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Abstract: The use of self-inducible promoters is a promising strategy to address metabolic imbalances
caused by overexpression. However, the low activity of natural self-inducible promoters hinders their
widespread application. To overcome this limitation, we selected the fic promoter as a model promoter
to create an enhanced self-inducible promoter library using saturation mutations and high-throughput
screening. Sequence analysis revealed that these promoters share certain characteristics, including
semi-conservation in the −35 hexamer, highly conserved cytosine in the −17 motif (compared
to −13 for other promoters), and moderate A+T content between positions −33 and −18 in the
spacer region. Additionally, the discriminator region of these promotors features high A+T content
in the first five bases. We identified PficI-17, PficII-33, and PficIII-14 promoters as the optional
promoters in the −35 hexamer, spacer region, and discriminator mutation libraries, respectively.
These promotors were used as representatives to measure the specific fluorescence and OD600 nm

dynamics in different media and to confirm their effect on the expression of different proteins,
including egfp (enhanced green fluorescence protein) and rfp (red fluorescence protein). Overall,
our findings provide valuable guidance for modifying promoters and developing a promoter library
suitable for regulating target genes.

Keywords: self-inducible; promoter library; saturation mutation; sigma s factor

1. Introduction

In the early fermentation stage of E. coli, the extensive expression of genes encod-
ing toxic proteins [1–5], membrane proteins [6–8], and other organic compounds [9–15]
negatively impacts biomass accumulation. Delaying the expression of these genes to the sta-
tionary phase weakens this effect and increases the yield of the target product [1]. Chemical
inducers, such as isopropyl β-D-1-thiogalactopyrano-side (IPTG) [16,17], are commonly
used to regulate these promotors, but their extensive usage in factory fermentation in-
creases production costs and is toxic to the host. Moreover, the expression level of the
exogenous inducible promoter cannot be easily controlled during fed-batch fermentation
as the dosage of inducers, such as IPTG, lactose, and arabinose, remains constant regardless
of changes in the medium composition or cell growth stage. To address this challenge, the
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development of self-inducible promoters that can respond to the stationary phase seems to
be a better alternative.

Once E. coli strains enter the stationary phase, the transcription factor associated with
the RNA polymerase core enzyme is replaced with sigma s (σS, alternative transcription
factor) from sigma 70 (σ70, housekeeping transcription factor) [18,19] due to the active
expression of the rpoS gene, the reduction in σS proteolysis, and the accumulation of
factors that support EσS formation [20–26] caused by multiple survival stresses [27,28]. Self-
inducible promoters recognized and combined by σS initiate over one thousand stationary
phase genes [29–31], including stress genes, membrane protein genes, and metabolic
enzyme genes [32–37], which can protect stationary-phase E. coli against environmental
stress. This relationship between environmental stress and the σS factor determines the
bacterium’s greater capacity to adapt to adversity during the stationary phase rather
than the logarithmic phase. However, natural self-inducible promoters have two main
disadvantages that hinder their wide application. The first is leaky expression due to the
similar transcription recognition sites between σS and σ70, leading to many σS selectivity
promoters being recognized by σ70 and expressed during the logarithmic phase. σS and σ70

are homologous proteins [19,38,39]. The −10 hexamer and −35 hexamer are recognized
and interact through conserved regions 2.4 and 4.2 in both σS and σ70. The σS- and
σ70-selective promoters share almost identical optimal sequences [18,40–42]. The second
difficulty is the weak strength of the self-inducible promoter [43,44], which was selected by
natural evolution because only weak expression was needed to sustain basic metabolism in
the stationary phase. However, high σS selectivity and strongly expressed self-inducible
promoters are required to produce target proteins in E. coli.

In this experiment, we selected the fic promoter as a model to create an enhanced self-
inducible library. The reason for this selection was its strict σS selectivity [43,45]. It is well
known that the difference in the −35 hexamer, spacer region, and discriminator can result
in different σS selectivity and promoters’ strength [18,40,46–51]. Therefore, we carried
out saturation mutations in the above regions to obtain a continuous intensity spectrum
of the response σS factor. While some research has been conducted on modulating the
strength of stationary-phase promoters [52], the lack of effective screening tools renders
most promoters non-σS selective. To achieve the σS selectivity and strength of promoter
libraries, we conducted high-throughput screening and fluorometric assays using flow
cytometry and a microplate reader. This experiment aims to provide more practical options
for regulating the endogenous expression of target genes in E. coli.

2. Materials and Methods
2.1. Strains, Plasmids, Competent Cells, and Reagents

The E. coli strain JM109 was utilized for cloning and plasmid DNA propagation, as
well as for studying promoter activities. To construct the JM109-∆rpoS strain, the CRISPR-
Cas9/∆rpoS plasmid was used to knock out a total of 351 bp of the rpoS gene in the JM109
strain. The resulting JM109-∆rpoS strain was utilized to detect and discard σ70-selective
promoters. The pET28a plasmid was used as a promoter-egfp expression vector. Competent
cells were prepared for both JM109 and JM109-∆rpoS using a super competence preparation
kit (Sangon Biotech, Shanghai, China). The amplifying enzyme and ligase enzyme used
in this experiment were PrimeSTAR® Max DNA Polymerase (Takara, Kyoto, Japan) and a
Minerva Super Fusion Cloning Kit (US Everbright® 167 Inc., Suzhou, China), respectively.
An E.Z.N.A.® Gel Extraction Kit (Omega Bio-Tek, Beijing, China) was used to purify the
gene fragments, and a Fast Plasmid Miniprep kit (Bioequip, Beijing, China) was used to
collect the plasmids. Thermo Scientific (Beijing, China) provided EcoRI/SalI restriction
endonucleases and T4 ligase for cleaving and inserting the rfp gene into the vector plasmid.

2.2. Construction of the JM109-∆rpoS Strain

The NCBI database (http://www.ncbi.nlm.nih.gov) accessed on 30 January 2023 was
searched for the rpoS gene (ID: 947210). Using the CHOPCHOP web tool (https://chopchop.
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cbu.uib.no) accessed on 10 February 2023 [53], a single guide RNA (sgRNA) was designed
to knock out the rpoS gene. The target gene was the overall 993 bp of the rpoS gene,
and the organism used was Escherichia coli (str. K-12/MG1655). CRISPR/Cas9 was the
effector, and the purpose was to achieve a knockout gene. A predicted sgRNA, GGT-
CAAACTTCTCTACCGCGCGG, was identified at the 588th site, with 55% C+G content
and 0% self-complementarity, and was designed into the primers N20-F and N20-R. All the
primers used in this experiment are shown in the supplementary materials (Table S1). The
primers Vect-F/N20-R and N20-F/Vect-R were used to clone fragment Vect1 and fragment
Vect2. The primers UP-F/UP-R and DOWN-F/DOWN-R were used to clone the UP and
DOWN fragments, respectively, using the E. coli genome as a template. The UP-DOWN
fragment was cloned using the UP-F/DOWN-R primers, based on the overlap PCR prin-
ciple, using the UP and DOWN fragment mixture as a template. Fragments Vect1, Vect2,
and UP-DOWN were purified and fused into the CRISPR-Cas9/∆rpoS plasmid using the
Minerva Super Fusion Cloning Kit.

The JM109 competent cells were imported with the CRISPR-Cas9/∆rpoS plasmid,
and the JM109/CRISPR-Cas9/∆rpoS strain was obtained. This strain was incubated in LB
medium with 100 mg/L ampicillin at 30 ◦C until the OD600nm reached 0.05. Then 10 mM
arabinose was added to induce the expression of the Cas9 protein. The primers YrpoS-
F/YrpoS-R were used to confirm that the rpoS sequence was correct in the JM109 strain and
knocked out in the JM109-∆rpoS strain. Finally, the JM109-∆rpoS/CRISPR-Cas9/∆rpoS
strain was incubated in LB medium without ampicillin at 37 ◦C and transferred to the next
generation every 24 h. Replicate plating was carried out on LB plates with and without
ampicillin starting from the third generation. Only the strains that did not grow on the
LB plate with ampicillin but grew on the LB plate without ampicillin confirmed that the
CRISPR-Cas9/∆rpoS plasmid was lost from the JM109-∆rpoS strain.

2.3. Construction of the Expression Vector

The promoter probe vector, the pET28a-egfp plasmid with kanamycin, was cloned
using the V-F/V-R primers. The PCR procedure consisted of 35 cycles, with initial de-
naturation at 98 ◦C for 10 s, annealing at 55 ◦C for 15 s, and extension at 72 ◦C for 90 s.
The resulting promoter library, named PficN (PficI, PficII, and PficIII for the −35 hexamer,
spacer region, and discriminator saturation mutations, respectively), was generated by
combining the primer P-L with the oligonucleotides Model I, Model II, and Model III
and extending to double-stranded DNA using PrimeSTAR® Max DNA Polymerase. The
construction of the promoter library fragment was carried out under two temperature
conditions, with the temperature reduced from 98 ◦C to 20 ◦C over 20 min for combining,
followed by extending at 72 ◦C for 5 min. Finally, the promoter probe vector and promoter
library fragment were purified using an E.Z.N.A.® Gel Extraction Kit and fused to construct
the pET28a-PficN-egfp plasmid.

2.4. Cultivation and Screening

The pET28a plasmid strains were cultivated in LB medium with varying NaCl or
nutrient concentrations and 100 mg/L kanamycin at 37 ◦C and 200 rpm. For promoter
assessment and dynamics research, 3 mL/7 mL medium was held in the cells of 24 mi-
croplates, while 50 mL/250 mL medium was held in the shaker for incubation of the strains
and plasmid collection.

The JM109/pET28a-Pfic-egfp and JM109-∆rpoS/pET28a-Pfic-egfp strains were acti-
vated and incubated for 12 h. Samples with an OD600 nm of 0.05 were screened by flow
cytometry in an aseptic flow tube. A total of 105 cells were analyzed and collected for
each sample. The fluorescence value distributions of JM109/pET28a-Pfic-egfp and JM109-
∆rpoS/pET28a-Pfic-egfp were used as references to set the thresholds of low σ70 selectivity
and high σS strength. Subsequently, the JM109-∆rpoS/pET28a-PficN-egfp strains were cul-
tured and screened using the same method. Low fluorescent cells (JM109-∆rpoS/pET28a-
PficN*-egfp) in the JM109-∆rpoS/pET28a-PficN-egfp strains were collected in sterile tubes
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containing PBS solution (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 2 mM KH2PO4).
The collections were incubated, and the mixed plasmids were extracted using a Fast Plas-
mid Miniprep kit and imported into JM109 competent cells. After cultivation and screening,
single highly fluorescent JM109/pET28a-PficN*-egfp cells were collected on LB plates
(shown in Figure 1).
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Figure 1. Schematic diagram of the screening process. Only Eσ70 was present in the JM109-∆rpoS
strain, while both Eσ70 and EσS were present in the JM109 strain. Single strains were given an electrical
charge by the flow cytometer, based on the amount of fluorescent protein, and were subsequently
sorted in an electric field. The promoters, that are not transcribed by Eσ70 were collected in the
JM109-∆rpoS strain, and then those that are transcribed by EσS were collected in the JM109 strain.
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2.5. Sequence and Sequence Logo

Twenty-five strains of PficI, forty strains of PficII, and twenty strains of PficIII were se-
quenced by the AZENTA company, Tianjin, China. YpET28a-Pfic was used as the sequence
primer. The sequence logos of enhanced self-inducible promoters (described in 2.6) were
created using WebLogo as previously reported [18]. All the data and graphs were processed
using Origin Pro 9.0 (Origin Lab, Northampton, MA, USA) and Adobe Illustrator 2022.

2.6. Fluorescence Assay

The strains with different promoter sequences were preserved and subjected to specific
fluorescence. The preserved strains were then activated and inoculated with 1/1000 seeds.
After 12 h, samples were taken to test the strength of the promoter. A 100 µL sample was
centrifuged at 12000 rpm for 5 min, and the supernatant was discarded. The remaining
precipitate was then dissolved in 1 mL of water. The suspension solution was then checked
for OD600 nm and green fluorescence (emission at 485 nm; excitation at 520 nm) using a
microplate reader. For every strain, three parallel experiments were performed, and the
wild-type fic promoter was used as a control.

Plasmids pET28a-PficN-egfp were imported into JM109 and JM109-∆rpoS strains
to check the strength of two kinds of factors. The σ strength and σ selectivity of the
promoter were calculated by Equation (1), and the promoters with σS strength and σS

selectivity higher than that of the wild-fic promoter were selected to construct an enhanced
self-inducible promoter library.

σ70 strength =
JM109−4rpoS fluorescence− 40
JM109−4rpoS OD600 nm− 0.04

− background fluorescence (1)

σs strength = total fluorescence strength− σ70 strength (2)

total fluorescence strength =
JM109 fluorescence− 40
JM109 OD600 nm− 0.04

− background fluorescence (3)

σs selectivity =
σs strength
σ70 strength

(4)

σ70 selectivity =
σ70 strength
σs strength

(5)

Equation (1). σ strength describes the ability of promoters to be transcribed by the
sigma factor; σ selectivity describes the preference of the promoter to one of the two factors.
Background fluorescence is the special fluorescence of the JM109 (without a plasmid) strain,
whose value is 157.

2.7. Dynamics under Different Fermentation Patterns

Different stressed environments activate σS in various ways, thereby influencing
the levels of σS and affecting certain promoters [29,31,54]. For instance, only 156 of the
1663 genes tested and their promoters can be activated in all of the stressed conditions
tested (stationary phase, high osmolarity, and low temperature) were reported in a previous
study [29]. In the ideal fermentation model, the logarithmic phase is typically characterized
by an abundance of nutrients, while the stationary phase is marked by high osmotic
pressure and starvation. To examine the responsiveness of the promoters obtained from
this experiment to the primary characteristics of different growth phases, we conducted a
study on the dynamics under LB medium with varying levels of nutrients (2×, 0.5×) and
1.5× NaCl for the PficI-17, PficII-33, PficIII-14, and wild-fic promoters, with the original LB
medium serving as a control. Sampling was performed at 2 h intervals, and we used the
OD600 nm and total fluorescence strength as indicators.
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2.8. Validation of the Promoters

To investigate the effect on the expression of different proteins, we verified the devel-
oped promoters (PficI-17, PficII-33, PficIII-14, and wild-fic) using rfp as a reporter gene
with an emission at 585 nm and excitation at 620 nm. The rfp gene was amplified from the
plasmid pBBR1-rfp using the primers EcoRI-rfp-F/SalI-rfp-R. The resulting PCR fragment
was cleaved and inserted into the EcoRI- and SalI-cleaved plasmid pET28a, resulting in
the plasmids pET28a-PficN-rfp. These plasmids were imported into JM109 strains for the
promoters’ validation. To assess the dynamics under different fermentation patterns, we
used the OD600 nm and special red fluorescence as indicators and plotted the results.

special red fluorescence =
JM109 red fluorescence

JM109 OD600 nm− 0.04
(6)

Equation (2). The special red fluorescence which is obtained by dividing the fluo-
rescence by OD600 nm. The background fluorescence in both water and the JM109 strain
(without a plasmid) is almost zero.

3. Results and Discussion
3.1. Construction of the JM109-∆rpoS Strain

In contrast to transposon insertion to obtain rpoS::Tn10 [55], in this experiment, 351 bp
from the 299th site to the 649th site of the rpoS gene were knocked out to construct the
JM109-∆rpoS strain. Figure 2A illustrates the mechanism used for knocking out the rpoS
gene, and Figure 2B displays the gel electrophoresis diagram of σS and its mutant. The
deleted segment included regions 2 and 3.1 of σS [39], with region 2.4 of σS interacting with
the −10 hexamer of the promoter [42]. This deletion caused frameshift mutations in the
σS downstream regions. The significant decrease in fluorescence in JM109-∆rpoS/pET28a-
Pfic-egfp compared to JM109/pET28a-Pfic-egfp confirmed the deactivation of σS in the
JM109-∆rpoS strain, as shown in Figure 3A,B.
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Figure 2. The JM109-∆rpoS strain was obtained through gene editing techniques. (A) Schematic
diagram of the rpoS gene knockout; (B) gel electrophoresis diagram of the DNA marker (lane 1) and
rpoS gene in the JM109 strain (lane 2) and the mutant rpoS gene in the JM109-∆rpoS strain (lane 3).
The primers YrpoS-F/YrpoS-R were on the outside of the rpoS gene, and the lengths of the PCR
products in the JM109 strain and the JM109-∆rpoS strain were 1165 bp and 814 bp, respectively.
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Figure 3. Fluorescence distribution of all the samples on flow cytometry. (A) JM109-∆rpoS/pET28a-
Pfic-egfp; (B) JM109/pET28a-Pfic-egfp; (C) JM109-∆rpoS/pET28a-PficI-egfp; (D) JM109-
∆rpoS/pET28a-PficII-egfp; (E) JM109-∆rpoS/pET28a-PficIII-egfp; (F) JM109-∆rpoS/pET28a-
PficI*-egfp; (G) JM109-∆rpoS/pET28a-PficII*-egfp; (H) JM109-∆rpoS/pET28a-PficIII*-egfp;
(I) JM109/pET28a-Pfic-egfp; (J) JM109/pET28a-Pfic-egfp; (K) JM109/pET28a-Pfic-egfp. PficN* is
PficN with low activity in the JM109-∆rpoS strain. The abscissa axis GFP-A represents the amount of
green fluorescence that can be used to describe the strength of the promoter. The vertical axis SSC-A
represents the side scatter, which reflects the complexity of the cell. A, B, C, and D in each figure
represent the four thresholds divided by the abscissa axis GFP-A. Each dot in the plot area represents
a cell, and the color change from blue to red represents an increase in cell concentration.

3.2. Screening of Mutant Promoters

The results of the 105-cell scanning analysis for each sample showed a fluorescence
range of approximately −102 to 2 × 105. Depending on the screening purpose, fluores-
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cence values of −102–102 (no fluorescence), 102–103 (low fluorescence), 103–104 (moderate
fluorescence), and 104 – 2 × 105 (high fluorescence) were designated as Gate A, B, C, and D,
respectively. For JM109-∆rpoS/pET28a-Pfic-egfp, 82.2% of the sample was concentrated in
Gate A, while for JM109/pET28a-Pfic-egfp, 76.4% of the sample was concentrated in Gate B
(Figure 3A,B). Therefore, it can be concluded that the wild-fic promoter can be efficiently
transcribed by σS but not σ70. It is worth noting that approximately 20% of the cells in Gate
A were dead cells, and a small proportion of cells were scattered in other gates, possibly
due to differences in individual cell activity [56].

The fluorescence distributions of JM109-∆rpoS/pET28a-PficI-egfp and JM109-
∆rpoS/pET28a-PficII-egfp were similar, with 5% falling in Gate C and 1.5% falling in
Gate D (Figure 3C,D). Thus, it appears that the function of the −35 hexamer of σ70 is
replaced to some extent by the spacer region. However, the situation was different for
JM109-∆rpoS/pET28a-PficIII-egfp, where only a small amount fell in Gate C and 1% fell in
Gate D (Figure 3E). It can be clearly seen that mutation both in the −35 hexamer and the
spacer region had a strong influence on σS selectivity, but mutation in the discriminator
only had a weak impact on it. Therefore, it can be concluded that σS only interacts strongly
with the −35 hexamer and spacer region but not with the discriminator.

JM109-∆rpoS/pET28a-PficN*(I*, II*, III*)-egfp with fluorescence lower than 900, Gate
A and part of Gate B, were collected due to their low responsiveness to σ70. The JM109-
∆rpoS/pET28a-PficN*-egfp collection was scanned to check the accuracy of the flow cy-
tometry screening, and the fluorescence values of the collections were generally reduced
compared to the previous scan on JM109-∆rpoS/pET28a-PficN-egfp, with more organisms
falling in Gate A and almost no organisms falling in Gate C or Gate D (Figure 3F–H).

Compared to JM109-∆rpoS, the JM109 strain showed an obvious increase in the
transcriptional capacity of PficN* promoters (Figure 3I–K). However, the features of
JM109/pET28a-PficN*-egfp were different. In JM109/pET28a-PficI*-egfp, the number
of cells with high fluorescence decreased sharply, whereas in JM109/pET28a-PficII*-egfp,
this trend was more gradual. The fluorescence values of JM109/pET28a-PficIII*-egfp were
concentrated in Gate C, which was similar to the wild-fic promoter. These features were
related to the interaction strength between the promoter and σS. The −35 hexamer of
the promoter strongly interacts with region 4.2 of σS, and the extended −10 region of
the promoter, located in the spacer region, has a strong interaction with region 3 of σS.
The proportion of fluorescence values that fell on Gate D was higher in the spacer region
mutation and discriminator mutation. This suggests that mutations in the spacer region
and discriminator have a greater effect on σS strength. Single colonies at Gate C and Gate
D were collected on plates for further sequencing and fluorescence assessment.

3.3. Generation of Enhanced Self-Inducible Promoter Libraries

Unique sequences were obtained from the sequencing of 19 out of 25 PficI promoters,
33 out of 40 PficII promoters, and all 20 PficIII promoters. To ensure the accuracy of the
reported gene, egfp, we measured the fluorescent substrates of JM109 (without a plasmid)
and JM109 (without a promoter) strains. There was no significant difference in special
fluorescence between the two strains, indicating the insulation of the reporter gene (data
not shown). The strength of the promoters was calculated by subtracting the background
special fluorescence of the JM109 (without a plasmid) strain from the special fluorescence
of all samples, as shown in Equation (1). The wild-fic promoter exhibited a σS strength and
σS selectivity of 7952 and 2.61, respectively. We used the mutated promoters with higher
values to create an enhanced self-inducible promoter library (Figure 4), which showed a
broad range of activity with small increments between neighboring promoters. PficI-18,
PficII-33, and PficIII-14 were the optional promoters obtained from saturation mutation
in every region, with σS strengths of 12.36×, 20.18×, and 20.98× compared to the wild-fic
promoter, respectively. It was obvious that the range of PficII and PficIII was broader
than that of PficI, and the PficI promoters showed the highest σS strength accompanied by
relatively higher σ70 strength, as in the case of PficI-18, and PficI-16. This may be related to
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the sequence features in the −35 hexamer. The sequences and strength of all promoters
screened are shown in Table S2.
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3.4. Features of Enhanced Self-Inducible Promoter Sequences

A total of 9 enhanced self-inducible PficI promoters exhibited a preferred sequence
(A/C)XG(C/A)(A/C)A in the −35 hexamer (Figure 5A). This sequence showed semi-
conservation with the σ70 consensus sequence, and each promoter had an average of
2.3 base pairs consistent with the consensus sequence, compared to 1.5 in the random
combination. Although “TTGACA” was shown to be the optimal sequence for interacting
with σS [49], the presence of “TT” at positions −39 and −38 was beneficial for binding to
σ70 [57] and therefore did not appear in this preferred sequence. The identification of the
−35 hexamer was more compatible with σS than σ70.
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The most notable preferred motif in the spacer region of 23 promoters was that “C”
was present at a proportion of 96% at position −17 (−13 at other promoters) as shown in
Figure 5B, while the preferred base pair at this position was “G” for σ70 [49]. The presence of
“C” at −17 enhanced both σS selectivity and σS strength, possibly due to direct interaction
with K173 at σS [49].

Another feature was higher A+T content than the wild-fic promoter; 20 out of 23 en-
hanced self-inducible promoters had a higher A+T content than the wild-fic promoter
(Figure 6A). However, this value was only maintained at a moderate level, approximately
50% to 60%. Excessively high A+T content resulted in an increased affinity of the promoter
for σ70. For example, the PficII-13 promoter had the highest A+T content (81.25%), yet its σS

selectivity was only 1.14 (Table S2), significantly lower than that of the wild-type promoter
at 2.67. Moderate A+T content appeared to be a compromise of competition between σS

strength and σS selectivity. However, it was not absolute that enhanced self-inducible
promoters have moderate A+T content. For example, the PficII-33 promoter, which had a
low A+T content (18.75%), showed both high σS strength and σS selectivity.
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Figure 6. A+T content analysis in different regions. (A) The A+T content between −33 and −18 of
enhanced self-inducible promoters was generally higher than that of the wild-fic promoter; (B) the
A+T number in the discriminator’s first five bases showed an increasing trend with increased
promoter strength.

As mentioned earlier, a mutation occurring in the discriminator can enhance σS

strength without reducing σS selectivity. Almost all PficIII promoters were enhanced self-
inducible promoters. As the strength of the promoter increased, the number of A+T in the
discriminator’s first five bases showed an increasing trend. The weakest promoter had one
A+T base, while the strongest promoter had five (Figure 6B). The preferred sequence in
the first three oligonucleotides of the discriminator region in this experiment was XAA
(Figure 5C), which was similar to the “TAA” proposed by the previous study [31]. The
high A+T content present in the discriminator of the enhanced self-inducible promoter can
be explained by the fact that each A-T pair has only two hydrogen bonds and is therefore
easily opened by σS to form an open complex structure.

In summary, two laws were outlined: firstly, promoter regions that interact strongly
with σS show preferred sequences in the enhanced self-induced promoters, while other
regions show different A+T contents; secondly, enhanced self-induced promoter sequences
are a mutual compromise between optimal sequences, and are non-dependent on σ70, as
well as a compromise between σS strength and σS selectivity.

3.5. Dynamics under Different Fermentation Patterns

Some promoters under stress conditions in previous research are shown in Table S3.
These promoters exhibited varying levels of response to different types of stress condi-
tions [58–60].

In this study, the four strains showed consistent strength order and initial expression
time, indicating that both nutrients and osmolality had equal effects on all four promoters.
Specifically, PficIII-14 had the strongest response, followed by PficII-33, PficI-17, and finally
the wild-fic promoter (Pfic). This is depicted in Figure 7.

We compared the effects of different media, such as LB medium (0.5× nutrient), LB
medium (2× nutrient), and LB medium (1.5× NaCl), on the individual promoters in terms
of endpoint OD600nm, initial induction time, and endpoint total fluorescence strength. The
values for endpoint OD600nm in LB medium (0.5× nutrient), LB medium (2× nutrient),
and LB medium (1.5× NaCl) were 0.71×, 1.54×, and 0.96×, respectively, compared to LB
medium. The initial induction time of LB medium (0.5× nutrient), LB medium (2× nu-
trient), and LB medium (1.5× NaCl) in comparison to LB medium was 2 h earlier, 4 h
later, and 2 h earlier, respectively. Moreover, the endpoint total fluorescence strength of
LB medium (0.5× nutrient), LB medium (2× nutrient), and LB medium (1.5× NaCl) was
1.1×, 0.75×, and 1.35×, respectively, compared to LB medium. Notably, adverse conditions
such as LB medium (0.5× nutrient) and LB medium (1.5× NaCl) resulted in enhanced
promoter strength but reduced biomass, whereas favorable conditions such as LB medium
(2× nutrient) had the opposite effect. This is a finding of interest because large-scale
fermentation, nutrients, and osmotic pressure typically undergo changes from favorable
to adverse conditions. Thus, an enhanced self-inducible promoter could be useful in a
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“first-growth, postproduction” fermentation model, as it would enable IPTG-inducible
promoter regulation through endogenous mechanisms.
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were incubated in LB medium (A); LB medium with 0.5× nutrient (B); LB medium with 2× nutrient
(C); and LB medium with 1.5× osmotic pressure (D).

3.6. Validation of Promoters

The endpoint OD600nm, initial induction time, and endpoint special red fluorescence of
the four tested promoters showed a consistent trend under different media, as compared to
rfp with egfp (shown in Figure 8). Therefore, it is suggested that the promoters developed
in this experiment can be utilized for the expression of various proteins.
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4. Conclusions

The available self-inducible promoters were inadequate for addressing the issue of
target gene expression in the stationary phase in E. coli. To address this problem, a 51-
member promoter library was constructed with a σS strength range of 1-fold to 21-fold
for the wild-fic promoter. Moreover, the strength of the promoters was further enhanced
by the activation of low nutrients and high osmolality. The egfp and rfp were used as
the reported genes to confirm the effect of the promoters developed in this experiment on
the expression of different proteins. In the future, saturation mutations in the UP element
and a combination of enhanced self-inducible promoters are expected to obtain a stronger
promoter. Overall, this paper offers several practical endogenous regulatory promoters for
E. coli to express target products.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/fermentation9050468/s1. Table S1: All the primers in this experiment;
Table S2: All the promoters screened in this experiment; Table S3: The promoter’s improvement
under stress conditions in other experiments.
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published version of the manuscript.
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