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Abstract: Rice bran (RB) is a promising food ingredient that can improve biological function. In this
study, we investigated the effects of RB, both unfermented (RB30) and fermented (RBF30), with five
different microorganisms on the neurobehavioral activity in zebrafish larvae. Analytical methods such
as LC–UV and LC–MS were performed for the analysis of RB30 and RBF30 extracts. Interestingly,
niacin content, which is known to improve brain functions such as cognition and emotion, was
found to be higher in RBF30 than in RB30. Furthermore, niacin content was highly increased in
the RBF30-exposed fish, compared to those in the control fish. Therefore, we profiled behavioral
patterns and various neurochemistry in zebrafish larvae following supplementation with RBF30 as
well as performed calcium imaging on Tg (huC:GAL4-VP16); (UAS:GCaMP7a) zebrafish larvae to
determine the correlation of neural activity. RBF30 revealed greater stimulation of locomotor activity
without negatively affecting decision-making behavior in zebrafish larvae, as compared to RB30 or
niacin. Its behavioral activation is mainly linked with the elevations of neural activity and several
neurochemicals such as serotonergic and dopaminergic systems that are implicated in the control
of anxiety and stress. Taken together, these results suggest that RBF30 could be a food material that
improves the behavioral health by modulating neural activity and brain neurochemistry.

Keywords: rice bran fermentation; niacin; behavior; neural activity; neurochemistry; zebrafish

1. Introduction

Rice bran (Oryza sativa L.), a crushed mixture obtained in rice milling, is known to
have valuable nutrients and a bioactive component with health-related properties such as
antioxidant, anti-cancer, anti-inflammatory, and cholesterol-reducing effects [1–4]. Because
rice bran contains many nutrients and biologically active compounds, it is further processed
using stabilization, fractionation, enzymatic treatment, or fermentation, to improve the
biological activity and maintaining of the nutritional quality [5–7]. Fermentation using
various microorganisms can increase the levels and availability of bioactive compounds in
functional foods. For instance, fermentation of rice bran with Rhizopus oryzae leads to an in-
crease in protein content and levels of vitamins and phenolic compounds, which contribute
to various health benefits such as anti-inflammation, anti-tumor, and neuroprotection in
animal models [8–10]. Moreover, rice bran, either alone or in a combination of fermentation
with various microorganisms has been shown to prevent atopic dermatitis in rats (when
fermented by Lactobacillus rhamnosus and Pichia deserticola), alleviate ulcerative colitis in
mice (when fermented with fungi and lactic acid bacteria), provide neuroprotection in rats
(when fermented with Lactobacillus plantarum), and delay and prevent brain aging in rats

Fermentation 2023, 9, 479. https://doi.org/10.3390/fermentation9050479 https://www.mdpi.com/journal/fermentation

https://doi.org/10.3390/fermentation9050479
https://doi.org/10.3390/fermentation9050479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com
https://orcid.org/0000-0002-4762-8693
https://orcid.org/0000-0003-4606-1354
https://orcid.org/0000-0002-6641-5028
https://orcid.org/0000-0001-7413-4835
https://doi.org/10.3390/fermentation9050479
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com/article/10.3390/fermentation9050479?type=check_update&version=3


Fermentation 2023, 9, 479 2 of 13

(no fermentation) [8,11–13]. However, the effects of fermented rice bran on the behavioral
and neurochemical signaling that contribute to neural functions in animal models are
not yet fully understood. Therefore, further study using various behavioral tasks, neural
activity, and comprehensive neurochemistry in animal models are needed to determine the
biological activity of fermented rice bran.

The zebrafish (Danio rerio) is a promising vertebrate for the screening of the central
nervous system (CNS) with a high degree of genetic compatibility, and it also displays
comprehensive neurochemistry similar to human beings [14,15]. The zebrafish’s organ
formation and pharmacokinetic system are very similar to those of humans [16,17]. The
use of zebrafish as an animal model has many practical advantages, such as those related
to rapid fertilization and development, easy husbandry, small size, and high fecundity,
as well as cost-effectiveness [18]. The recent emergence of high-throughput tracking of
zebrafish larvae has improved the quality of behavioral studies, making the research more
objective, repeatable, and efficient [19,20].

The purpose of this study was to determine the biological activity of rice bran fermen-
tation extract (RBF30) on behaviors, neural activity, and comprehensive neurochemistry
using a zebrafish larvae model. Therefore, we fermented rice bran with a combination
of patented strains of microorganisms including L. buchneri RPG-L0001 [21], L. paracasei
subsp. tolerans RPG-L0002 (in progress), L. harbinensis RPG-L0003 [22], S. fibuligera RPG-
Y0001 [23], and P. kudriavzevii RPG-Y0002 to boost the biological activity. These strains have
been shown to exhibit various biological functions, such as anti-inflammation, skin aging
prevention, and anti-oxidation. We used a unique rice bran extract produced by fermen-
tation with five microorganism strains: Lactobacillus buchneri, Lactobacillus paracasei subsp.
tolerans, Lactobacillus harbinensis, Saccharomycopsis fibuligera, and Pichia kudriavzevii, after
fractionation using ethanol solvent at 30% v/v of RBF. We performed three behavioral tasks
such as locomotor test, light–dark transition test, and color preference test. In addition, we
measured the neural activity using Tg lines (huC:GAL4-VP16); (UAS:GCaMP7a), and pro-
filed a broad-spectrum neurochemistry including histaminergic, cholinergic, serotonergic,
dopaminergic, and GABAergic systems in a zebrafish larvae model.

2. Materials and Methods
2.1. Fermentation and Purification of RBF30

The rice bran used in this experiment was purchased from domestic rice paddy farmers,
and the extract was produced using a hot water extractor (SHR-S400, Se-Han, and Chilgok-
gun, Gyeongsanbguk-do, Republic of Korea). To inoculate L. buchneri RPG-L0001, tolerans
RPG-L0002, and L. harbinensis RPG-L0003 were inoculated on Difco lactobacilli MRS broth
(BD Biosciences, Franklin Lakes, NJ, USA) and incubated for 48 h at 37 ◦C. For S. fibuligera
RPG-Y0001 and P. kudriavzevii RPG-Y0002, we used Difco YM broth (BD Biosciences) and
incubated for 48 h at 37 ◦C.

A schematic illustrating the purification of fermented rice bran is represented in
Figure S1. The cultures were inoculated into a 10% rice bran extract at an OD600 of 0.02, and
fermentation was conducted at 37 ◦C for 48 h. The fermentation broth was centrifuged and
filtered to remove the cells and rice bran, and the supernatant was used. The fermentation
broth was subjected to column chromatography using PB-600 resin (8 × 50 cm) and
developed on the packed column. Ethanol concentrations ranging from 0 to 100%, (v/v)
were fractionated into 500 mL using the stepwise method. The fraction obtained using 30%
ethanol showed the best antioxidant activity and was selected for further experiments, as
shown in Figure S2.

The fraction was concentrated using a 1 L round-bottomed flask with a vacuum
concentrator (EYELA, NE1110, and Tokyo, Japan) at 70 ◦C. DW (100 mL) was added to
the concentrated fermented rice bran, and the mixture was stirred to facilitate dissolution.
When the solution was dissolved completely, 500 mL of ethanol was added to yield a
powdered precipitate. The solution was stirred for 30 min and then vacuum-filtered. After
filtration, the crystals were transferred to a 1 L flask, 500 mL of ethanol was added, and
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the mixture was allowed to form a slurry for 30 min. Next, the slurry was vacuum-filtered,
then transferred to a 1 L flask, and 500 mL of ethanol was added. The mixture rested as
a slurry for 30 min and was vacuum-filtered. The filtered mixture was placed in a dryer
and dried overnight (for 12–16 h) at 45 ◦C. After drying, the solid was milled using a
conventional mill.

2.2. Ultra-Performance Liquid Chromatography (UPLC) Analysis

RB30 and RBF30 were dissolved in 50% acetonitrile (ACN) and then filtered through a
0.2 µm polytetrafluoroethylene (PTFE) membrane filter. RB30 and RBF30 were analyzed
using an ACQUITY UPLC system (Waters, Milford, MA, USA) coupled to a photodiode
array (PDA) detector, QDA detector for scanning UV spectrum, and full mass (MS) in rice
bran extracts, respectively. The mobile phase consisted of 0.1% (v/v) formic acid in water
(eluent A) and 0.1% (v/v) formic acid in ACN (eluent B), obtained by isocratic elution
(A:B = 10:90, v/v) at a flow rate of 0.2 mL/min and run time of 6 min. The injection volume
was 5 µL. The UV spectrum at wavelengths from 210 to 500 nm, and full MS scan at m/z 50
to 500, were analyzed. The chromatographic separation was accomplished using BEH C18
and a Hydrophilic Interaction Chromatography (HILIC) column (130 Å, 2.1 mm × 50 mm
i.d., 1.7 µm; Waters) maintained at 40 ◦C. For quantification of niacin, multiple reaction
monitoring (MRM) mode by electrospray positive ionization (ESI+) was used according
to the ionic transition m/z 124.2→ 80.1. The water and ACN used as HPLC grade were
obtained from J.T. Baker (Phillipsburg, NJ, USA). All other chemicals and solvents were
reagent grade or better.

2.3. Maintenance of Zebrafish

Zebrafish were maintained under standard conditions as previously described [24].
All experiments have adhered to the National Institutes of Health guide for the care and
use of laboratory animals (NIH Publications No. 8023, revised 1978). All experimental
protocols involving the zebrafish were approved by the Animal Care and Use Committee
of the Korea Research Institute of Chemical Technology (7B-ZF1).

2.4. Behavioral Analysis of Zebrafish Larvae

At 5 days post-fertilization (dpf), larvae were transferred to a transparent 96-well plate
(1 individual per well) with 100 µL of embryonic medium and allowed to acclimate at
28 ◦C for 30 min. Two neural stimulants such as pentylenetetrazole (PTZ; Sigma-Aldrich,
St. Louis, MO, USA) and modafinil (MDF; USP Reference Standard, Rockville, MD, USA)
were used as positive controls. All substances containing drugs and food materials such as
RB30 and RBF30 were dissolved in embryonic medium, individually added to each well.

After treatment, behavioral movements were recorded for 60 min, and fish locomotion
was quantified using the DanioVision and EthoVision 10 XT locomotion tracking software
(Noldus, Wageningen, The Netherlands). For the light–dark response assay, the movement
of larvae treated with PTZ, MDF, and RBF30 was recorded in four cycles of alternating
10 min light and dark periods for 80 min. The light–dark transition test is commonly used
to measure anxiety-like behavior in rodents and zebrafish larvae [25,26].

The color preference test was performed to characterize the visual discrimination on
the cognitive function, according to previously published protocols [27]. Briefly, zebrafish
larvae were introduced plus (+) maze (ZENOMIC DESIGN, Daejeon, Korea) with four
differently colored arms (red, yellow, blue, and white), with 20 mL of embryonic medium
containing RBF30, PTZ, and MDF, respectively. The zone preference to each color was
measured every 2 min for 30 min by a digital camera (HDR-CX130, Sony, Japan).
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2.5. Assessments of Neural Activity in Zebrafish Larvae

To visualize neural activity in real time, calcium imaging experiments were performed
on Tg (elavl3:GAL4-VP16); Tg (UAS:GCaMP7a) transgenic zebrafish (kindly provided
by Dr. C.-H. Kim from Chungnam National University, Republic of Korea) [28,29]. The
zebrafish larvae at 5 dpf were introduced in a transparent 12-well plate (n = 20 per group),
and exposed to 5 mM PTZ, 1 mM MDF, and 1 mg/mL of RBF30 for 1 h. Larvae were
mounted on low-melting agarose (Sigma-Aldrich), and the fluorescence image per second
was captured for 3 min using a Lionheart FX Automated Microscope (Biotex, Winooski, VT,
USA). The images were quantitatively analyzed for measuring fish neural activity using
Gen5 software (BioTek). The calcium signal activity was normalized by comparing the ratio
between increases in fluorescence level (4F) at a designated time/baseline fluorescence
level (F0) peak, according to previous reports [29,30].

2.6. Measurement of Endogenous Neurochemicals in Zebrafish Larvae

To quantify endogenous neurochemicals in zebrafish larvae, we performed the highly
sensitive targeted MRM analysis using LC–MS/MS, according to our previously reported
method in zebrafish and mouse models [31]. Briefly, 50 pooled larvae (n = 7) at 5 dpf were
exposed to 1000 µg/mL of RBF30-containing medium for 2 h. The larvae were washed
three times with 0.1 M ice-cold phosphate-buffered saline (PBS); the supernatant was
then carefully removed. Wet larvae were lysed by snap-freezing using liquid nitrogen,
and 300 µL of DW was added, followed by ultrasonication (Vibra cell VCX-130, Sonics,
Hartford, CT, USA) for 5 s on the ice. The homogenate from the larvae was normalized
to the same quantity as the total protein content (µg/mg whole larvae) for each sample
and precipitated by adding an equal amount of methanol containing 0.1% formic acid. The
endogenous neurochemicals were extracted by vortexing for 5 min and centrifuging for
10 min at 21,130× g at 4 ◦C, and the final supernatants were kept at −20 ◦C until analysis.

2.7. Statistical Analysis

All data are presented as mean ± standard error of the mean. Behaviors, neurochemi-
cal, and neural activity data were statistically analyzed by an unpaired t-test. The statistical
significance was set at 0.05, 0.01, and 0.001 (* p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001). The
multiple comparison of means was performed using Duncan’s new multiple range test.

3. Results
3.1. RBF30 Increased Locomotor Activity and Alleviated Anxiety-Like Behavior

We conducted a preliminary experiment to fractionate rice bran extracts using dif-
ferent concentrations of ethanol and assess the effects on zebrafish larvae behavior. The
fraction obtained using 30% ethanol (RB30) was found to be the most effective in inducing
behavioral activation in zebrafish larvae (Figure S2).

Further experiments were conducted using RB30 and RBF30, at a concentration of
1000 µg/mL. Both RB30 and RBF30 were found to increase movement and induce hy-
peractivity in zebrafish larvae during a 60 min period. In particular, RBF30 treatment
resulted in an increase of 114%, whereas RB30 treatment resulted in an increase of 83%,
as compared with the control group, indicating that RBF30 was more effective than RB30
(F(2, 51) = 20.6; p < 0.0001, Figure 1). Positive control drugs, such as PTZ, a gamma-
aminobutyric acid (GABA) A receptor antagonist [32] and MDF, a selective dopamine
(DA) and norepinephrine transporter inhibitor [33], also showed similar effects on fish
locomotion (Figure S3). The study also determined that a concentration of 1000 µg/mL
of RBF30 was the optimal dose for inducing behavioral activation without causing any
morphological malformations.
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Figure 1. Behavioral effects of RB30 (1000 µg/mL) and RBF30 (1000 µg/mL) in zebrafish larvae. At
5 dpf, larvae demonstrated significantly elevated locomotor activity after RB30 and RBF30 treatments.
(A,B) Locomotor activity is represented as total distance moved (percentage of control) during (A) a
60 min period and (B) as total distance moved per 10 min interval. Data are represented as means ±
standard error of the mean (n = 18). Significance was set at * p ≤ 0.05, *** p ≤ 0.001 versus control and
p ≤ 0.05 between RB30 and RBF30.

Furthermore, we performed a light and dark transition test in zebrafish larvae at 5 dpf
that had been exposed to RBF30. This test is commonly used to determine the anxiety-
related behavior, indicating hyper-locomotion, in response to light and dark transitions
in rodent and zebrafish models [25,26]. The results showed that RBF30-supplemented
larvae increased locomotor activity throughout the light and dark periods compared with
the control group (Figure 2A). Additionally, the RBF30-treated group displayed reduced
anxiety-like movements, resulting from a change from light to dark, compared to the
control group (Figure 2B). Statistical significance was found in all dark-to-light phases, with
p-values of 0.021 for the first phase (0–20 min), 0.011 for the second phase (20–40 min), 0.009
for the third phase (40–60 min), and 0.023 for the fourth phase (60–80 min). These findings
suggest that RBF30 treatment can increase locomotor activity while reducing anxiety-like
behavior in zebrafish larvae.

Furthermore, while RBF30 and MDF treatments resulted in increased locomotion and
alleviation of anxiety-like behavior, the PTZ treatment caused a reversal in locomotion
under light–dark transition (Figure S4).
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Figure 2. Larval locomotor activity in alternating periods of light and dark after administration of
RBF30 (1000 µg/mL). (A) Total distance moved under alternating light–dark cycles in each 2 min
period. (B) Distance moved (percentage of control) of control and RBF30-treated larvae in each 10 min
light–dark period. Data are represented as means ± standard error of the mean (n = 8). Significance
was set at * p ≤ 0.05 and ** p ≤ 0.01 versus control.

3.2. RBF30 Contains More Niacin Than RB30

To elucidate the difference in biological activities between the RB30 and RBF30 in
zebrafish larvae, we used a PDA detector to scan the UV spectra of the two extracts. The
UV spectral peaks of RBF30 were significantly higher than RB30 at 258.1 nm (Figure S5A).
We further performed a full MS scan to identify the main components between the two
extracts. The full MS scan (m/z 50 to 500) showed a single peak at [M + H]+ 124.1 at the
same retention time as the UV spectra. The m/z 124.1 observed in RB30 and RBF30 was
identified as protonated niacin, as previously reported (Figure S5B,C) [34,35]. Therefore,
we applied the targeted MRM mode for the quantification of niacin in LC–MS/MS. We
found that the niacin content in RBF30 (785 µg/g) was about 1.8 times higher than that in
RB30 (418 µg/g).

In addition, we quantitatively analyzed niacin contents in the zebrafish larvae fol-
lowing exposure to RBF30. Our data revealed that the endogenous level of niacin was
markedly higher (4-fold) in the RBF30-exposed group (0.47 ± 0.05 µM/single larva) than
in the control group (0.12 ± 0.03 µM/single larva) in a zebrafish single larva (Figure 3A).
These findings suggest that the RBF30-induced behavioral activation may be attributed to
niacin absorption.

Since the biological effects of niacin on larval behavior were not known, we introduced
niacin to zebrafish larvae and compared fish locomotion with that induced by RBF30.
The results indicated that niacin treatment dose-dependently increased locomotor activity
during a 10 min period. However, it failed to maintain this hyperactivity for a period
of 60 min as effectively as RBF30 treatment (Figure 3B). Overall, our results revealed
that RBF30 contains a higher amount of niacin, which played a greater role in improving
maintenance of hyperactivity in zebrafish larvae than RB30.
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Figure 3. Niacin contents and its behavioral effects in zebrafish larvae. (A) Niacin contents in control
fish body and RBF30 (1000 µg/mL)-exposed fish body. (B) Comparison of behavioral effects of
niacin (10 and 100 µM) and RBF30 (1000 µg/mL) in zebrafish larvae. During the first 10 min, niacin
treatment resulted in increased locomotor activity; however, this effect was not maintained longer
for the entire 60 min interval. The locomotor effects of RBF30 treatment on zebrafish larvae were
maintained for 60 min. Data are represented as means ± standard error of the mean (n = 10). The
lowercase alphabet letters in the graph are Duncan’s multiple range test.

3.3. RBF30 Did Not Affect Innate Color Preference

Numerous studies have suggested that visual discrimination to the color can be
a useful tool to characterize the drug response to the behavioral abnormality such as
learning and memory function, and decision making following exposure to CNS drugs and
neurotoxic agents [27,36]. Therefore, the innate color preference test was performed to better
understand the neurobehavioral response to the dietary substance in zebrafish larvae. In the
control group, normal fish exhibited an innate preference to the blue color, and avoidance
to the yellow color (Figure 4A). These behavioral patterns were paralleled by RBF30- and
MDF-treated groups (Figure 4B,C). However, PTZ treatment markedly disturbed these
color preferences (Figure 4D). The p-value resulting from the two-way ANOVA analysis is
presented in Table S1. These data indicate that RBF30 induces behavioral activation without
affecting the decision making of zebrafish larvae.

3.4. RBF30 Stimulate the Neural Activity

Recent imaging technology combined with stable expression of genetically encoded cal-
cium indicators (GCaMPs) are powerful tools for brain activity mapping in in vivo [37]. To visu-
alize the neuronal activity in RBF30-exposed zebrafish larvae, we crossed Tg (elavl3:GAL4-VP16)
driver transgenic zebrafish with Tg (UAS:GCaMP7a). GAL4-VP16 protein is under control
of the neuronal elavl3 promoter in Tg (elavl3:GAL4-VP16), and GCaMP7a is controlled
by GAL4 upstream activation sequence (GAL4-UAS) in Tg (UAS:GCaMP7a) transgenic
zebrafish. In the control group, we observed calcium transients at a frequency of two to
four events per 3 min (Figure 5B). However, when the fish are supplemented with RBF30,
fluorescence events were detected more frequently of four to seven on the tectum compared
to the control group (Figure 5C). These data demonstrate that RBF30-induced behavioral
activations are correlated with the upregulation of neuronal activity in zebrafish larvae.
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3.5. RBF30-Regulated Neurochemistry

We investigated whether the RBF30-induced hyperactivity with an alleviation of
anxiety-like behavior resulted from the regulation of brain neurochemistry in zebrafish
larvae. We profiled the comprehensive neurochemical systems such as histaminergic,
cholinergic, dopaminergic, and serotonergic, mainly contributed to the fish behaviors such
as motor activity, mood, and emotional response [38–41]. In the dopaminergic system, TYR
was significantly downregulated by 73.0% (p < 0.001), whereas DA and NE were signifi-
cantly upregulated by 123% (p < 0.001) and 139% (p < 0.005), respectively, in zebrafish larvae
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following exposure to RBF30 as compared to those in the control group. In the serotonergic
system, RBF30 also significantly upregulated 5-HIAA and KYN by 123% (p < 0.001) and
139% (p < 0.005), respectively, compared to the control (Figure 6). These results suggest
that RBF30-induced behavioral alteration might have pharmacological relevance to the
regulations of serotonergic and dopaminergic neurochemicals in zebrafish larvae.
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Figure 6. Neurochemical effects of RBF30 treatment (1000 µg/mL) on the broad-spectrum neurochem-
istry in zebrafish larvae, as determined by LC–MS/MS. Quantification of endogenous neurochemicals
including HA: histamine; HIS: histidine; ACHO: acetylcholine; BET: betaine; CHO: choline; SE: serine,
PHE: phenylalanine; TYR, Tyrosine; DA: dopamine; NE: norepinephrine; 3-MT: 3-methoxytyramine;
TRYP: tryptophan; 5-HTP: 5-hydroxytryptophan; 5-HIAA: 5-hydroxyindoleacetic acid; KYN: kynure-
nine. Endogenous levels of each neurochemical are represented as fold change relative to the control
group. The data are expressed by means ± standard deviation of the mean value (n = 50 × 7).
Significance was set at ** p ≤ 0.01 and *** p ≤ 0.001 versus the control group.

4. Discussion

Functional foods are defined as natural products or processed foods that contain bio-
logically active compounds and provide health benefits for the prevention and treatment
of various diseases such as obesity, diabetes, and inflammation [42,43]. Rice bran, which is
a by-product of rice processing, contains several nutrients and bioactive ingredients such
as magnesium, potassium, phosphorus, and B vitamins (thiamine, riboflavin, niacin, and
pyridoxine) [44], which regulate physiological functions such as metabolism and homeosta-
sis. Rice bran can be produced using different processes including stabilization, enzymatic
treatment, and fermentation [7,45,46]. Food fermentation by microorganisms is a widely
used processing technology that improves nutritional and therapeutic properties [47–49].
Several studies have investigated the health benefits of fermented rice bran which in-
clude anti-oxidation, anti-inflammation, and lipid-lowering effects [8,11–13]. However,
the neurological functions of fermented rice bran as a brain food were limitedly known
in animals.

In this study, we aimed to investigate the effects of food fermentation with various
microorganisms [21–23,50] on brain functions, including behavioral activity, neural ac-
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tivity, and neurochemistry in zebrafish larvae after exposure to RBF30. We determined
the no observed adverse effect concentration (NOAEC) of RBF30 in zebrafish larvae to
be 1000 µg/mL. Our results showed that RFB30-exposed zebrafish exhibited increased
locomotor activity compared to control and RB30-exposed fish (Figure 1). This hyperactiv-
ity was correlated with increased neural activity (Figure 4) in the Tg (huC:GAL4-VP16),
(UAS:GCaMP7a) zebrafish larvae and was similar to the effects of CNS stimulants such as
MDF and PTZ (Figure 5). Furthermore, RBF30 treatment significantly alleviated anxiety-
like behavior (Figure 2). The color preferences of the zebrafish larvae were not affected
by RBF30 exposure (Figure 4). On the other hand, PTZ caused confused preferences and
hyperactivity, suggesting a different mechanism of action. These findings highlight the
importance of understanding the mechanisms of action of drugs in behavioral studies.

Furthermore, niacin, one of the bioactive components found in rice bran, was identified
as an active ingredient, which is responsible for the induction of hyperactivity in RBF30-
supplemented zebrafish larvae (Figure S5). The endogenous niacin was found to be
markedly elevated by 4-fold in the larval body, compared to control fish (Figure 3A).
The main active ingredient of RBF30 was confirmed to be niacin and used to compare
the behavioral effects of RBF30 and niacin. While niacin supplementation also increased
locomotor activity in the first 10 min of exposure, it did not maintain hyperactivity for
the entire 60 min period (Figure 3B). These findings suggest that the high levels of niacin
resulting from RBF30 supplementation may be responsible for the sustained hyperactivity.

Niacin is a type of vitamin B3 that includes two vitamers, such as nicotinic acid and
nicotinamide, that can act as a precursor to generate the nicotinamide adenine dinucleotide
(NAD) and its phosphate form, the nicotinamide adenine dinucleotide phosphate (NADP)
in the body. These coenzymes are responsible for the redox regulation, but also play
essential roles in energy metabolism, redox homeostasis, and mitochondrial oxidative
phosphorylation. Given that niacin is involved with a variety of biological events in
the body [51,52], its deficiency due to the blockage of the kynurenergic pathway in the
TRYP metabolism has been implicated in neurodegenerative disorders like Parkinson’s
disease (PD) and dementia [53–55]. In addition, a low level of vitamin B3 was detected
in the behavioral-defected PD symptoms in a combination of reduced DA level, which
is responsible for motor function and mood. The pharmacological relationships between
niacin and PD were found in several cases, depletion of niacin occurred as a reduced
DA level in the striatal region, while niacin supplement leads to improvements of motor
functions in PD patients [51–57].

In this study, we further explored the broad-spectrum neurochemistry including
histaminergic, cholinergic, dopaminergic, and serotonergic systems to better understand
the behavioral effects of RBF30 in zebrafish larvae. Interestingly, the results revealed that
RBF30-caused behavioral profiles resulted from metabolic regulations of serotonergic and
dopaminergic neurochemistry. In particular, DA and its metabolite NE were markedly
elevated in RBF30-exposed zebrafish (Figure 6). The dopaminergic control is known to
be associated with motor functions and anxiety behaviors [39,58,59], and the relationship
between RBF30-induced hyperactivity and increased dopaminergic neurochemicals such as
DA and NE suggests that this may be the underlying mechanism for the neurobehavioral
action of RBF30 in the zebrafish larvae model.

The current study demonstrated that fermented rice bran extract, which was prepared
using a combination of five microorganisms, has beneficial effects on the nervous system of
zebrafish larvae. However, further studies are necessary to investigate the individual effects
of microorganisms on the biological activity of rice bran fermentation extract. This approach
can provide important information on how microorganisms contribute to the nutrient
profile and biological activity of rice brain extract. Although our study did not provide
a molecular mechanism for the observed behavioral alterations in the zebrafish larvae
model, our results suggest that RBF30 has the potential to regulate brain neurochemistry,
which was confirmed by LC–MS/MS-based metabolomics. Further investigation into
neurochemical signaling, particularly the serotonergic and dopaminergic systems, may be
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necessary to interpret the pharmacological relevance between rice bran fermentation and
behavior in the zebrafish model.

5. Conclusions

In this study, we investigated the biological effects of RBF30, a rice bran fermented
by five patented microorganism strains on behaviors, neural activity, and comprehen-
sive neurochemistry in zebrafish larvae. Various behavioral assays showed that RBF30
treatment increased locomotor activity and reduced anxiety-like behavior, with a normal
decision-making pattern in zebrafish larvae. Furthermore, RBF30 treatment upregulated
serotonergic and dopaminergic neurochemicals such as DA, NE, 5-HIAA, and KYN in
zebrafish, thereby influencing behavioral profiles. Overall, RBF30 could potentially be used
as a food supplement to improve brain function by modulating endogenous neurochemi-
cal levels.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation9050479/s1, Figure S1: Schematic illustrating the
purification of RBF30; Figure S2: Behavioral effects of ethanol (EtOH) fractions 0 to 100% (v/v) of
various concentrations of RBF30 in 5 dpf zebrafish larvae; Figure S3: Larval locomotor activity in
5 dpf zebrafish larvae; Figure S4: Larval locomotor activity in alternating periods of light and dark
after administration of MDF and PTZ; Figure S5: UV and MS spectrum; Table S1: Statistical analysis
of color preference using two-way Anova (treatment versus color).
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