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Furkan Aydın 1,* , Tacettin Utku Günen 2, Halil İbrahim Kahve 1 , Emrah Güler 3 , Göksel Özer 2 ,
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Abstract: DNA markers help detect the intraspecific genetic diversity of yeast strains. Eight ISSR (In-
ter Simple Sequence Repeats) primers were used to assess the intraspecific diversity of Saccharomyces
cerevisiae (n = 96) from different populations (n = 3), evaluate the technological characteristics, and in-
vestigate trait-loci associations. The primers amplified 154 reproducible and scorable bands, of which
79.87% were polymorphic. The UPGMA (unweighted pair group method with arithmetic mean)
dendrogram clustered 96 isolates into two main clusters, supported by STRUCTURE HARVESTER
results (∆K = 2). Analysis of molecular variance (AMOVA) indicated significant genetic differences
between (15%) and within the populations (85%) (p < 0.001). Twenty-nine genetically distinct strains
were selected for the technological characterization. Principal component analysis (PCA) revealed
that five strains with high fermentation capacity, leavening activity, high growth index at 37 ◦C,
and harsh growth conditions were technologically relevant. Trait-loci association analyses indicated
that the highest correlation (r = 0.60) was recorded for the fermentation capacity on the 8th and
113th loci, amplified by ISSR-1 and ISSR-6 primers, respectively (p < 0.05). The strains yielding high
performances and the associated loci amplified by ISSR markers possess a high potential to generate
locus-specific primers to target the strains with high fermentation capacity.

Keywords: sourdough; yeast; Saccharomyces cerevisiae; DNA markers; ISSR; genetic variation

1. Introduction

Traditional sourdough, a flour-and-water mixture fermented by endogenous lactic
acid bacteria (LAB) and yeast, has been used for thousands of years to produce cereal-
based fermented goods worldwide [1]. It is a massive source of various endogenous
LAB and yeast species and strains due to their artisanal and location-specific handling [2].
The yeasts in sourdough must endure the unique and demanding microbial environment
characterized by low pH and oxygen tension and the need to share carbohydrates with
the competing LAB communities [3]. Saccharomyces cerevisiae has been reported as the
predominant yeast species in many sourdough ecosystems [4–8]. It can quickly produce
CO2 from sugar, resulting in dough expansion during the fermentation. It significantly
influences the texture and flavor development by secreting specific compounds, such as
glutathione, glycerol, alcohols, aldehydes, acetoin, and esters [9–11]. These characteristics
are strain-specific and mainly dependent on heterogeneity [12].

Molecular markers are widely used for the classification and genetic characterization
of yeast species, providing beneficial information in revealing heterogeneity between the
strains by producing polymorphic DNA fingerprints and clustering genetically diverse
strains separately [13]. In contrast to many other statistical methods, cluster analyses
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offer genetically distinct groups and may be used when the research is in the exploratory
stage, and when prior assumptions are lacking [14]. Thus, reducing the number of iso-
lates that should be technologically analyzed is possible by choosing strains from the
various clusters. Additionally, the association between polymorphic loci and technological
traits may make it possible for researchers to use the sequence-characterized amplified
regions (SCAR) approach to target more specific gene regions associated with technological
characteristics [15,16].

The genetic diversity in yeast from several fermented food products has been assessed
using various DNA markers, such as microsatellites [17], Inter Simple Sequence Repeat
(ISSR) [18], Randomly Amplified Polymorphic DNA (RAPD) [8], Inter-Primer Binding
Site (iPBS) [13,19], and Start Codon Targeted (SCoT) [4]. The ISSR markers target the
DNA segment between two identical microsatellite repeat regions facing the opposite direc-
tion [20]. The system is easy to perform in classical molecular microbiology laboratories and
does not require prior sequence information. Despite sharing similarities with the RAPD-
PCR technique, ISSR-PCR is much more reproducible and highly polymorphic in yeast
thanks to higher primer lengths, higher amplification temperatures, and a non-random
amplification mechanism [21].

Many universal ISSR markers have been chiefly utilized to discriminate yeast species
and strain typing by simply generating DNA fingerprints alone or in combination [21–25].
On the other hand, very few studies focused on the intra-specific genetic diversity of S. cere-
visiae strains from different food matrixes using ISSR markers [18,26,27]. There is still a gap
in evaluating the intraspecific diversity of S. cerevisiae from sourdough and implying the
use of ISSR markers in trait-loci associations. This study aimed to investigate the intraspe-
cific genetic diversity of S. cerevisiae isolates of Type I sourdough origin, the technological
characteristics significant to produce baked goods, and the trait-loci associations.

2. Materials and Methods
2.1. Yeast Isolates

A total of 96 endogenous S. cerevisiae strains previously isolated from 39 Type I
sourdough samples and deposited in Aksaray University Food Microbiology Laboratory
as glycerol stocks were used within the concept of this study.

The origin of samples belonged to the Central Anatolia region (CAR; n = 17), Black
Sea region (BSR; n = 12), and Aegean region (AER; n = 10). The sampling locations of Type
I sourdough samples from which the isolates were obtained are given in Figure 1, where
the different colors represent different sampling regions. All the strains were activated in
Sabaround Dextrose Broth (SDB; Merck, Darmstadt, Germany) for 24–48 h at 25 ◦C.
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2.2. Molecular Analyses
2.2.1. DNA Extraction

According to the manufacturer’s directions, DNA was extracted using the DNeasy
Blood and Tissue kit (Cat No./ID: 69504, Qiagen GmbH, Hilden, Germany). The DS-11
FX+ spectrophotometer (Denovix Inc., Wilmington, DE, USA) was used to measure the
resultant amount of the DNA, and all resultant DNA templates were diluted to 20 ng/µL
with sterile ultra-pure water.

2.2.2. Molecular Confirmation of the Isolates

Species-specific primer pairs SC1 (5′—AAC GGT GAG AGA TTT CTG TGC—3′) and
SC2 (5′—AGC TGG CAG TAT TCC CAC AG—3′) designed by Josepa et al. [28] were
employed for the molecular confirmation of S. cerevisiae. As a positive control, S. cerevisiae
46-Y47 with an NCBI accession number MK358160 was used. The PCR reactions were
performed with a 50 µL reaction mixture as previously given in detail in [19]. The PCR
products were visualized using a gel imaging system (G:BOX F3, Syngene, Cambridge,
UK) under UV after gel electrophoresis on 1.2% (w/v) agarose gel and staining with
ethidium bromide.

2.2.3. ISSR Analyses

Eight ISSR primers, previously reported to have high discriminatory power in yeast,
were used to assess intraspecific genetic variation [23–25,27]. Detailed information regard-
ing the primers was presented in Table 1. PCR reactions were carried out in 25 µL reaction
mixtures containing 200 µM dNTPs, 0.24 µM primer, 2 mM MgCl2, 1× reaction buffer, and
one-unit Taq DNA polymerase (Thermo Fischer Scientific, Waltham, MA, USA). Ampli-
fication reactions were performed using a T100 thermocycler as follows: 95 ◦C for 4 min,
followed by 35 cycles of denaturation at 94 ◦C for 30 s, 30 s of annealing at 45.6–55.0 ◦C
depending on the G/C content of the ISSR primer, and 2 min extension at 72 ◦C with a
final extension step at 72 ◦C for 10 min. Amplified DNA fragments were subjected to gel
electrophoresis on 1.4% (w/v) agarose gel, stained with ethidium bromide, visualized using
a UV transilluminator using the G: BOX F3 system.

Table 1. The list of ISSR markers used and their information.

ISSR ID Primer Sequence (5′–3′) Tm (◦C) TB PB PIC RP

ISSR1 ARRTYCAGCAGCAGCAG 50.0 29 23 0.66 2.72

ISSR2 GTGGTGGTGGTGGTG 55.0 11 5 0.76 0.27

ISSR3 AGAGAGAGAGAGAAGAGAGT 50.4 9 6 0.58 0.73

ISSR4 HVHTGTGTGTGTGTG 45.6 30 25 0.79 3.25

ISSR5 AGAGAGAGAGAGAGAGVC 50.8 25 23 0.44 1.46

ISSR6 ACACACACACACAGACYG 54.0 10 7 0.59 0.86

ISSR7 AGAGAGAGAGAGAGAGYG 51.4 23 20 0.74 2.16

ISSR8 GACAGACAGACAGACA 52.0 17 14 0.58 1.31
Tm: Annealing Temperature, TB: Total Band, PB: Polymorphic Band, PIC: Polymorphism Information Content,
RP: Resolving Power.

2.2.4. Statistical Evaluation of Molecular Analyses

The reproducibility of the amplification achieved using each of the eight primers
was guaranteed. To create a binary data matrix, strong, clear, and unambiguous PCR
bands were carefully rated as present (1) or missing (0) at their locations. A 100 bp Low
Ladder (P1473; Sigma–Aldrich, St. Louis, MO, USA) was used as a molecular weight
identifier to gauge the size of the PCR products. Each ISSR marker’s performance was
calculated using the resolving power (RP) and the polymorphic information content (PIC)
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in EXCEL (Microsoft, Redmond, WA, USA), as proposed by Prevost and Wilkinson [29]
and Roldàn-Ruiz et al. [30].

The binary data matrix was converted into a genetic similarity matrix using Jaccard’s
similarity coefficient, and Unweighted Pair Group Method Using Arithmetic Average
(UPGMA) was constructed with the ‘vegan’ package of ‘R Studio’ software [31,32].

The isolates were divided according to sampling region (n = 3), CAR, BSR, and AER.
The binary data were analyzed using GenAlex 6.5 [33] and PopGene [34] to estimate the
observed and effective number of alleles, Nei’s gene diversity, and Shannon’s information
index. Analysis of molecular variance (AMOVA) was conducted to reveal the genetic
variation between and within the populations with 999 permutations [35].

STRUCTURE v.2.3.4 was used to analyze the binary data matrix without prior popula-
tion origin information to test the best K (∆K) value, which provides the most significant
sub-groups within all S. cerevisiae populations [36]. Ten iterations were chosen for each
of the K values to be tested, which ranged from 2 to 10. Both the length of burning and
the number of Markov Chain Monte Carlo (MCMC) repeats after burning were set to
100.000 [37]. The results were uploaded to the STRUCTURE HARVESTER web-based
analysis tool to estimate the ∆K using the Evanno method [38].

2.3. Technological Characterization

The following technological characteristics were evaluated in 29 endogenous S. cere-
visiae strains that were genetically discriminated by the molecular assessment. All techno-
logical assessments were performed in duplicate to assure the statistical data.

2.3.1. Growth at Different pH Values, NaCl Concentrations and Temperatures

The SDB inoculated with 3 CFU/mL of yeast were first incubated at 10, 25, and 37 ◦C
for 48 h. The SDB adjusted to different pH values (2.5, 3.0, 3.5) and containing different
NaCl concentrations (2, 4, and 6%) were inoculated with 3 CFU/mL to be incubated for
48 h at 25 ◦C. After incubation, the microbial growth was measured using a Allsheng
AMR-100T spectrophotometer (Hangzhou Allsheng, Instruments Co. Ltd., Hangzhou,
China). Aliquots of non-fortified SAB broth inoculated with 3 CFU/mL of yeasts and
incubated at 25 ◦C were used as positive controls. The data were arranged as Growth Index
(GI) using the following equation [39]:

GI = (Abss/Absc) × 100 (1)

where Abss represents the absorbance of the yeast isolates at different pH values, NaCl
concentrations, and the incubation temperatures and the control group, respectively. Absc,
on the other hand, stands for the control group. GI values were regarded as follows [39,40]:

GI < 25% strong inhibition

25% < GI < 75% moderate inhibition

GI > 75% high growth

2.3.2. Resistance to Lactic Acid and Acetic Acid

The SDB fortified with lactic acid (0.6 and 1.2%), and acetic acid (0.15 and 0.30%) were
inoculated with 3 CFU/mL of yeast to be incubated at 25 ◦C for 48 h. The microbial growth
was determined through absorbance measurement, and the results were given as GI (see
Section 2.3.1). The non-fortified SDB inoculated with 3 CFU/mL of yeast was used as
a control [40].

2.3.3. Fermentation Rate

The fermentation rate assay proposed by Pérez-Coello et al. [41] was used with minor
modifications. The activated yeast cultures were inoculated (106 CFU/mL) to 200 mL of
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SDB containing 20% glucose. Fermentation flasks were plugged with glass fermentation
traps containing sterile distilled water to allow only CO2 to exit. The fermentation was
carried out at 25 ◦C till the end, and the weight loss was measured daily. The weight
loss during the fermentation and the weight loss between the 24th and 72nd hours of
fermentation were calculated separately. The results were given as FCx (gCO2/day) and
FCy (gCO2/L·h).

FCx < 3.75 and FCy < 0.80; weak fermentation rate

3.75 < FCx < 4.0 and 0.80 < FCy < 1.00; moderate fermentation rate

FCx > 4.00 and FCy > 1.00; high fermentation rate

2.3.4. Leavening Activity

The activated yeast cells were washed and suspended in sterile tap water. For each
yeast strain, 100 g Type 0 wheat flour, 60 mL sterile tap water, 0.14 g NaCl and yeast cells
(106 CFU/mL) were mixed in sterile graduated containers. The samples were incubated
at 25 ◦C for 5 h. The volume increase was measured hourly. The data were modelled as
Volume Index (VI) values using the following equation:

VI = ((Vf − Vi)/Vi) × 100 (2)

where the Vf implies the volume of the dough obtained after 5 h, and Vi stands for the
initial volume. VI values were regarded as follows [40]:

VI = 0; no leavening activity

VI < 50; weak leavening activity

VI > 50; strong leavening activity

2.3.5. Statistical Analyses

A multivariate approach evaluated statistically prominent S. cerevisiae strains. For
this purpose, Principal Component Analyses (PCA) was employed using JMP Pro 16.0
software (trial version) (SAS Institute Inc, Cary, NC, USA). The quantitative values were
converted into qualitative codes (0, 1, 2) as implied in Table 2. The convenience of the data
for PCA was tested according to Bartlett’s test [42]. Additionally, the discriminative effects
of the studied circumstances on the strains were evaluated by utilizing a heatmap analysis
according to Ward’s method in the JMP Pro 16.0 software.

Table 2. Qualitative codes for multivariate analysis (PCA).

Quantitative Analyses a Codes
b GI < 25 FCx < 3.75 FCy < 0.80 VI = 0 0

25 < GI < 75 3.75 < FCx < 4.0 0.80 < FCy < 1.00 VI < 50 1
GI > 75 FCx > 4.0 FCy > 1.0 VI > 50 2

a Growth at different pH values, NaCl concentrations and temperatures, resistance to lactic acid and acetic acid,
fermentation capacity, and leavening activity. b GI: Growth Index; VI: Volume Index; FCx: Fermentation Capacity
(gCO2/day); FCy: Fermentation Capacity (gCO2/L·h).

2.4. Trait-Loci Associations

Trait-loci association analyses were performed using the TASSEL 5 software, where
the general linear model (GLM) incorporating the PCA and the STRUCTURE (q) results
were used [43,44]. Association between the traits and loci was considered significant
when p < 0.05.
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3. Results
3.1. Intraspecific Genetic Variation

The eight ISSR primers amplified 154 reproducible and scorable bands, of which
79.87% were polymorphic. The amplified DNA fragments for each ISSR primer ranged
from nine (ISSR-3) to 30 (ISSR-4), with a total ratio of 19.25 per primer. Degenerate primers
produced more scorable total bands in general. The PIC and RP values indicating the
effectiveness of the primers are given in Table 1. The highest PIC value was obtained from
the ISSR-2 primer (0.76), whereas the lowest PIC value was obtained from the ISSR-5 primer
(0.44). On the other hand, ISSR-4 and ISSR-2 primers yielded the highest and lowest RP
values of 3.25 and 0.27, respectively.

The genetic diversity indices were also determined by expressing the observed number
of alleles (1.81 ± 0.09), the effective number of alleles (1.42 ± 0.04), Nei’s gene diversity
(0.24 ± 0.01), and Shannon’s information index (0.36 ± 0.02). These values were also deter-
mined within the populations. Accordingly, the individuals of CAR and BSR populations
were the wealthiest in allelic richness. They were genetically more diverse according to the
Shannon’s index and Nei’s gene diversity indices, whereas these values were the lowest for
the AER population. The percentage of the polymorphic loci values also supported these
values (Table 3).

Table 3. Genetic variation of different populations obtained by ISSR markers.

Population Na ** Ne I h PPL (%)

CAR * (n = 32) 1.60 ± 0.05 1.37 ± 0.03 0.33 ± 0.02 0.22 ± 0.01 69.48
BSR (n = 32) 1.56 ± 0.06 1.40 ± 0.03 0.33 ± 0.02 0.22 ± 0.01 68.18
AER (n = 32) 1.32 ± 0.06 1.31 ± 0.03 0.28 ± 0.02 0.19 ± 0.01 53.25

Average (n = 96) 1.50 ± 0.03 1.36 ± 0.02 0.31 ± 0.01 0.21 ± 0.01 63.64 ± 5.21
* CAR: Central Anatolia Region, BSR: Black Sea Region, AER: Aegean Region. ** Na: The number of alleles,
Ne: The effective number of alleles, I: Shannon’s information index, h: Nei’s gene diversity, PPL (%): Percentage
of Polymorphic Loci.

The AMOVA revealed significant (p < 0.001) genetic differences between and within
the populations, as given in Table 4. Of the total genetic variation, most of the genetic
variation was observed within the populations (85%), which is also supported by the low
FST value (0.155). Additionally, the values for gene flow (Nm) and genetic variation (GST)
were found to be 0.13 and 3.24, respectively.

Table 4. AMOVA results of Saccharomyces cerevisiae populations.

Source d-f SS MS Est. var. % FST p

AP * 2 230.375 115.188 3.075 15
0.155 0.001AIWP 93 1562.500 16.801 16.801 85

Total 95 1792.875 19.876 100
* AP: Among Populations, AIWP: Among Individuals Within Populations, d-f : degrees of freedom, SS: Sums of
Squares, MS: Mean Square, Est.var.: Estimated Variation, FST: Fixation Index, p: Significance Level.

The isolates were grouped as two main clusters on the UPGMA dendrogram (Figure 2).
Cluster I grouped 77 strains, while Cluster II grouped the rest. There was no clear genetic
differentiation among the populations according to the geographic regions on the UPGMA
dendrogram, which is also indicated on the PCoA dendrogram (Figure 3). However, closer
geographical locations within the same populations most likely tended to group more
closely, such as Y3, Y4 and Y21, Y22 as well as Y87, Y88 and Y65, Y66. The data had the
highest probability conducted by the Bayesian clustering model on STRUCTURE when the
individuals were split into two populations (∆K = 2), implying two statistically significant
clusters as shown on the UPGMA.
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3.2. Technological Characterization

As seen in Figure 2, most sub-clusters have more than one isolate. We chose one isolate
for each sub-cluster to select the genetically different isolates. Accordingly, genetically
diverse 29 S. cerevisiae isolates representing each sub-cluster on the UPGMA dendrogram
(Figure 2) were chosen to be technologically analyzed. The new UPGMA dendrogram of
the selected isolates is also given in Figure 4, with a discriminatory power of 0.98.
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The overall technological characterization results are presented in Table 5. Twenty-
two (75.86%) strains were partially inhibited (25 < GI < 75) when incubated at 10 ◦C,
whereas sixteen (55.17%) strains exhibited a growth pattern as control (GI > 75) at 37 ◦C.
Regarding the salt resistance, its effect mainly depended on the NaCl concentration. All
the strains grew as control when the concentration was 2%. On the other hand, increasing
concentration significantly affected yeast growth. The growth of 10 strains (34.48%) was
wholly inhibited (GI < 25) at 6% salt concentration.

Among all of these, three strains (Y43, Y70, and Y91) were partially inhibited (25 < GI < 75)
at pH 3.5, which is an expected pH of the sourdough environment. Lower pH also inhibited
the growth of many strains. Most of the strains (79.31%) were utterly inhibited at pH 2.5,
whereas six strains exhibited moderate growth (25 < GI < 75), which can later be significant
for the probiotic characteristic studies. Low lactic acid (0.60%) and acetic acid (0.15%) con-
centrations did not notably affect most strains’ growth. However, increasing concentrations
gave rise to moderate inhibition (25 < GI < 75). At increasing acid concentrations, none
of the strains were inhibited entirely (GI > 25). Increasing acetic acid concentrations were
more likely to inhibit more strains.

The results regarding the fermentation based on CO2 loss per day (gCO2/day and
gCO2/L·h) are summarized in Table 5. The total weight loss based on CO2 for each strain
ranged between 17.41 ± 0.11 gCO2 (S. cerevisiae Y30) and 19.79 ± 0.08 gCO2 (S. cerevisiae
Y85) with a median value of 18.52 ± 0.87 gCO2. The fermentation rate was based on the
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total CO2 loss per day (gCO2/day) and CO2 loss, where the fermentation rate was the
highest between the 24th and 72nd hours of fermentation divided by fermentation volume
(gCO2/L·h). Accordingly, 62.06% of the strains (n = 18) displayed a high fermentation
rate (FCx > 4.0) based on gCO2/day. On the other hand, 51.72% of the strains (n = 15)
with high or moderate (FCx > 3.75) gCO2/day value exhibited a high fermentation rate
(FCy > 1.0) based on gCO2/L·h. The leavening ability of the selected S. cerevisiae strains in
a certain time ranged from 41.09 ± 2.34 (S. cerevisiae Y6) to 89.14 ± 3.52 (S. cerevisiae Y85) as
percentages. A total of 23 strains displayed a strong leavening activity (VI > 50), whereas
the remaining strains resulted in weak leavening activity (VI < 50).

Table 5. Technological characteristics of isolates.

No
a Temperature (◦C) NaCl pH LAR (%) AAR (%)

FCx FCy Lev
10 37 4 6 2.5 3.0 3.5 0.60 1.20 0.15 0.30

Y2 25–75 >75 25–75 25–75 <25 25–75 >75 >75 >75 >75 >75 >4.0 >1.0 >50
Y6 25–75 25–75 25–75 25–75 <25 25–75 >75 >75 25–75 >75 25–75 3.5–3.75 <0.80 <50

Y10 25–75 25–75 25–75 <25 <25 25–75 >75 >75 >75 >75 >75 3.5–3.75 0.80–1.00 <50
Y19 25–75 25–75 >75 25–75 <25 25–75 >75 >75 >75 >75 >75 3.75–4.0 0.80–1.00 >50
Y22 25–75 25–75 25–75 25–75 <25 25–75 >75 >75 25–75 >75 >75 >4.0 >1.0 >50
Y26 25–75 >75 25–75 <25 <25 25–75 >75 >75 >75 >75 25–75 3.75–4.0 >1.0 >50
Y27 25–75 25–75 >75 25–75 <25 25–75 >75 >75 >75 >75 >75 >4.0 >1.0 >50
Y30 25–75 >75 >75 25–75 <25 25–75 >75 >75 25–75 25–75 25–75 >4.0 >1.0 >50
Y32 25–75 25–75 25–75 25–75 <25 25–75 >75 >75 >75 >75 >75 3.5–3.75 <0.80 <50
Y36 >75 25–75 25–75 25–75 <25 25–75 >75 >75 >75 >75 >75 >4.0 0.80–1.00 >50
Y40 25–75 >75 25–75 <25 <25 25–75 >75 >75 >75 25–75 25–75 3.75–4.0 >1.0 >50
Y41 25–75 25–75 25–75 <25 <25 25–75 >75 >75 >75 >75 25–75 >4.0 0.80–1.00 >50
Y43 25–75 >75 25–75 <25 <25 25–75 25–75 25–75 25–75 >75 25–75 3.75–4.0 >1.0 >50
Y46 25–75 >75 25–75 <25 <25 25–75 >75 >75 >75 >75 >75 >4.0 >1.0 >50
Y47 25–75 25–75 >75 25–75 <25 25–75 >75 >75 >75 >75 >75 3.5–3.75 <0.80 <50
Y49 25–75 >75 25–75 <25 <25 25–75 >75 >75 >75 >75 25–75 3.5–3.75 0.80–1.00 <50
Y50 25–75 >75 >75 25–75 25–75 >75 >75 >75 >75 >75 >75 >4.0 >1.0 >50
Y51 >75 25–75 >75 25–75 <25 25–75 >75 >75 >75 >75 >75 >4.0 0.80–1.00 >50
Y53 >75 >75 >75 25–75 25–75 >75 >75 >75 >75 >75 >75 3.5–3.75 0.80–1.00 <50
Y56 25–75 >75 25–75 25–75 <25 25–75 >75 >75 >75 25–75 25–75 >4.0 >1.0 >50
Y59 >75 >75 25–75 25–75 <25 25–75 >75 >75 >75 >75 25–75 >4.0 >1.0 >50
Y64 25–75 >75 25–75 25–75 25–75 >75 >75 >75 >75 >75 >75 >4.0 >1.0 >50
Y65 >75 >75 >75 25–75 25–75 25–75 >75 >75 >75 >75 >75 3.5–3.75 0.80–1.00 >50
Y70 25–75 25–75 25–75 <25 <25 25–75 25–75 25–75 25–75 >75 >75 >4.0 0.80–1.00 >50
Y72 >75 >75 >75 25–75 25–75 >75 >75 >75 25–75 >75 >75 >4.0 >1.0 >50
Y80 25–75 25–75 25–75 <25 <25 25–75 >75 >75 >75 >75 >75 >4.0 0.80–1.00 >50
Y85 >75 >75 >75 25–75 25–75 >75 >75 >75 >75 >75 >75 >4.0 >1.0 >50
Y91 25–75 >75 25–75 <25 <25 25–75 25–75 >75 25–75 25–75 25–75 >4.0 >1.0 >50
Y94 25–75 25–75 25–75 25–75 <25 25–75 >75 >75 >75 >75 >75 >4.0 0.80–1.00 >50

a Temp: Temperature; LAR: Lactic Acid Resistance; ASR: Acetic Acid Resistance; FCx: Fermentation Capacity as
gCO2/day; FCy: Fermentation Capacity as gCO2/L·h; Lev: Leavening Activity.

The heatmap analysis result indicates that the fermentation rate, leavening activity,
and growth ability at 37 ◦C seem parallel and separated from the other traits. On the
other hand, there was no other apparent relationship between the other technological
characteristics. The strains were divided into two main clusters, mainly separated by
Temp10, pH 2.5, pH 3.0, and NaCl4 traits. Y50, Y72, and Y85 were entirely equivalent in
response to the medium. The identical characteristics in the small cluster were fermentation
rates (FCx and FCy) and leavening activity (LeV), while the main discriminants in the big
group were growth at 37 ºC and fermentation rates (FCx and FCy) (Figure 5).

As a final step for technological characterization, we used a multivariate approach
to assess the technologically prominent S. cerevisiae strains. The factor 1 and factor 2
loadings were found to be statistically significant (p < 0.0001) and suitable for the PCA
according to the Bartlett test criteria [42]. The PCA exhibited 49.2% variability, emphasizing
a homogenous distribution with significant differences (Figure 6). The variables that
the factors used most effectively were identified by examining the factor loads. When
the eigenvalues for each factor were calculated, factors 1 (3.737) and 2 (2.896) had the
highest values. Factor 1 consisted of growth variables at different acetic and lactic acid
concentrations, pH 3.5, and 6% NaCl. On the other hand, Factor 2 included leavening
activity, fermentation capacity, and growth ability at 10 and 37 ◦C, pH 3.0, 3.5, and 4% of
NaCl. Seven strains (Y2, Y27, Y50, Y59, Y64, Y72, and Y85) were technologically superior to
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others by having high fermentation capacity, leavening activity, and growth index at 37 ◦C.
Among them, Y50, Y64, Y72, and Y85 formed another sub-group, whose factor loadings are
the highest due to higher growth abilities at lower pH values, 4% NaCl, and 10 ◦C.
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3.3. Trait-Loci Associations

Although there was no apparent relationship between the genotypes and technological
characteristics according to the UPGMA dendrogram, we used TASSEL 5 statistical software
to find the statistically significant trait-loci associations (p < 0.05). For this purpose, the
GLM was used, with the results given in Figure 7.

According to GLM, the highest correlation (r = 0.60) was recorded for the fermentation
capacity (FCy; gCO2/L·h) trait on the 8th and 113th loci, amplified by ISSR-1 and ISSR-6
primers, respectively. The PCR fragments obtained using ISSR-6 is given in Figure 8. The
strains were randomly selected and amplified using the ISSR-6 primer. The polymorphic
band specified with a red arrow marker around 800 bp was most associated with the
fermentation capacity according to GLM (Y2, Y27, Y43, Y49, Y61, Y72, Y80, Y91). To ensure
the reproducibility of the ISSR-6 primer, different DNA concentrations (20, 30, 40, and
50 ng) were used for the amplification, as proposed by Aydın et al. [4]. As well as this, the
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fragments were robust at different DNA concentrations. In addition, none of the traits were
found to be polygenic according to ISSR-PCR.
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4. Discussion

Sourdough yeasts are significant members of the sourdough microbiota along with the
LAB. Based on their heterogeneity, endogenous yeast isolated from traditional sourdough
may possess various technological characteristics [12]. ISSR markers have successfully
been used to detect the polymorphic yeast strains from the sourdough environment [45–47].
Here, we used eight ISSR markers for evaluating the intraspecific genetic diversity of
96 S. cerevisiae strains, determined genetically diverse strains’ technological characteristics
significant for baked goods, and assessed the trait-loci associations. This is the first study
where the ISSR markers were used to deeply study the intraspecific genetic diversity of
S. cerevisiae isolated from sourdough and to investigate the trait-loci associations statistically
by TASSEL.

Different parameters, including the percentage of polymorphic loci (PPL), the total
and effective number of alleles, Nei’s gene diversity, and Shannon’s information index
are frequently used to assess the intraspecific genetic diversity. The genetic parameters
obtained by eight different ISSR markers are comparable to those reported by Liu et al. [18],
where the genetic diversity of industrial brewing S. cerevisiae strains was evaluated using
15 ISSR primers. On the other hand, these values were slightly higher than those reported
by Aydın et al. [19] using iPBS markers in S. cerevisiae isolated from Type I sourdough. The
results suggest that markers targeting the DNA segment between two tandem repeats in
different directions reflect the genetic diversity better than those targeting the retrotrans-
posons. ISSR and iPBS markers should be used on the same isolates within the same study
to compare the intraspecific genetic diversity parameters and the Cophenity matrix.

The percentage of polymorphic loci (79.87%) was higher than those reported by
Luan et al. [16] but lower than those reported by Liu et al. [18] and Pathania et al. [27],
probably due to the lower ratio of degenerate primers used in this study. The PIC value
reflects the ability of a primer to evaluate genetic variation and is classified as follows:
(i) PIC > 0.50, high polymorphism; (ii) 0.50 > PIC > 0.25, moderate polymorphism; and
(iii) PIC < 0.25, low polymorphism [48]. The PIC values obtained from each ISSR primer
differed between 0.44 (ISSR-5) and 0.79 (ISSR-4), implying a high intraspecific genetic
polymorphism, which can be attributed to the strains’ widespread geographic origin.

The CAR and BSR populations were genetically more diverse according to their allelic
richness, Nei’s gene diversity, and Shannon’s information index than those in the AER
population. According to Aydın et al. [4], the lowest polymorphism was detected in
CAR populations, whereas the genetic variation in AER individuals was more diverse
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using SCoT markers. Similarly, iPBS markers gave different genetic variation indexes
within the populations. These dominant markers should be used together to enhance the
resolution of genetic variation parameters. AMOVA results suggested that most of the
genetic variation (85%) were detected within individuals among the populations. The
higher genetic difference within these populations offers a higher subdivision level and
hierarchy [49]. The results are in accordance with those reported by other researchers using
iPBS and SSR markers to assess intraspecific genetic variation in S. cerevisiae isolated from
sourdough and wine [19,50,51].

The UPGMA divided 96 endogenous S. cerevisiae strains into two main clusters, sup-
ported by the STRUCTURE output (∆K = 2). According to the STRUCTURE output, nine
strains (Y32, Y47, Y51, Y76, Y77, Y78, Y94, Y95, Y96) were equally close to both clusters due
to having many more shared alleles. This could arise from the shared alleles between strains
from different geographic origins, which occur less frequently, and is supported by low
gene flow value [52–54]. The genetic differentiation did not occur according to geographic
region according to the UPGMA dendrogram and PCoA distribution. A possible reason
could be the transportation of sourdough samples between different locations through
online shopping. Especially since the beginning of the COVID pandemic, many people
have made sourdough and sold it through social media in Türkiye.

Selecting technologically prominent yeast strains is a difficult task due to the excess of
data, which requires clustering and statistical techniques. Obtaining genetically diverse
genotypes permits the selection according to genetic structure, and this technique can be
applicable when prior information regarding the strains is unavailable [14]. Numerous
researchers used inter-delta, RAPD, and mtDNA-RFLP markers to lower the number of
isolates by simply obtaining genetically diverse genotypes before technological charac-
terization [8,55–58]. The ISSR markers separated different biotypes with a discriminatory
power of 0.98, higher than those reported by Palla et al. [17] and Palla et al. [58] using
microsatellite markers for strain typing of sourdough yeasts.

Pulvirenti et al. [59] suggested a procedure for a starter culture selection, as fol-
lows: (i) The isolation and identification of the dominating strains; (ii) evaluating the
technologically relevant strains; and (iii) the selection of the strains to produce desired
fermented food product. The selection of candidate yeast starters for baked goods is based
on various technological factors, including their ability to leaven dough, produce CO2, and
resist difficult growth conditions [60]. In our study, the selection of the technologically
relevant isolates depended on the harsh growth conditions, fermentation rate, and strains’
ability to leaven the dough. Although some factors are not strictly related to producing
baked goods, such as low pH and high salt concentrations, the strains were expected to
overcome these harsh conditions, as sourdough is a stressful environment brought about by
the competing LAB and yeast. The strains were considered technologically relevant when
they grew as control (GI > 75). Resistance to lactic acid and acetic acid is a key factor since
some yeast strains may be affected by the lactic and acetic acid produced by the competing
LAB or yeast within the microbiota of sourdough. The results obtained are in accordance
with S. cerevisiae strains isolated from Altamura sourdough with minor differences [40].

The most significant characteristics required for yeast starters are leavening ability and
high fermentation rate. Economically, bread makers profit from S. cerevisiae strains’ high
leavening capacity. S. cerevisiae strains ferment the sugar into CO2, ethanol, and glycerol,
thus leavening the dough [61]. The heatmap analysis indicated that the leavening activity
and fermentation rate results are primarily parallel. Still, there are some strains (Y19, Y51,
Y65, Y70, Y80, Y94) with high leavening activity (VI > 50) and moderate fermentation rate
(1.00 > FCy > 0.80). The ability of S. cerevisiae strains to leaven is influenced by additional
variables besides their capacity for glucose fermentation. Saccharomyces cerevisiae strains
primarily ferment glucose, whereas maltose and fructose are also fermented at later stages
of the fermentation [62]. The leavening ability is also affected by sucrase activity and
osmotolerance; however, the underlying mechanism requires further investigation [63].
Similar findings were also reported by Yang et al. [8].
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The multivariate approaches provided a strain grouping according to technological
traits’ input data and pointed out the variables responsible for the differentiation. Among
29 S. cerevisiae strains, five were found to be the technologically most relevant isolates ac-
cording to PCA distribution (Figure 6). These strains can be used as yeast starter candidates
to produce baked goods. Sourdough is also used to make shalgam and cereal-based tradi-
tional fermented drinks, such as boza [64,65]. The technologically most relevant strains’
probiotic characteristics should be further investigated for producing cereal-based probiotic
food products.

The associations between genotypes and technological traits, according to the UPGMA
dendrogram, are insufficient, since a single polymorphic band could be significant for a
specific trait. The complex statistical methods examining the possible associations between
the loci and traits are gaining more interest. We used the GLM approach to seek statistically
significant associations (p < 0.05). The results indicate that the ISSR-6 primer may be
valuable for detecting strains with high fermentation rates (FCy; gCO2/L·h). As mentioned
above, the strains with high leavening activity and fermentation rate are of particular
interest for producing baked goods. The ISSR markers are length polymorphic markers,
where each locus is visualized on the agarose gel. Producing SCAR markers using the
trait-associated locus (Figure 8) detected in this study is possible for strain identification
with a high fermentation rate. The utility of ISSR markers to detect significant trait-loci
associations has been reported by several authors in plants [66,67]. We hereby introduce
significant trait–loci associations (p < 0.05) in S. cerevisiae using the ISSR markers for the
first time. ISSR markers may also be used for different yeast species for further trait-
loci associations.

5. Conclusions

The genetic variation of S. cerevisiae strains from traditional sourdough was investi-
gated by eight ISSR primers. They helped reveal the genetic variation between and within
populations and genetically diverse S. cerevisiae isolates before technological characteriza-
tion. The multivariate approach assessed the technologically relevant strains as candidate
starters to produce baked goods. According to the trait–loci associations, a significant
association (p < 0.05) was found between a polymorphic locus and the fermentation rate.
ISSR markers should also be used in different yeast species to define trait–loci associations
further. Our future studies will cover producing SCAR markers targeting the specific region
related to fermentation rate and further definition of trait-associated loci by using different
DNA markers, such as iPBS and SCoT.
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