3). DPPH, DPPH radical scavenging activity; ABTS, ABTS radical scavenging activity; FRAP,
ferric reducing antioxidant capacity; CUPRAC, cupric reducing antioxidant capacity; L. plantarum,
Lactobacillus plantarum; and L. casei, Lactobacillus casei.

As shown in Figure 4B, all fermentation cases significantly increased the ABTS radical
scavenging activity of MJ. After 72 h of fermentation, the ABTS radical scavenging capacities
of MJ fermented with LP + RG, LC + RG, LP + MP, and LC + MP significantly (p < 0.05)
increased from 7.09% to 51.75%, 41.91%, 53.23%, and 42.43%, respectively.

As shown in Figure 4C, FRAP values showed an increasing trend during the 72 h of
fermentation. After 72 h of fermentation, the FRAP values of MJ fermented with LP + RG,
LC + RG, LP + MP, and LC + MP increased from 1.12 mM FeSO4 to 2.42, 1.42, 2.24, and
1.44 mM FeSO4, respectively. At the end of fermentation, the FRAP values of MJ fermented
with LP + RG exhibited stronger FRAP values than those of MJ fermented with LP + MP. The
effect of LAB and yeast fermentation on the antimicrobial, antioxidant, and metabolomic
properties of naturally carbonated probiotic whey beverages is investigated, and FRAP
values in the experimental group are found to be significantly higher (p < 0.05) than those
in the control whey [42]. The FRAP activity may be related to the phenolic, which is
involved in the reduction of the 2,4,6 tris(2-pyridyl)-S-triazine (TPTZ)-Fe3+ complex into
the TPTZ-Fe2+ form. The antioxidant activity of LAB is also associated with a number of
structural polysaccharides and soluble secreted molecules [43].

As shown in Figure 4D, the CUPRAC values of MJ fermented with LC + RG and
LC + MP increased slightly from 7.04 mM Trolox to 8.28 and 8.03 mM Trolox, respectively.
After 72 h of fermentation, the CUPRAC values of MJ fermented with LP + RG and LP + MP
increased significantly (p < 0.05) to 10.96 and 9.35 mM Trolox, respectively. These results
indicated that the LP + RG group had the highest copper ion-reducing power.
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3.5. Aroma Component Analysis

Table 2 shows that the basic major volatile components were roughly the same in
MJ and FMJ. A total of 40 volatile components, including 11 alcohols, 3 esters, 7 alkenes,
9 ketones, 4 aldehydes, 5 acids, and 1 other, were observed.

Alcohols are the main products obtained by non-Saccharomyces yeast through amino
acids during alcoholic fermentation. Eleven alcohols were identified in this study. 1-
Hexanol, 1-heptanol, 1-octanol, phenylethyl alcohol, α-phellandren-8-ol, and 2-heptanol
were found in all samples. The FMJ in LP + MP and LC + MP groups contained higher
levels of phenylethyl alcohol than that in the CK group (Table 2). This study might be
related to the ability of MP to produce a high concentration of phenylethyl alcohol from
monosaccharides or phenylalanine [44].

Three esters, i.e., methyl syringate, ethyl decanoate, and diethyl phthalate, were
identified in MJ. However, given that the odor detection thresholds for these compounds
have not been determined, their contribution to the aroma of MJ is unclear. Studies pointed
out that esters are predominantly related to juice composition, fermentation temperature,
yeast strain, and degree of aeration [45].

Five acids were identified in MJ, with phenylacetic and octanoic acids being the most
abundant. However, the contribution of these acids to flavor might be small as they
usually have a high threshold for odor detection. Fatty acids are probably derived from the
autoxidation of saturated lipids in the fruit [46].

Seven terpenoids were identified in five different treatments of MJ, including 3-carene
(sweet, rosin flavor) [47], D-limonene (citrus-like and sweet taste) [40], linalool (citrus and
floral notes) [48], caryophyllene (woody, green, spicy taste), and terpenic, humulene (green,
herbaceous flavor) [48].

Carotenoids undergo chemical and enzymatic reactions to produce several compounds,
such as TCH, beta-damascenone, and beta-ionone, some of which have powerful aromatic
properties [6]. After 72 h of fermentation, the ketone contents (i.e., methylheptenone,
geranylacetone, beta-damascenone, beta-ionone, and dihydro-beta-ionone) of FMJ in the
LP + RG and LC + RG groups were significantly (p < 0.05) higher than that in the CK group,
thereby supporting that the β-glucosidase secreted by RG had higher catalytic activity than
S. cerevisiae in the conversion of aroma precursors [49]. These ketones provide FMJ with
violet, floral, and fruity aromas and have an extremely low aroma threshold, thus making
an important contribution to the aroma of MJ [50]. 2,5-Dimethyl-4-hydroxy-2H-furan-3-one
(DMHF) is believed to be a key aroma constituent in many fruits and baked foods [51,52].
Studies pointed out that DMHF is an important aroma component in strawberries [53]. In
the present study, given its odor activity value (OAV) > 1, DMHF is also important in the
aroma of MJ.

Table 2 also lists the OAVs of several volatile compounds in FMJ. The significant
contribution of each odor to the characteristic flavor can be determined by the OAV, which
is the ratio of the concentration of the compound to the odor threshold. If a compound
has an OAV > 1, it has a significant effect on the overall fruit odor [54]. If we consider the
threshold concentration of a compound as a separate quantity, the OAV of a compound
gives the amount of the threshold concentration of that compound in the fruit. A high OAV
indicates a high probability of detection of the compound’s odor. Of the 40 compounds
evaluated, 13 compounds had levels above their threshold concentration (OAV > 1).

The hierarchical cluster analysis was used as a preliminary method to assess whether
the volatile compounds associated with each sample could be clustered to the sample
on the basis of the Euclidean distance drive of the sample [55]. This heatmap gave an
overview of the variation of aroma compounds in MJ from four different mixed-probiotic
fermentation treatments (Figure 5). Samples were clearly clustered into different places,
and aroma compounds were clustered in accordance with different fermentation methods.
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Figure 5. Heatmap analysis of mango juice before and after fermentation.

The first group was the aroma compounds produced in the LP + RG-fermented juices
and included ketones giving balsamic, rose, and violet aromas. The second group was
unfermented MJ containing terpene aroma compounds. The third category was the juice
fermented by LC + RG, which had dihydro-beta-ionone with a woody and floral flavor.
The fourth cluster of the thermogram represented the volatile compounds formed in FMJ
in the LP + MP group, which contained a high proportion of phenylethyl alcohol, butanoic
acid, caryophyllene, and humulene that had a woody and green flavor. The fifth cluster
was characterized by including a high proportion of aldehydes with sweet, fatty, herbal,
floral, and fruity notes.

3.6. Principal Component Analysis (PCA)

PCA is a multivariate data analysis technique used to downscale and show correlations
between variables and samples [56]. This analytical method has been widely used in the
aroma studies of fruit juices and fruit wines. This study used 24 aromatic compounds
with OAV > 0.1 and 5 fermentation patterns as variables and analyzed the traits of each
group by using the statistical method described above to show the aroma characteristics
of MJ in a simple and effective way. About 27.31% and 71.64% of the total variance were
accounted to PC1 and PC2, respectively. The sum of the two principal components was
98.95%, suggesting that these factors were sufficient for further discussion. The loadings of
the aroma components of FMJ and the distribution of different fermentation treatments are
shown in Figure 6.
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Table 2. Main aroma components and content of fermented mango juice.

Aroma Compound LRI
Odour Threshold

(µg/L) Fragrance Description CAS OAV
Aroma substance Content µg/L

CK RG + LP RG + LC MP + LP MP + LC

Alcohol
1-Hexanol 860 600 [54] Resin, flower, green 111-27-3 >0.1 62.43 ± 9.81 a 46.92 ± 3.13 b 17.63 ± 3.51 c 7.79 ± 0.24 d 2.81 ± 0.25 d

Citronellol 1765 40 [56] Green lemon 106-22-9 <0.1 2.05 ± 0.32 a 2.13 ± 0.25 a 1.81 ± 0.22 a ND ND
1-Heptanol 943 425 [54] Fruity, herbaceous 111-70-6 <0.1 38.94 ± 4.91 a 29.92 ± 3.00 ab 23.42 ± 5.99 bc 18.18 ± 1.89 cd 6.18 ± 0.18 d

3-Ethyl-3-pentanol 1347 Nf Nf 597-49-9 Nf ND ND ND 12.77 ± 0.62 a 6.40 ± 0.65 b

1-Octanol 1059 200 [54] Honey, green, fatty 111-87-5 >0.1 28.44 ± 2.52 bc 179.05 ± 27.38 a 38.14 ± 3.50 b 8.01 ± 0.44 d 19.10 ± 4.76 bc

Phenylethyl Alcohol 1136 1100 [56] Floral1, rose, honey 1960-12-8 >0.1 242.64 ± 11.27 c 247.30 ± 9.36 c 88.37 ± 9.11 d 1636.20 ± 55.54 a 1515.37 ± 85.81 b

α-Phellandren-8-ol 1572 4.6 [41] Fresh, phenolic, woody 1686-20-0 >1 47.16 ± 0.05 a 38.26 ± 2.23 b 3.26 ± 0.17 d 18.75 ± 0.61 c 17.77 ± 2.58 c

2,6-Nonadien-1-ol 1152 4.5 [47] Cucumber 7786-44-9 >1 ND 30.66 ± 5.43 a 24.46 ± 2.98 a ND ND
(Z)-6-Nonenol 1168 130 [54] Melon, wax, green, and fat 35854-86-5 >0.1 37.25 ± 3.56 a 30.82 ± 3.73 b 24.30 ± 3.74 c ND ND

2-Heptanol, 6-methyl- 1356 Nf Waxy, fatty, and citrus 4730-22-7 Nf 4.86 ± 0.15 a 0.88 ± 0.15 bc 0.19 ± 0.03 c 5.93 ± 0.44 a 1.15 ± 0.12 b

Decanol 1208 40 [41] Cucumber 1120-06-5 >0.1 ND 3.62 ± 0.16 b ND 0.55 ± 0.00 c 5.34 ± 0.36 a

Acids
Hydrocinnamic acid 1304 5000 [57] Balsamic 501-52-0 <0.1 12.90 ± 1.92 b 88.26 ± 1.90 ab 23.63 ± 2.61 b 102.13 ± 7.61 a 27.72 ± 2.52 b

Butanoic acid 775 24 [57] Sweaty, rancid, yogurt 65-85-0 >0.1 ND ND ND 21.11 ± 0.94 a 0.06 ± 0.00 b

Phenylacetic acid 1248 2650 [16] Sweet honey flavor c 103-82-2 <0.1 47.56 ± 6.58 c 51.36 ± 5.90 c 43.61 ± 3.62 c 638.70 ± 38.41 a 474.16 ± 3.98 b

Octanoic acid 1173 3000 [54] Rancid, cheese, fatty, sweat 124-07-2 <0.1 193.37 ± 31.21 a 161.19 ± 22.28 b 18.07 ± 3.67 c 0.37 ± 0.07 d 18.95 ± 5.40 c

Decanoic acid 1372 10000 [54] Fatty, rancid 334-48-5 <0.1 ND 10.64 ± 3.32 a ND ND 8.94 ± 0.18 b

Esters
Methyl syringate 895 Nf Nf 2198-23-4 Nf ND 55.20 ± 3.98 a 9.54 ± 0.36 b ND ND
Ethyl decanoate 1381 200 [16] Fruity, wine-like, pear 110-38-3 <0.1 11.65 ± 1.60 c 9.13 ± 1.16 cd 18.87 ± 3.03 b 5.61 ± 0.39 d 25.98 ± 2.53 a

Diethyl phthalate 1765 Nf Nf 84-66-2 Nf ND 18.40 ± 1.72 b 0.25 ± 0.01 c 23.59 ± 3.69 a 19.71 ± 2.14 b

Ketones
Methyl vinyl ketone 693 Nf Nf 78-94-4 Nf ND ND ND 17.32 ± 2.28 a 0.24 ± 0.04 b

Methylheptenone 969 50.00 [47] Citrus, musty, grassy 110-93-0 >0.1 ND 47.87 ± 5.20 a 30.67 ± 2.49 b ND ND
5-dimethyl-4-hydroxy-

3(2
H)-furanone

1063 5 [16] Candy cotton 4077-47-8 >1 10.40 ± 0.37 b 16.57 ± 1.87 a ND ND ND

2-Nonanone 1423 41 [58] Fruity 821-55-6 >1 ND 80.75 ± 7.58 a 19.51 ± 2.99 b ND ND
2-Heptanone 1180 140 [59] Cinnamon, sweet 110-43-0 <0.1 ND 6.33 ± 1.24 a ND 1.91 ± 0.13 b ND

β-Damascenone 1821 0.002 [56] Tobacco, apple, flora 23726-93-4 >1 ND 62.54 ± 4.04 a 33.26 ± 6.00 b 23.37 ± 2.52 c 7.62 ± 0.61 d

Geranyl acetone 1854 60 [56] Magnolia, green, fruit 3879-26-3 >0.1 5.63 ± 0.65 b 10.23 ± 1.10 a 9.91 ± 1.06 a ND ND
β-Ionone 1461 0.007 [56] Balsamic, rose, violet 79-77-6 >1 45.25 ± 2.00 b 55.60 ± 2.58 a 57.87 ± 5.80 a 25.21 ± 2.53 c ND

dihydro-β-ionone 1476 11 Woody, floral 31499-72-6 >0.1 ND 0.45 ± 0.03 c 1.94 ± 0.82 a ND 1.22 ± 0.15 b



Fermentation 2023, 9, 563 12 of 17

Table 2. Cont.

Aroma Compound LRI
Odour Threshold

(µg/L) Fragrance Description CAS OAV
Aroma substance Content µg/L

CK RG + LP RG + LC MP + LP MP + LC

Aldehydes
Benzaldehyde 1523 350 [56] Caramel, fruity, green 100-52-7 <0.1 7.47 ± 0.10 b 0.87 ± 0.07 c 28.31 ± 0.72 a ND ND

Nonanal 1395 50 [56] Rose-orange 124-19-6 >1 50.73 ± 5.55 c 131.56 ± 10.98 a 87.11 ± 4.69 b 6.00 ± 0.22 d 78.39 ± 8.98 b

Decanal 1202 6 [54] Fruity, citrus, orange 112-31-2 >1 5.89 ± 0.94 c 11.87 ± 1.30 b ND ND 13.59 ± 2.06 a

2,4-
dimethylbenzaldehyde 1522 Nf Sweet, chemical 15764-16-6 Nf 271.55 ± 16.40 d 1767.29 ± 235.61 b 2222.02 ± 177.03 a 351.46 ± 24.71 d 609.34 ± 31.53 c

Alkenes
3-Carene 948 50 [47] Sweet, rosin 13466-78-9 >1 2533.56 ± 299.82 a 1429.15 ± 73.20 d 1514.35 ± 40.96 cd 1768.46 ± 108.07 bc 350.72 ± 11.72 e

D-Limonene 108 10 [56] Citrus-like, sweet 5989-27-5 >1 156.13 ± 22.27 a 35.06 ± 3.55 c 111.24 ± 28.64 b 31.30 ± 2.64 c 91.64 ± 6.50 b

Terpinene 998 1000 [56] weak citrus-like, fuel-like, dill,
terpenic 29050-33-7 >0.1 105.65 ± 20.12 a 78.17 ± 2.42 b 43.52 ± 3.91 c 34.34 ± 5.63 c 9.70 ± 0.32 d

Linalool 1097 3 [54] Citrus, floral. Sweet,
grape-like 78-70-6 >1 221.28 ± 19.89 b 272.73 ± 22.56 a 142.35 ± 25.04 c 191.91 ± 10.10 b 278.23 ± 29.11 a

Germacrene D 1493 Nf Nf 23986-74-5 Nf 0.22 ± 0.01 b ND ND 5.82 ± 0.46 a ND
Caryophyllene 1494 64 [48] Woody, green, spicy, terpenic 87-44-5 >1 130.06 ± 18.00 b 59.24 ± 1.75 d 91.95 ± 5.29 c 396.95 ± 16.61 a 84.87 ± 4.58 c

Humulene 1645 120 [48] Green, herbaceous 6753-98-6 >1 86.39 ± 9.16 b 43.48 ± 10.52 d 19.83 ± 2.47 e 236.55 ± 28.44 a 62.68 ± 6.95 c

Others
Phenol, 3,5-bis(1,1-

dimethylethyl)- 2315 200 [58] Stone carbonate 1138-52-9 >0.1 22.30 ± 1.64 cd 83.39 ± 15.92 b 28.61 ± 2.02 c 1.15 ± 0.03 d 160.03 ± 8.51 a

(1) Data for each sample are expressed as mean ± standard deviation (n = 3). Different letters (a–e) in the same row indicate significant differences at p < 0.05. (2) ND, Not detected. Nf.
Not retrieved. (3) Odor thresholds and descriptors referenced from the literature.
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Figure 6. (A) Dispersion diagrams of different microbial fermentation treatments of mango juice.
(B) PCA plots of different aroma components: (1) 1-hexanol, (2) 1-octanol, (3) linalool, (4) phenylethyl
alcohol, (5) alpha-phellandren-8-ol, (6) 2,6-nonadien-1-ol, (7) (6Z)-nonen-1-ol, (8) decanol, (9) bu-
tanoic acid, (10) methylheptenone, (11) 2,5-dimethyl-4-hydroxy-2 H-furan-3-one, (12) 2-nonanone,
(13) beta-damascenone, (14) geranyl acetone, (15) beta-ionone, (16) dihydro-beta-ionone, (17) nonanal,
(18) decanal, (19) 3-carene, (20) D-limonene, (21) terpinene, (22) caryophyllene, (23) humulene, and
(24) 3,5-bis(1,1-dimethylethyl)-phenol.

Except for the alpha-phellandren-8-ol, 3-carene, and terpinene, volatile components
were predominantly located in the second, third, and fourth quadrants. Unfermented
MJ was located in the first quadrant, and most of the volatiles were located in the four
quadrants near the negative part of PC2, close to the samples (LP + RG and LC + RG). They
were closely related to 2-nonanone, beta-damascenone, and geranyl acetone. Thus, the
co-fermentation of Lactobacillus with RG increased the content of ketones and aldehydes,
whereas the co-fermentation of Lactobacillus with MP increased the contents of alcohols
and terpenes.

3.7. Norisoprenoid Analysis

Volatile compounds are the main drivers of fruit juice and wine aromas. Carotenoid-
derived volatiles with floral, fruity, fatty, and aromatic aromas are preferred by consumers.
Given their low perceptual threshold, norisoprenoids may play an important role in juice
and wine aromas [60]. Norisoprenoids are derived from the breakdown of carotenoids
by enzymatic and acid-catalyzed hydrolyses. This breakdown leads to the formation of
volatile aromatic compounds or nonvolatile sugar complexes in their free form within the
juice [50,55]. Studies showed that the degradation of lycopene, α-carotene, and β-carotene
produces methylheptenone, geranylacetone, beta-ionone, and alpha-ionone, thereby in-
creasing the floral, fruity, fatty, and sweet aroma of the tomato fruit [58]. In the last two
decades, Kaiser et al. [61] reported that the carotenoid-derived aromatic compounds beta-
ionone and dihydro-beta-ionone have gained enormous importance in perfumery due to
their floral intensity. Studies showed that beta-damascenone, which has tobacco, apple,
and floral aromas, may act as a flavor-enhancing compound.

Significant differences in the amount of norisoprene aroma compounds were detected
in all FMJ. For the MJ, LP + RG, LC + RG, LP + MP, and LC + MP groups, the norisoprene
aroma compound contents were 50.88, 176.69, 133.65, 48.58, and 8.84 µg/L, respectively,
after 72 h of fermentation (p < 0.05) (Figure 7). A high amount of norisoprene aroma
compounds produced by the MJ fermented with RG was attributed to the high level of beta-



Fermentation 2023, 9, 563 14 of 17

glucosidase hydrolysis capacity. Hu et al. [62] reported that the glycosidase extract of RG
has improved catalytic selectivity for the ‘fruity and floral’ glycosides of C13-norisoprene
compounds. Martínez et al. [63] proved that the yeast RG, which produces β-glucosidase,
is naturally present during the fermentation process. The mixed fermentation of R. mu-
cilaginosa and S. cerevisiae improves the composition of aromatic compounds in the variety
and during fermentation, enhancing the aromatic characteristics of citrus, sweet, and sour
fruits, berries, and flowers [49].
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4. Conclusions

This study assessed the effects of four mixed culture co-inoculation combinations
of LAB with non-Saccharomyces on the physicochemical properties, phenolic substances,
antioxidant properties, carotenoid degradation, and flavor characteristics of MJ. All MJ
were found to have varying degrees of carotenoid degradation, and the mixed culture co-
inoculation strategy of LAB with non-Saccharomyces resulted in improved physicochemical
and flavor attributes of MJ compared with those of unfermented MJ. The co-inoculation of
mixed cultures of non-Saccharomyces and LAB provided a practical method for improving
the quality of MJ. The co-inoculation of mixed cultures of RG and LP resulted in increased
TPC and enhanced DPPH radical scavenging activity, ABTS radical scavenging activity,
iron-reducing antioxidant capacity, and copper-reducing antioxidant capacity. The analysis
of aroma components showed that the co-inoculation of RG and LP increased the content
of aroma compounds. The increased content of norisoprene aroma compounds, such
as methylheptenone, geranylacetone, beta-damascenone, beta-ionone, and dihydro-beta-
ionone, enhanced the pleasant aroma characteristics of MJ, such as floral and fruity notes.

Results also suggested that the mixed culture co-inoculation was a viable strategy, but
success depends on the consideration of appropriate combinations of non-Saccharomyces/
LAB. The interactions between RG and LP during fermentation and the mode of inoculation
are complex and require further research.
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