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Abstract: Biocontainment techniques for genetically modified yeasts (GMYs) are pivotal due to
the importance of these organisms for biotechnological processes and also due to the design of
new yeast strains by using synthetic biology tools and technologies. Due to the large genetic
modifications that many yeast strains display, it is highly desirable to avoid the leakage of GMY
cells into natural environments and, consequently, the spread of synthetic genes and circuits by
horizontal or vertical gene transfer mechanisms within the microorganisms. Moreover, it is also
desirable to avoid patented yeast gene technologies spreading outside the production facility. In
this review, the different biocontainment technologies currently available for GMYs were evaluated.
Interestingly, uniplex-type biocontainment approaches (UTBAs), which rely on nutrient auxotrophies
induced by gene mutation or deletion or the expression of the simple kill switches apparatus, are
still the major biocontainment approaches in use with GMY. While bacteria such as Escherichia coli
account for advanced biocontainment technologies based on synthetic biology and multiplex-type
biocontainment approaches (MTBAs), GMYs are distant from this scenario due to many reasons.
Thus, a comparison of different UTBAs and MTBAs applied for GMY and genetically engineered
microorganisms (GEMs) was made, indicating the major advances of biocontainment techniques
for GMYs.

Keywords: biocontainment; genetically engineered microorganisms; genetically modified yeasts;
synthetic biology; gene circuits; auxotrophies; kill switches

1. Introduction

Genetically engineered or modified microorganisms (GEMs/GMMs) are the workhorse
for basic and applied research as well as in industry. GEMs are employed in the food indus-
try to improve protein synthesis or to generate small molecules that impact the nutritional
value of a food, such as flavor enhancers, oligosaccharides, vitamins, and amino acids [1].
GEMs are also employed for food enzyme production, including enzymes such as lactase,
amylase, proteases, and phospholipases [1,2]. Another biotechnological field that benefits
from the application of GEMS is bioremediation, which allows for the removal of pollutants
(e.g., heavy metals) from water and soil [3]; finally, different GEMs species are employed
for the production of clinically important peptides/proteins (e.g., insulin) [4], vaccines [5],
biofertilizers [6,7], biocontrol [8], and biofuels [9].

Considering eukaryotic GEMs, the yeasts constitute an important group of microorgan-
isms with many industrial applications. Yeasts are used as a cell factory for the production
of chemicals and biologicals due to their ability to grow on inexpensive culture media
and them having well-established fermentative technology [10]. One of the most popular
yeasts employed as a GEM is Saccharomyces cerevisiae. S. cerevisiae has many different
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biotechnology applications, from the production of traditional fermented foods [11,12]
to cell factories for the synthesis of chemicals and pharmaceuticals, such as bioethanol,
propanol, butanol, artemisinic acid, and insulin precursor [10,13,14]. In addition to its
biotechnological importance, S. cerevisiae is considered an eukaryotic model organism
for basic and applied research [15,16]. Other yeast species that have biotechnological im-
portance include the halophilic/halotolerant yeast species such as Debaryomyces hansenii,
which can metabolize different types of carbon sources and synthesize high levels of lipids,
xylitol, and flavonoids, making it an attractive model for metabolic engineering [17,18].
Methylotrophic yeasts (e.g., Pichia pastoris and Ogataea polymorpha) are very efficient in
producing heterologous protein on an industrial scale, with many strains and molecu-
lar tools available for genetic/synthetic biology engineering [19,20]. Other examples of
non-Saccharomyces species with industrial importance include Arxula adeninivorans and
Yarrowia lipolytica for the production of therapeutic heterologous proteins [21]. In addition,
yeast hybrid strains/chassis from the Saccharomyces sensu stricto complex for industrial
purposes are gaining industrial importance [22]. Finally, advances in synthetic biology are
leading to the generation of “synthetic microorganisms” by using the so-called “bottom-up
approach”, where isolated and well characterized biochemical components are modularly
assembled in order to design artificial cells with specific phenotypes [23]. Another synthetic
biology approach is the “top-down method”, where a microbial genome is reduced to
its essential genes, allowing the factory of any desired DNA sequence to “tailor-make”
a specific phenotype [24]. The top-down approach is currently being applied by the in-
ternational Synthetic Yeast Genome project (known as the “Yeast 2.0” or “Sc2.0” project),
whose major objectives are to redesign all chromosomes of S. cerevisiae and generate the
first synthetic eukaryote [24,25].

Despite the importance of genetically modified yeasts (GMYs), there are concerns
that the widespread use of GMYs could lead to a potential exchange of modified DNA
molecules with other microorganisms in an ecosystem [26,27]. These concerns can be
potentialized by considering that yeasts can exchange parts of their genomes with other
microorganisms by interkingdom horizontal gene transfer [28], resulting in the widespread
use of a transgene and/or a synthetic DNA molecule (Figure 1). Thus, highly effective
biocontainment/safeguard strategies are needed to keep GMYs restricted to a laboratory
and/or industrial environments (defined here as “production facilities”) [27,29] and restrict
the “escape frequency” of GMYs. The escape frequency is the consequence of a combination
of different molecular mechanisms (e.g., mutagenesis, gene loss, recombination) as well
as environmental/evolutionary processes that result in the spread of GMY/GEM into the
environment (Figure 1). The National Institutes of Health (NIH) guidelines for research
involving recombinant or synthetic nucleic acid molecules recommend an escape frequency
of 1 cell per 108 cells as the standard [30].

Another major issue regarding the massive use of GMY/GEM is that the simple
physico-chemical inactivation of cell biomass (e.g., by heat and/or pH treatment) does
not avoid the DNA stability/persistence in the environment after its release from the cell
(Figure 1). Data gathered from the PCR analysis of soil fertilized with the waste product of
industrial GMY/GEM fermentations showed the presence of genes related to antibiotic
resistance commonly found in synthetic plasmids [31]. Additionally, engineered DNA
molecules can be detected in soil several days or months after its introduction due to
the intrinsic high stability of DNA molecules [32,33]. Interestingly, none of these studies
observed the horizontal transfer of released engineered DNA molecules to the native soil
microbiomes; however, the chance of horizontal gene transfer from released synthetic DNA
molecules in the environment cannot be excluded, especially if those molecules confer a
phenotype advantage to the native microbiome.

Different molecular approaches can be employed for GMY biocontainments, including
auxotrophic mutations, synthetic molecular mechanisms (xenobiology), and kill switches
based on the expression of toxin-antitoxin [27,34] or exo-/endonucleases [29,35] (Figure 1).
However, all of these approaches are not failproof, since molecular and evolutive mecha-
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nisms lead to the inactivation of biocontainment devices [36] (Figure 1). This is especially
true when a biocontainment approach makes use of a single component/device (defined in
this work as a “uniplex-type biocontainment approach” or UTBA; Table 1 and Figure 1),
such as natural auxotrophic markers. On the other hand, the combination of different
biocontainment approaches (“multiplex-type biocontainment approach” or MTBA; Table 1)
reduces its potential escape frequency at the expense of low cell fitness (Table 1) [27,34].
Paradoxically, the reduction in cell fitness increases the frequency of inactivated biocon-
tainment devices [37]. Thus, an effective biocontainment strategy should consider different
escape mechanisms, including mutagenic drift, the environmental supplementation of
nutrients and/or essential molecules, and horizontal gene transfer (HGT) [38].
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Figure 1. Diagram of major uniplex-type biocontainment approaches (UTBAs) applied for genetically
modified yeast (GMY). Under different selective pressures induced by UTBAs, GMY cells are kept
active/live in a production facility, where the absence of these selective pressures leads to cell death
in an environment. However, a small fraction of GMY cells have the potential to escape the UTBA
mechanisms, where different molecular mechanisms, such as mutagenesis, horizontal gene transfer
(HGT), DNA recombination, and gene loss, result in GMY adaptability to the environment. In
some cases, the environment-associated microbiome could promote GMY adaptability by releasing
nutrients that bypass UTBA (e.g., natural auxotrophies). On the other hand, GMY cell death can
release synthetic/transgenic DNA molecules that remain stable in the environment and can be
incorporated by HGT into different environment-associated microorganisms, thus changing the
microbiome. The colors of UTBAs (inset) indicate the experimental status of the technology for GMYs:
black, technology extensively tested inside and outside the production facility; gray, experimental
technology not tested outside the production facility; red, technology not applied for GMYs and other
microorganisms.
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Table 1. Advantages and disadvantages of different biocontainment approaches for genetically
modified yeasts.

Disadvantages Advantages Biocontainment

1. Can be inactivated by molecular
and evolutive mechanisms.

2. Presence of metabolites from
other organisms can
surpass biocontainment.

3. Potential horizontal gene
transfer events can surpass
biocontainment mechanisms.

1. Can be easy to implement for different
yeast species.

2. Some approaches were extensively tested
outside production facilities.

3. Orthogonal components diminish the impact
of the biocontainment apparatus on
cellular physiology.

4. Can employ synthetic small molecules or DNA
parts to prevent biocontainment escape.

5. Some UTBAs can be combined into an MTBA.

Uniplex-type approach (UTBA)

1. Complex design
and implementation.

2. Lower cell fitness and promotes
the selection of inactive
biocontainment devices.

3. Not extensively tested outside
production facilities.

1. Designed with redundant or safeguard
mechanisms for mutation tolerance.

2. Orthogonal circuits that respond to specific
environmental inputs to induce cell death
outside the production facility.

3. Can combine molecular mechanisms targeting
different cellular components.

4. Can apply synthetic molecules or
biological components.

Multiplex-type approach (MTBA)

The purpose of this review manuscript is to focus on different UTBA and MTBA
strategies for GMY biocontainment and on what approaches have been or have not been
applied for industrially important GMYs.

2. Uniplex-Type Biocontainment Approaches
2.1. Natural Auxotrophic Markers

Natural auxotrophy (Figure 1) is a simple and widespread UTBA technique commonly
applied to prevent the release and proliferation of GMYs outside the production facility. In
general terms, natural auxotrophy can be defined as a nutritional deficiency induced by
mutated genes resulting in a GMY strain that depends on the addition of the nutrient on its
growth media [39]. The yeast S. cerevisiae has been used as a model for auxotrophic markers
due to the facility of inducing deletion and/or point mutations in different genes associated
with nutrient metabolism [39]. In this sense, genes linked to the metabolism of amino acids
such as L-histidine, L-leucine, L-tryptophan, and L-methionine [39] and nitrogen bases
(e.g., adenine and uracil) [40] have been used as auxotrophic markers for decades.

Considering nitrogen base auxotrophies, the allele ade2-1, which contains a nonsense
mutation (Glu64STOP) [41], is widely found in different laboratorial S. cerevisiae strains and
confers adenine dependence. A major phenotypic characteristic of ade2-1 is the development
of a red ochre color due to the intracellular accumulation of oxidized adenine-associated
metabolic intermediates [40,42], a phenotype that can be useful for red–white colony
screening [43], redox biology [44], and drug discovery [40].

The depletion of adenine reserves in yeast cells increases trehalose synthesis and
leads to cell cycle arrest, recapitulating the protective effects observed for desiccation stress
tolerance. As a consequence, the adenine-deficient cells become viable for a longer period
of time and evade biocontainment [42]. Complementally, it was observed that adenine
auxotrophy increases the mutagenesis rate in yeast cells [45], a condition that is observed
for other auxotrophic markers such as leu2 and/or lys2 alleles. Yeast cells carrying leu2
and/or lys2 alleles, when subjected to L-lysine or L-leucine starvation, display an increase
in the number of respiratory deficient cells (rho− cells) due to the accumulation of mutations
in the mitochondrial genome, a condition termed “adaptive mutation” [46]. Additionally,
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adaptive mutations are linked to auxotrophy marker reversion to the wild-type state, as
observed for the his4 marker in yeast under selective pressure [47].

In order to avoid the reversion of auxotrophic markers, a series of deletion gene mark-
ers have been generated for S. cerevisiae [48], as well as for other non-Saccharomyces species,
such as Kluyveromyces lactis [49]. However, it has been observed in some non-Saccharomyces
species that auxotrophic gene deletion leads to a bradytroph/leak auxotroph phenotype,
such as those observed for PHA2 in Pichia pastoris, which is linked to L-phenylalanine
biosynthesis [50]. In this case, the auxotrophic phe− cells are able to survive under L-
phenylalanine starvation due to alternative L-phenylalanine biosynthesis mechanisms [50].

Considering the impact of auxotrophy in yeast metabolism, the effect of adaptive
mutation in the selection of prototrophic cells, and bradytrophy due to the presence of poorly
described biochemical pathways in non-Saccharomyces species, natural auxotrophy per se has
strong limitations regarding its use as a biocontainment strategy. In addition, the presence
of other microorganisms in the environment and/or production facility (Figure 1) can
provide the auxotrophy-dependent nutrients for GMY mutants, bypassing the auxotrophy
requirement [51].

A solution for overcoming the natural auxotrophies limitations is the use of synthetic
amino acids and nitrogen bases that are not available outside the production facility and
cannot be biologically supplied. This approach, termed “xenobiology” or “synthetic aux-
otrophies” (Figure 1), makes use of top-down synthetic biology techniques for engineering
GMYs and creating new biocontainment strategies [35]. Another approach to circum-
venting the limitations of natural auxotrophies is the use of a so-called “conditional gene
essentiality” (Figure 1), which employs promoter engineering to modify genes linked to
nutrient metabolism and strictly regulate their expression by using synthetic molecules
and/or orthogonal RNA polymerases [52].

2.2. Xenobiology and Synthetic Auxotrophies

Xenobiology focuses on the development of synthetic biological devices and systems
that utilize non-canonical amino acids (ncAAs), nucleic acids with a non-standard sugar
backbone (xeno-nucleic acids or XNA), and non-natural nitrogen base pairs for different
purposes, including the design of synthetic metabolic processes (neo-metabolism) [53] and
biocontainment [52]. Many of the xenobiology devices are designed by principle using or-
thogonality, where synthetic components (e.g., proteins, RNAs, DNAs, and small molecules)
are engineered for a purposed function and will not interfere with the natural biochemistry
of a host cell [53,54]. The orthogonality also ensures that these components will not be used
by natural biological systems, making it useful as a biocontainment strategy [55,56].

Biocontainment-based xenobiology is mostly centered on the use of different ncAAs
for protein synthesis for both GEM and GMY. For example, the application of genetic code
expansion (GCE) or orthogonal translation systems (OTSs) techniques [57,58] has been
used with success in Escherichia coli biocontainment [56].

In bacteria, GCE/OTS relies on an orthogonal pyrrolysyl-tRNA synthetase/tRNAPyl
CUA

(PylRS/tRNAPyl
CUA) pair derived from Methanosarcina barkeri, M. mazei, or Methanocaldo-

coccus jannaschii to incorporate ncAAs in proteins [59,60], in the reassignment of the UAG
amber codon, a rare stop codon in both E. coli and S. cerevisiae [61], and in the deletion of
the release factor 1 (RF1). Considering GCE for E. coli biocontainment, the genome of this
bacterium was refactored by the introduction of a reassigned UAG codon into 22 essen-
tial genes together with a Methanocaldococcus jannaschii PylRS that is able to incorporate
L-phenylalanine derivatives into tRNAPyl

CUA [56], generating a synthetic auxotrophy. Data
from this work indicated that the synthetic E. coli auxotroph cells were dependent on
the addition of L-phenylalanine derivatives; moreover, these synthetic auxotrophs have
undetectable escape frequencies in both solid and liquid culture media [56]. Additional
work related to the creation of E. coli synthetic auxotroph strains has been carried out [38],
pointing to the feasibility of this biocontainment technique for bacteria.
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The generation of yeast ncAAS-dependent synthetic auxotrophs was achieved with
very limited success [58,62]. Yeasts are naturally able to incorporate ncAAs into pro-
teins [61,63] and a GCE/OTS technique for S. cerevisiae was developed by Chin et al. [62]. In
this work, the authors engineered orthogonal codons, anticodons, and tRNA synthetases, in-
cluding an E. coli tyrosine-tRNA synthetase (TyrRS) and an amber suppressor tRNATyr

CUA,
to generate a library of TyrRS mutants that pair only with ncAAs [62]. Once this TyrRS
library was transformed into an S. cerevisiae strain, five different ncAAs were incorporated
into the human superoxide dismutase 1 protein (hSOD1) [62].

Other relevant works related to the development of GCE/OTS for S. cerevisiae and
Pichia pastoris have been conducted by using the E. coli TyrRS/tRNATyr

CUA or leucyl-
(Leu)RS/tRNALeu5

CUA pairs for ncAA incorporation into proteins [60,64–72]. However,
the use of GCE/OTS in yeast has some major challenges, including the low expression
of tRNAPyl

CUA in yeast due to the absence of intragenic promoter sequences A- and B-
boxes [58,60]; moreover, the eukaryotic release factor 1 (eRF1), codified in yeast by the
SUP45 essential gene [73], composes the Sup45p-Sup35p complex that is necessary to
end translation by binding into all three stop codons in yeast cells [74]. Comparatively,
the E. coli RF1, which recognizes the UAG/UAA codons, can be deleted without major
physiological impacts into the cell due to the functional superimposition with the release
factor 2 (RF2) [75].

In order to circumvent the limitations inherently associated with the implementa-
tion of a GCE/OST-based biocontainment in GMY, different approaches were applied,
such as (i) prospecting new archeal PylRS with higher ncAA incorporation efficiency in
S. cerevisiae [76], (ii) selecting yeast strains with specific mutations (e.g., yil014c-a∆ and
alo1∆) for increasing ncAAs incorporation into tRNAPyl

CUA [77], (iii) improving E. coli
TyrRS and LeuRS with enhanced ncAAs polyspecificity and efficiency by using random
mutagenesis and directed selection [78], (iv) the use of an OTS based on the recognition of
quadruplet codons by an engineered orthogonal ribosome that allows for the expansion of
the genetic code to 256 codons (this quadruplet codon-base OTS has been implemented
more or less successfully in E. coli [58,79,80] and mammalian cells [81]), and (v) the use of
synthetic/unnatural nitrogen base pairs (UBPs) to expand the genetic code and increase
the repertoire of ncAAs that can be used for protein synthesis in E. coli [82].

There are different approaches when considering the use of UPBs and XNAs for
xenobiology and GMY/GEM biocontainment [83]. In fact, it is expected that XNA technol-
ogy could be efficient for GMY/GEM biocontainment since the building blocks of XNAs
(e.g., nucleobases, sugar moieties and phosphate-modified groups) cannot be found in
natural environments and the GMY/GEM cells should be able to incorporate these building
blocks into new XNA polymers by the usage of specialized polymerization enzymes and
transmembrane proteins that are able to take up these precursors [84,85]. Thus, UBPs and
XNAs can be like a “genetic firewall” [84], where HGT events could be avoided regarding
the restrained aspects of XNA technology.

The developments of XNA technologies follow two major mainstreams: (i) the use
of unnatural nucleobases, sugar moieties, and phosphate-modified groups (XNA sub-
strates) to incorporate into XNAs or hybrid XNA/DNA/RNA polymers by canonical DNA
and/or RNA polymerases [55,86]; and (ii) the design of new DNA and/or RNA enzymes
(XNAzymes) that are able to metabolize XNA polymers and/or substrates with an “alien”
chemistry, such as threose nucleic acid (TNA), cyclohexenyl nucleic acid (CeNA), arabino
nucleic acid (ANA), 2′-fluoro-arabino nucleic acid (FANA), glycol nucleic acid (GNA), and
locked nucleic acid (LNA) [87–94]. In all cases, the XNAs should display orthogonality
in vivo with little or, preferentially, no interaction with the canonical components of the
DNA/RNA metabolism [95]. Unfortunately, many different XNA technologies were not
implemented in vivo, which renders their usage for GMY/GEM biocontainment still far
away from a technical and practical viewpoint [96]. Finally, both GCE/OTS and XNA
technologies were not tested in an open and uncontrolled environment (Figure 1), making
their behavior unpredictable for real biocontainment applications [26].
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Another approach related to the induction of synthetic auxotrophies in E. coli is based
on the selection of essential proteins whose structure and activity are dependent on the
presence of small molecule ligands, such as the so called “synthetic auxotrophs based on
ligand-dependent essential genes” (SLiDE) technique [97]. In this work, the authors were
able to select five essential genes in E. coli by applying protein engineering and saturation
mutagenesis and generate proteins dependent on benzothiazole. The authors related a very
low escape frequency (<3 × 10−11) under laboratory assays [97]. Similar works on bacterial
synthetic auxotrophs have been conducted, including phosphite-dependent Synechococcus
elongatus [98] and Pseudomonas putida [99]. In S. cerevisiae, a series of mutations in the CDC10
gene have been identified, which codify an essential septin protein that can be rescued in
the presence of small molecules, such as guanidinium ion [100,101]. Although the authors
of this work have not applied the CDC10 conditional mutants for biocontainment, the data
may indicate new techniques based on chemical rescue for GMY biocontainment.

2.3. Conditional Gene Essentiality

The conditional essentiality is, similar to auxotrophy or xenobiology, a plethora of
molecular techniques where essential genes that codify for proteins and enzymes needed
for cell growth and maintenance are modified to have its expression regulated by external
agents [52]. In this regard, the conditional gene essentiality has been applied for biocontain-
ment in S. cerevisiae, E. coli, and other bacteria with a low escape frequency (Figure 1) [27,52].
In S. cerevisiae, conditional gene essentiality was employed to regulate the expression of
histone genes [27], fatty acid synthetase, mitochondrial and cytoplasmic histidine tRNA
synthetase (HisRS), RNA polymerase II subunit B, and interorganellar chaperones and
GTPases related to vesicular transport and fusion [102]. These genes have their original reg-
ulatory sequences replaced by a combination of promoters whose activities are modulated
by galactose and estradiol [27]. Moreover, the orthogonality is ensured in this biocontain-
ment system by providing a “fail-safe” recombination-induced lethality mechanism based
on small molecule-dependent Cre recombinase [27,103].

2.4. Orthogonal DNA Replication and RNA Transcription

Another potential strategy for GMY biocontainment is to implement orthogonal DNA
and RNA polymerases [51]. In yeast, an orthogonal DNA replication system derived
from the Kluyveromyces lactis cytoplasmic plasmid pGKL1/2, named “OrthoRep”, has been
applied for studies of the in vivo continuous evolution of target genes due to the high
error-prone activity of DNA polymerase 1 (DNAP1) and DNA polymerase 2 (DNAP2), both
codified by pGLK1/2 [104–106]. Similar in vitro works were also described by using the
orthogonal DNA polymerase derived from bacteriophage phi29 to generate a self-contained
synthetic transcription and translation-coupled DNA replication system [107–109]. Ad-
ditionally, orthogonal DNA replication systems, including XNA polymerases and/or
engineered DNA polymerases [110], are being developed for xenobiology applications.
However, the use of different orthogonal DNA replication mechanisms as a biocontainment
system for GMY/GEM was not reported until now, pointing to an unexplored research
field (Figure 1).

Like orthogonal DNA replication systems, orthogonal RNA transcription systems are
also underexplored in the context of GMY/GEM biocontainment. Some examples include
orthogonal genic circuits based on the use of bacteriophage T7 RNA polymerase in bacteria
and yeast for different biotechnological purposes [111,112]. However, no biocontainment
applications using T7 RNA polymerase-based techniques for GMY/GEM were described
until now (Figure 1).

2.5. Nuclease-Based Kill Switches

Kill switches are defined as gene circuits activated by specific environmental inputs,
resulting in the expression of lethal genes that lead to cell death [113]. Different kill switch
designs have been used for GEM biocontainment (Figure 1), including gene circuits that
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respond to environmental changes by activating/deactivating a type II toxin–antitoxin
system CcdB/CcdA [113]. Besides this, specific and unspecific nucleases, auxotrophies, as
well as type I toxin–antitoxin pairs have been employed to engineer kill switch circuits for
biocontainment purposes, many of them in an MTBA format (Table 1) [34,56,114–117] in
order to reduce the GEM escape frequency.

Considering nucleases for kill switch design, its usefulness for bacteria biocontainment
has been shown. For example, the expression of the EcoRI endonuclease–EcoRI methylase
pair combined with conditional gene essentiality in E. coli considerably lowers the escape fre-
quency [34]. In this sense, combining EcoRI and mf-Lon protease in a strictly regulated gene
circuit allowed for the development of the “Deadman” kill switch, which considerably low-
ered the escape frequency associated with a high genetic stability [114]. Other non-specific
nucleases, such as nucA from Serratia marcescens [118] or nuclease A from Staphylococcus
aureus, have been employed in different bacterial biocontainment projects [117].

In S. cerevisiae, a kill switch based on the conditional expression of S. marcescens
nucA under the control of a glucose-repressed ADH2/GAPDH hybrid promoter has been
proposed [119]. This work showed that, under non-repressible conditions, the nucA was
efficiently expressed, leading to yeast cell death in both laboratorial and soil microcosm
assays [119]. Interestingly, type II restriction enzymes have been expressed in yeast to
study DNA damage and repair mechanisms [120–122]. Data from the expression of type
II restriction enzymes in yeast cells point to a low survival and DNA damage tolerance,
especially when blunt ends are induced by type II restriction enzymes (e.g., PvuII) [122];
however, the use of type II restriction enzymes as part of a kill switch mechanism in yeast
cells for biocontainment purposes was not described until now.

In addition to conventional exo- and endonucleases, the CRISPR-associated nucleases
(Cas) have been used in E. coli to design kill switches. These kill switch gene circuits
make use of Cas3 [123] or Cas9 [124] and were successfully used to biocontain E. coli cells,
both displaying an escape frequency ≤10−8 cells. A major advantage of the Cas-based
kill switches is the use of guide RNAS (gRNAs) to select specific DNA sequence targets
or microorganism strains, allowing for selectively eliminating the target strain from the
microbiome [124,125]. Until now, no Cas-based kill switches were reported for GMY.

2.6. Kill Switches Based on Type I and II Toxin–Antitoxin Systems

Another kill switch extensively applied in GEM biocontainment is based on type I
and II toxin–antitoxin (TA) systems. These kill switch-based TA systems efficiently lead
to controlled cell death outside the production facility and can be easily engineered in
GEM/GYM cells (Figure 1). What makes the TA systems so attractive for biocontainment
applications is their pleiotropy, which targets different molecular mechanisms, such as DNA
and mRNA synthesis, the cell cycle, nucleotide synthesis, and protein translation [126,127].

The prokaryotic TA system is classified into seven types numbered from I to VII [128,129],
which act in different cell mechanisms. For example, the type I toxin–antitoxin system
prevents toxin RNA translation through the binding of sRNA [128], while the type II
toxin–antitoxin system is based on the interaction of an endoribonuclease and an inhibitor,
forming a stable complex [130]. Type III toxin–antitoxin systems consist of the inhibition of
the toxin protein by an antitoxin RNA [131]. Type IV toxin–antitoxin systems are composed
of two proteins that do not form a complex; instead, the antitoxin acts as an antagonist
of the toxin at its cellular targets [132]. The type V toxin–antitoxin system differs from
the others by having its antitoxin cleave the toxin mRNA [133]. Type VI is composed of
an antitoxin-based proteolytic adapter that degrades the toxin-based protein [134], while
type VII is composed of an antitoxin that enzymatically neutralizes the toxin by post-
translational modification [129].

Type I and II are historically employed for biocontainment gene circuit design, es-
pecially for E. coli [135]. For example, the type I hok-sok pair has been applied for the
design of the conditional suicide of plasmid-containing E. coli cells in phosphate- [136]
or tryptophan-limited [135] environments. Additionally, type I TA systems have been
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used in synthetic biology projects related to GEM biocontainment [117]. Similarly, type
II TA systems have been applied into kill switch circuits based on the use of the ccdB–
ccdA pair regulated by a bi-stable cI/Cro memory switch (“essentializer” circuit) and by
a cold-inducible promoter (“cryodeath” circuit) [113]. Finally, type II TA systems have
been applied for the design of “plasmid addiction” systems to prevent the loss of plasmids
under the production facility [137]

In addition to GEM, the use of type I and II TA systems was proven to be effective for
GMY biocontainment, such as the expression of the relE–relB system in S. cerevisiae [138].
When not being neutralized by the RelB antitoxin, the RelE toxin inhibits protein synthesis
by cleaving mRNA that are being translated on the ribosome [139]. When RelB is neutraliz-
ing RelE, it displaces the toxin’s C-terminal and forms the RelBE complex [140]. To express
this TA system in S. cerevisiae, two recombinant plasmids were constructed, one containing
the relE toxin gene under the control of the galactose-induced GAL1 promoter (pKP727)
and another containing relE, regulated by the GAL1 promoter, and the relB antitoxin gene,
under the control of the methionine-repressible MET25 promoter (pKP1006). Yeast cells
transformed with the plasmid pKP727 showed visible growth inhibitory effects induced by
the relE toxin; on the other hand, yeast transformed with the plasmid pKP1006 showed a
higher growth rate. These data indicate that the toxic effects of relE can be minimized by
the relB antitoxin in yeast [138]. Similar to the relE–relB system, the ribonuclease-associated
toxin Kid (killing determinant) and its antitoxin Kis (killing suppressor) [141] have been
used in S. cerevisiae as a potential biocontainment system. For this purpose, an expres-
sion system containing the antitoxin Kis controlled by the MET25 promoter and the Kid
toxin controlled by the Cu2+-induced CUP1 promoter was cloned into the recombinant
integrative plasmid pRS303. In the presence of both methionine and Cu2+, the expression
of the Kis antitoxin is inhibited, while the expression of the Kid toxin is induced, leading to
cell death [142].

Another TA system already tested in yeast is based on the ε-ζ (epsilon-zeta) genes from
the gram-positive bacteria Streptococcus pyogenes [143]. The ε-ζ genes are organized in an
operon together with the ω (omega) gene, which codify a repressor that modulates the
transcription of the ζ toxin, the ε antitoxin, and its own [143]. This TA system was expressed
in a yeast two-hybrid system without including theω sequence, through which the toxicity
of the ζ protein was shown as well as the efficiency of the ε protein in antagonizing its
toxin [144]. Despite the efficiency of the ε-ζ pair in inducing yeast cell death, its use as a
biocontainment system for GMY was not attempted until now.

Finally, it was observed that the expression of the chpK–chpI TA pair from Lepstospira
interrogans in E. coli and S. cerevisiae modulates their cell growth [145,146]. However, the
application of the chpK–chpI TA pair as a biocontainment system was not reported until
now. In addition to S. cerevisiae, the expression of the endoribonuclease-associated toxin
mazF from the E. coli mazEF module [147] in Pichia pastoris results in cell death and can be
useful as a counter-selectable marker for genetic modification [148].

3. Multiplex-Type Biocontainment Approaches

Multiplex-type biocontainment approaches (MTBA) (Table 1) have several advan-
tages over UTBAs. First, the combined use of different molecular mechanisms can reduce
the selective evolutionary pressure observed for the majority of UTBAs that results in
mutagenic drift, HGT events, and small molecule supplementation by an ecologic niche
that inactivates the biocontainment-associated gene or gene circuits [38]. Interestingly, an
early work on E. coli showed that duplicating the biocontainment-associated gene could
lower the mutational events that lead to biocontainment inactivation [149]. The same
authors suggest that the use of multiple copies of biocontainment-associated genes, with
different regulatory mechanisms and independent molecular targets, could also diminish
the populational evolutionary pressure to negatively select mutated, non-functional bio-
containment circuits [149]. In this sense, the use of synthetic biology approaches, such as
redesigning the organism genome by incorporating expanded genetic code alphabets, the
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application of orthogonal DNA/RNA devices and/or systems, or XNA technologies, could
be a solution for reducing the evolutionary pressure to inactivate the biocontainment in
GMY/GEM populations [27,52–54,83,84]. Unfortunately, such approaches are far away for
direct biocontainment applications in eukaryotic cells, especially yeasts. Even for prokary-
otes, these technologies are mainly restricted to E. coli, and many of them were never tested
in non-laboratorial conditions. Even considering the production facility environment, it
has been reported that synthetic transcriptional circuits based on the Boolean gates “AND”
and “NOR” have altered responses in laboratory-scale fermentations, negatively impacting
both biomass production and gene circuit expression [150]. However, some successful
applications of multiplex technologies in biocontainment were already described, which
include the “Deadman” and “Passcode” kill switches in E. coli [114] and the transcriptional
and recombinational control of essential genes in S. cerevisiae [27]. Another approach is the
use of overlapping “safeguards” composed of engineered riboregulators that control the
expression of essential genes and engineered nucleases that cleave the E. coli genome in the
absence of exogenously supplied synthetic small molecules [34]. These examples reinforce
the idea that redundancy combined with the use of different molecular approaches are
crucial factors for the design of a resilient biocontainment technology.

4. Conclusions and Perspectives

More than ever, the development of new biocontainment technologies for GMY is im-
perative, facing the availability of synthetic biology tools and/or fermentation technologies.
The data gathered so far showed that the technologies available for GMY biocontainment
are far away from what is available for GEMs (e.g., E. coli). While technologies such as
xenobiology and MTBAs are available for E. coli, the same is not true for yeasts that mainly
rely on natural auxotrophies or other non-redundant UTBAs for biocontainment. The major
factors that contribute to the lack of new GMY-linked biocontainment technologies are the
complexity of the eukaryotic genome, the intracellular compartmentalization and biochem-
ical specialization of organelles, as well as natural mechanisms that increase the genetic
diversity of the yeast population, such as meiosis or even non-homologous recombination
mechanisms, which lead to the inactivation of biocontainment circuits. However, with the
advances in top-down synthetic biology approaches for eukaryote genomes (e.g., “Yeast
2.0”), it is expected that technologies such as xenobiology and genetic code refactoring will
become available for the development of different UTBAs and MTBAs for GMY.
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