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Abstract: Deep eutectic solvents (DESs) have upgraded the practices of valorizing lignocellulosic
feedstock by lessening biomass recalcitrance through delignification in precise and economical
manner. In this study, the influence of a series of deep eutectic mixtures was evaluated on the
halophyte Atriplex crassifolia for achieving elevated biogas production. Initially, the biomass was
pretreated via several DESs with varying hydrogen bond donors (HBDs) including carboxylic acids,
amine/amide, and polyols/glycols. DES composed of choline chloride (ChCl) and lactic acid (LA)
evidenced as the most effective solvent in achieving high lignin removal rates and was further
optimized by evaluating the parameters of molar ratio of DES components, solid-to-liquid ratio, and
solvent addition. A maximum delignification value of 89.5% was achieved by 15% diluted ChCl: LA
(1:2) DES at a biomass loading of 1:15. The solubilization rate of diluted ChCl: LA was also raised up
to 38%. FT-IR analysis revealed significant lignin elimination from ChCl: LA pretreated substrates.
Moreover, ≥88% of ChCl: LA DES was recovered after up to three pretreatment cycles, retaining
≥85% delignification efficiency. Fresh DES-pretreated Atriplex crassifolia recorded 32.2 mL/g of biogas
production yield due to increased cellulosic content. The findings validated Atriplex crassifolia as an
efficient feedstock for biogas production and confirmed the affectivity of ChCl: LA pretreatment in
eliminating the lignin barrier, ultimately making cellulosic sugars readily biodegradable and highly
accessible for anaerobic microorganisms.

Keywords: deep eutectic solvents; pretreatment; choline chloride; lactic acid; delignification; Atriplex
crassifolia; biogas

1. Introduction

Ever-increasing energy demands and a shortage of non-renewable energy means
have outstretched the need for sustainable energy resources. Currently, an immense
share (i.e., ≥84%) of global energy consumption is sustained through fossil fuels such as
coal, oil, petroleum etc. [1,2]. Due to these concerns, researchers have shifted the focus
toward expanding renewable energy reserves. Given the core issue of global warming,
renewable biofuels have been reckoned as the chief backers of energy for restricting the
consumption of fossil fuels [3,4]. Biofuels, comprising biogas, biodiesel, bioethanol etc.,
seem favorable alternatives for traditional fossil fuels [5]. Among biofuels, biogas is a
promising green energy source. Reviewing the past 10 years of research, ~90% rise occurred
in the biogas industry. In 2017, 70% of the total world’s biogas was generated in Europe
(64TWh), emphasizing the significance of biogas production from natural renewable green
resources [6]. Lignocellulosic biomass (LCB) is a renewable and copious carbon-based
feedstock on Earth and is considered as a promising primary source for materializing the
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notion of bioenergy [7]. On the contrary, agricultural produce is facing intense constraints
because of the decline in arable lands due to soil salinization and shortage of freshwater.
Approximately 43% of the world’s surface is occupied by arid and semi-arid lands, whereas
98% of water is saline. Accordingly, ~20% of irrigated agricultural lands are salt-affected,
and it is the cause of an economic downturn of USD 27.3 billion every year [8], compelling
the need to exploit salt-tolerant halophytes for generating renewable energy.

Halophytes are an upright source of low-cost LCB [9] as they can be cultivated on
degraded saline lands. So far, various plants have been inspected for generating biogas,
including maize, grass, sunflower, clover etc. [10–13]. However, minimal work has been
conducted on exploring halophytes in this respect. Several halophytic plant species assessed
for this purpose include Halodule uninervis, Halophila stipulacea, Salicornia sinus-persica,
Arundo donax, Halophila ovalis, and Salicornia bigelovii [14]. Genus Atriplex (commonly
named saltbush and orache) is a widely distributed halophyte consisting of 250 species. It
belongs to the family Amaranthaceae and subfamily Chenopodioideae (plants of the world
online). Among Atriplex halophytes, Atriplex saggitata (Borkh) has been reported for its
usage as a feedstock for generating biogas [15].

Though LCB is a promising feedstock for generating bioenergy, its highly complex
structure is an impediment in achieving this goal. Pretreatment is a chief step to break this
recalcitrant barrier, unpacking the cellulosic sugars to make them readily accessible for
anaerobes. Effective pretreatment destroys the LCB’s supramolecular structure, eventually
improving biogas yield. Approximately 40% of the total process cost is constituted by the
pretreatment step alone [16]. Although conventional pretreatment methods (acid, alkali,
biological, chemical) lessen the biomass recalcitrance to a certain extent [17], these strate-
gies have multiple limitations as well, such as equipment corrosion, increased operating
expense, and costly chemical recovery strategies [18]. Hence, green, sustainable, and mild
pretreatment approaches are increasingly emphasized. DESs appear as favored solvents
for pretreatment purposes. DESs are a group of sustainable organic solvents and can be
employed as effective alternatives to ionic liquids. They exhibit low melting points, low
toxicity, high purity, and can be easily prepared. Furthermore, they are not flammable, less
volatile, biodegradable, and exhibit high air and thermal stability as well [19]. The deligni-
fication mechanisms in DES systems are interrelated with the capacity of electronegative
halogen anion (Cl−) from ChCl to form hydrogen bonding with hydroxy groups present in
lignin, followed by aromatic compound dissolution [20]. In case of dissolution of cellulose,
the preliminary intermolecular hydrogen bonds present in cellulose (β-(1,4)-glycosidic) are
broken down by DES, leading to the generation of new hydrogen bonds between hydroxyl
groups in polysaccharide and DES [21,22]. The H-bond basicity of DES weakens the intra-
or intermolecular hydrogen bonds in cellulose, demonstrating the solvent’s ability to act
as an HBA. Additionally, it has also been evaluated that anions with the capability to be a
HBA such as OAc−, (MeO)2PO2

−, Cl−, HCOO−, imidazole, or morpholine are outstanding
candidates to form DESs [23].

In comparison to traditional solvents, DESs have high compatibility for both enzymes
and microorganisms [24]. In addition to all these positive traits, one of the chief attributes
is their easy recyclability and reuse, thus making the process of biogas production cost-
efficient. Researches have evidenced ≥90% of DES recovery yield [25,26]. All these aspects
of DESs make them highly suitable to utilize as pretreatment solvents for biogas produc-
tion. Studies have revealed the optimistic effects of utilizing DESs such as ammonium
thiocyanate-urea [27] and choline chloride-oxalic acid [28] on enhancing biogas yield.

As already mentioned, this research work, as far as we know, will be the first study
that utilizes a halophyte, i.e., Atriplex crassifolia, for biogas generation. Moreover, as DES-
based pretreatment is quite a new approach, in-depth analysis of these eutectic solvents
has not been extensively performed. Very few studies are available that provide a detailed
survey of utilizing and optimizing DES as a pretreatment solvent. For these reasons, in the
present work, three types of DES, carboxylic acids, polyols/glycols, and amine/amides,
have been evaluated for pretreating a halophyte to attain increased cumulative biogas
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production. Additionally, process optimization has been carried out by electing some
under-researched parameters, such as type of HBD, the molar ratio of DES constituents,
solid-to-liquid (S/L) ratio, and effect of diluted DES (water/solvent addition in DES) for
achieving increased delignification values. This study further holds a comprehensive
explanation of the recyclability and reusability of the eutectic solvent, highlighting the
potential of recovered DES mediated pretreatment on biogas production, thus making the
process economically feasible.

2. Materials and Methods
2.1. Substrate and Anaerobic Sludge/Inoculum

Atriplex crassifolia was obtained from the Government College University, Lahore,
Pakistan. The halophyte was initially dried and later cut into small bits (1–2 cm). These
pieces were ground into fine powder (particle size: 1.19 mm) and preserved at room
temperature in tightly closed zipper bags. The anaerobic sludge was taken biweekly
from the wastewater treatment plant of Water and Sanitation Agency (WASA), Lahore.
The sludge was reactivated at 37 ◦C for ~5 days before inoculation. Anaerobic sludge
was degassed by pre-incubating it at the same operating temperature as of inoculum
source to prevent the production of background gas while limiting the incidence of residual
biodegradable organic content during testing [29,30]. The characterization of both anaerobic
sludge and the substrate was provided in Table 1.

Table 1. Characterization of pre-hydrolyzed biomass and inoculum (anaerobic sludge).

Characterizing Factors Atriplex crassifolia Anaerobic Sludge

Cellulose (%) 37.5 ± 1.3 -
Hemicellulose (%) 32.5 ± 1.1 -

Lignin (%) 19.2 ± 0.4 -
pH 5.5 ± 0.6 7.9 ± 0.1

TS (g/L) 52.4 ± 1.5 24.3 ± 0.9
VS (g/L) 41.8 ± 1.2 14.6 ± 0.2

tCOD (g O2/L) 103 ± 3.5 28.5 ± 1.1

2.2. Preparation of Deep Eutectic Solvents

DESs were prepared by dissolving choline chloride (i.e., HBA) with varied types of
HBD at a 1:2 molar ratio (Table 2). All the eutectic solvents were heated at 80 ◦C under
constant vigorous stirring at 500 rpm until a homogenous and transparent liquid was
formed. All prepared solvents were cooled and dried to avoid moisture absorption and
later stored at room temperature in sealed flasks [27,31].

Table 2. Several hydrogen bond donors combined with choline chloride to make DESs.

Carboxylic Acids Polyols/Glycols Amines/Amides

Acetic acid (AA) Ethylene glycol (EG) Urea (U)
Oxalic acid (OA) Glycerol (GLY) Formamide (FM)
Lactic acid (LA) Xylitol (X) Acetamide (Ac)
Citric acid (CA) 1,2-Propanediol (1,2-PDO) Monoethanolamine (MEA)

Levulinic acid (LVA) 1,3-Propanediol (1,3-PDO) Diethanolamine (DEA)

2.3. Pretreatment Optimization of Atriplex crassifolia

The choline chloride-based DESs were initially screened by varying the types of
HBD. For this, 5 g of substrate was dissolved in the 50 mL DES. The solution was then
incubated for 4 h at 120 ◦C. The DES that showed the highest delignification efficiency was
further optimized by selecting physicochemical parameters including molar ratio of DES
constituents, solid-to-liquid ratio, and effect of solvent addition as independent variables.
Pretreated A. crassifolia was filtered and rinsed with ethanol/water in order to remove
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the remaining DES constituents, and washing step was continued until the pH become
neutral, evincing the thorough elimination of DES components from the feedstock. Later
on, washed biomass samples were dried at 70 ◦C for 3 h. The dried substrates were stored
in sterilized zip-lock polythene bags prior to use [27,32]. The biomass residue recovery
attained after the pretreatment and SR% of DES on samples were calculated by the formulas
provided below [32,33].

Equations used to calculate (a) percentage recovery of biomass after DES medi-
ated pretreatment and (b) solubilization rate (SR%) of ChCl-LA based DES on halophyte
Atriplex crassifolia.

Pretreated biomass solid recovery (%) =
WSF

WRAW
× 100 (1)

Solubilzation rate (SR %) =
m0 − m1

m0
× 100 (2)

where, WSF = Weight of solid fraction obtained after pretreatment; WRAW = Weight of
raw substrate; m0 = Oven-dried weight of raw sample; m1 = Oven-dried weight of the
pretreated residues

2.4. Biogas Production via Anaerobic Digestion

Biogas was generated by the process of AD in batch fermentation experiments. The
nutrient medium was formed by dissolving (g/L) NiCl2.6H2O (0.00005 g), CaCl2.2H2O
(0.075 g), Na2SeO3 (0.00005 g), CoCl2.6H2O (0.0005 g), K2HPO4 (0.35 g), CuCl2 (0.00003 g),
KH2PO4 (0.27 g), MgCl.6H2O (0.1 g), FeCl2.4H2O (0.2 g), NaNO4 (0.00001 g), H3BO3
(0.00005 g), NH4Cl (0.53 g), ZnCl3 (0.00005 g), and MnCl2 (0.0005 g) in 50 mL distilled
water [34]. The inoculum-to-substrate ratio (ISR) was 2:1. A total of 10 mL of inoculum
was added in a flask containing 5 g of pretreated biomass. The final volume was raised
to 200 mL by adding mineral medium and distilled water [35]. To develop anaerobic
conditions, the nitrogen gas (99% pure) was flushed into the headspace of the reactor for
two minutes. The set-up was incubated at 35 ± 1 ◦C with pH adjusted at 7. The gas
released during AD was passed through 0.5 N NaOH to capture CO2, while the residual
gas was assumed to be biogas [29]. The inoculum & raw substrate and inoculum alone were
also digested as controls to compare the extent of biogas production from DES-pretreated
halophyte. For AD process, the retention time was 24 days and the biogas production was
measured daily. The pH of all set-ups was checked at the end of the digestion process to
ensure the absence of alkaline solution saturation [36]. The biogas quantification (mL) was
performed by the water displacement method.

2.5. Recovery and Reuse of Deep Eutectic Solvents

For recovering DES, water was added to the pretreatment liquor after solid–liquid
separation, and later the solution was kept overnight at 4 ◦C to precipitate the lignin. The
DES solution was then centrifuged (10,000× g) for 10 min to separate the precipitated lignin.
After lignin removal, DES was recovered from the DES–water mixture through vacuum
distillation. The residual water was evaporated by setting the rotatory vacuum evapo-
rator (Heidolph Rotary Evaporator, Laborota 4002) at 80 ◦C. The recovered DES reagent
and water were further utilized for the next pretreatment and lignin precipitation cycles,
respectively [37,38]. The DES recovery yield was calculated by the following formula:

YDES recovered (%) =
VDES recovered (mL)

VDES used for pretreatment (mL)
× 100 (3)

All the recovered DES solutions were again utilized for pretreatment and termed in
accordance with the relevant number of recovered generations; for instance, DES-1, -2,
-3, -4, and -5 were recycled in first five generations, respectively [37]. The recovered DES
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yield, pretreatment efficiency, and extent of biogas production were determined for each
regenerated DES in the same manner as described earlier.

2.6. Analytical Methods

The lignin content of Atriplex crassifolia and the delignification extent after DES-
mediated pretreatment were determined based on standard procedures acquired from
the National Renewable Energy Laboratory [39]. The cellulose content on a dry matter
(DM) basis was estimated by the method reported by Gopal and Ranjhan et al. [40]. Acid
detergent fibre (ADF) and neutral detergent fibre (NDF) were calculated to determine
hemicellulose (NDF-ADF) content of the halophyte as reported by Van Soest and Robertson
et al. [41]. COD was measured by an open-reflux method (Method 5220B). Volatile solids
(VS) and total solids (TS) of both inoculum and substrate were determined gravimetrically
(VS; Method 2540E, TS; Method 2540B) as described by APHA et al. [42]. Fourier-transform
infrared spectroscopy (FT-IR) of DES-pretreated and raw biomass was also conducted
(wave number; 4000 cm−1 to 500 cm−1) for studying the structural alterations in pretreated
substrate. The experimental setup for lab scale anaerobic digester was acquired from
Admasu et al. [43] with slight modifications. The biogas production (mL) was measured by
the amount of water displaced. The pH was detected via pH meter (adjusted by 1% H2SO4
or NaOH).

2.7. Statistical Analysis

All the provided experiments were carried out in replicates (repeated thrice). Statistical
data analysis was performed via SPSS Modeler 16.00 (IBM Analytic, New York, NY, USA).
The representation of all experimental outcomes was performed by MS Excel. The Y-error
bars interpreted the standard deviation (±SD) of all replicates.

3. Results and Discussion
3.1. Effect of Hydrogen Bond Donors Type

Varied HBDs were mixed with ChCl (HBA), as described earlier. Among all, ChCl:
LA-based DES displayed the highest delignification rate of 69.5%. The SR% of ChCl: LA
i.e., 25.8% on halophyte was also relatively more significant compared to other DESs.
The cellulose yield in carboxylic acid DESs varied from 43.2% to 58.4%. Carboxylic acids
showed the trend of LA > LVA > AA > OA > CA as shown in Table 3. The results
also inferred that among carboxylic acid HBDs, monocarboxylic acids exhibited higher
delignification capacity when compared with di- or tri-carboxylic acids. Otherwise stated,
the influence of the length of alkyl chain on delignification was interrelated to the extent
of carboxyl groups. Consequently, monocarboxylic acids showed greater lignin solubility
as they exhibited shorter alkyl chains, while the trend was certainly opposite for di- and
tri-carboxylic acids [44]. The results agreed well with those obtained by Hou et al. [45] and
Tan et al. [32], who reported low delignification potential of binary carboxylic acid-based
DESs in pretreating rice straw and oil palm empty fruit bunch (OPEFB), respectively.

In polyol/glycol-based DESs, ChCl: 1,3-PDO showed a higher lignin removal rate
of 62.3% due to strong hydrophobicity. Among diol-based DESs, longer-chain alkyl diols
were more effective than shorter-chain glycols. The results were similar to those obtained
by Hou et al. [46], who reported that the lignin solubility values of cholinium ILs rose with
the increase in alkanoate anion chain length. As the hydrophilicity of HBDs increased, the
delignification capacity decreased. It was because more hydroxyl groups in HBD caused
higher lignin retention in the biomass. Moreover, extra hydroxyl (-OH) groups also brought
extensive hydrogen bonding, which made DES highly viscous and stable. Hence, more
energy was needed to lose substrate bonded structures to facilitate its interaction with the
solute [19]. For this reason, among all polyol/glycol-based DESs, xylitol showed the lowest
potential for lignin removal. The finding agreed well with that of Hou et al. [45], who
demonstrated lowest delignification potential of xylitol as a HBD. Among amine/amide
DESs, ethanolamine-based eutectic solvents outperformed acetamide, formamide, and
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urea due to their stronger basicity compared to amides. DEA displayed slightly less
delignification values than MEA as the additional hydroxyl-ethyl group at DEA intensified
steric hindrance in the DES, thus reducing the fractionation efficiency [47].

Table 3. Characterization of Atriplex crassifolia after pretreatment from various deep eutectic solvents.

Type of DESs % Cellulose % Hemicellulose % Lignin % Delignification

Carboxylic acid-based DES

ChCl: LVA 54.6 ± 1.3 25.6 ± 0.5 6.5 ± 0.3 66.1 ± 2.1
ChCl: LA 58.4 ± 1.7 21.6 ± 0.3 5.9 ± 0.2 69.3 ± 2.4
ChCl: AA 50.3 ± 1.5 27.3 ± 0.7 7.8 ± 0.8 59.4 ± 1.8
ChCl: OA 47.5 ± 1.4 29.4 ± 0.9 9.1 ± 0.7 52.6 ± 1.6
ChCl: CA 43.2 ± 0.9 30.5 ± 1.4 9.7 ± 1.1 49.5 ± 1.5

Polyol/glycol-based DES

ChCl: EG 49.3 ± 1.0 28.4 ± 1.1 8.2 ± 1.0 57.3 ± 0.9
ChCl: G 42.5 ± 1.2 29.5 ± 0.7 9.7 ± 0.9 49.5 ± 1.3
ChCl: X 38.1 ± 0.8 31.4 ± 1.3 11.4 ± 1.1 40.6 ± 0.7

ChCl: 1,2-PDO 50.3 ± 1.1 27.3 ± 0.8 7.2 ± 0.5 62.3 ± 2.3
ChCl: 1,3-PDO 52.2 ± 2.1 25.3 ± 0.5 7.6 ± 0.3 60.4 ± 2.2

Amine/amide-based DES

ChCl: U 41.2 ± 0.7 29.3 ± 1.0 9.8 ± 1.0 48.9 ± 0.6
ChCl: FM 45.3 ± 0.6 26.7 ± 1.1 8.0 ± 0.6 57.8 ± 1.1
ChCl: Ac 86.4 ± 2.0 30.8 ± 1.2 11.6 ± 0.9 39.6 ± 1.2

ChCl: MEA 76.2 ± 1.4 23.7 ± 0.1 6.6 ± 0.4 65.6 ± 1.9
ChCl: DEA 78.2 ± 1.9 25.4 ± 0.6 7.4 ± 0.8 61.5 ± 1.7

Proton-catalyzed bond cleavage reactions were primary mechanisms to effectively
separate lignin molecules from biomass. Therefore, acidic DESs having carboxylic acids as
HBDs displayed high delignification values in pretreatment compared to amine/amide or
polyol/glycol mixtures. It was because active protons from carboxylic acids facilitate the
proton-catalyzed bond cleavage reactions in LCB-like glyosidic bonds, lignin–carbohydrate
links, and ether bonds. Carboxylic acid DESs were also less viscous, which increased their
mobility and penetration into biomass [48]. Moreover, HBDs that exhibited low pKa values
significantly influenced the DES acidity as highly acidic DESs eliminated considerable lignin
and hemicellulose amounts. Predominantly, the greater the HBD’s polarity, the higher
the acidity of the DES, eventually stimulating elevated delignification efficiencies [19].
Therefore, carboxylic acids-based eutectic mixtures showed higher lignin removal potential
than all other HBD types. Oh et al. [49] and Thi and Lee [50] also reported that acidic
DESs were highly efficient solvents for attaining high lignin removal ratios than hydroxyl
and amine/amide-based eutectic solvents. As ChCl: LA showed best performance as a
pretreatment solvent, it was selected for further optimization studies to achieve high biogas
production rates.

3.2. Effect of Molar Ratio of DES Constituents

The halophyte was pretreated by ChCl: LA DES at varied molar ratios of 1:1, 1:1.5, 1:2,
1.5:1, and 2:1. The results indicated that with the increment in LA ratio, the lignin removal
rate also increased. The highest delignification value of 73.4% was attained at a molar ratio
of 1:2 with a cellulose retention rate of 62.4%, while ChCl: LA at a molar ratio of 2:1 was
ineffective for the fractionation of halophyte as only 41.3% of lignin was eliminated, and
the SR% was also lowered to 17% (Figure 1). The results agreed well with the work of Li
et al. [51], which showed increased lignin and hemicellulose removal with the increase in
molar ratio of LA to ChCl. In general, the DES acidity had an essential role in performing
the catalytic cleavage of the linkage present between hemicellulose and lignin molecules.
The more acidic the DES was, the larger the lignin removal values were. Hence, ChCl: LA
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DES at 1:2 molar ratio was selected as the best DES to augment biomass digestibility under
mild pretreatment conditions.
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Figure 1. Effect of different molar ratios of ChCl: LA on delignification of Atriplex crassifolia.

3.3. Effect of Solid-to-Liquid Ratio

The amount of solvent had a significant influence on the final fractionation; therefore,
the effect of various biomass loadings (1:5, 1:10, 1:15, 1:20, and 1:25) was also evaluated,
as illustrated in Figure 2. When the S/L ratio increased from 1:5 (w/v) to 1:15 (w/v),
the delignification values elevated to 82.4%. The hemicellulose value also lowered to
13.3%, while the cellulose content enriched up to 73.4%. In the presence of excessively
low S/L ratio, DES could not thoroughly saturate the biomass sample, and hemicellulose
and lignin content could not be eliminated. With the increase in S/L ratio, the cellulose
values elevated, reached maximum, and started to decline with further increase. The
results complied well with the findings reported by Sai and Lee [52], who pretreated empty
fruit bunches with ChCl: LA DES and stated that extremely high S/L values would cause
excessive biomass and cellulose degradation. The optimal S/L ratio of 1:15 was selected
for further experimentation as it was suitable for disallowing biomass degradation and led
to a higher cellulosic yield.
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Figure 2. Effect of the S/L ratio on ChCl: LA-mediated pretreatment of Atriplex crassifolia.
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3.4. Effect of Water Addition

Viscous nature of DES is a major restraint in achieving effective pretreatment yield
as it decreases its mass transfer during pretreatment. Elevated reaction temperature may
reduce the DES viscosity, but negatively affect biomass residue recovery. Another way
to lessen the DES viscosity is to dilute it by adding water. To evaluate the influence of
diluted ChCl: LA pretreatment on lignin dissolution, the water content varied from 5%
to 25% with an increment of 5% while maintaining the reaction conditions at 120 ◦C for
4 h. The lignin elimination values elevated with the increase in water content, and the
highest delignification was achieved at 15% water addition. The SR% was also enhanced
to 38%, ensuring effective mass transfer of ChCl: LA DES on halophyte Atriplex crassifolia
(Figure 3). The cellulose enrichment of 79.3% was also achieved at this concentration.
However, with the further rise in water content, cellulosic yield and lignin extraction
values started to decline. DESs are viscous solvents and their viscosity drops with the
upsurge in water content. Compared to DES mixtures, water is less viscous and exhibits
low density values. Therefore, the presence of water lowered the overall viscosity of ChCl:
LA DES. Subsequently, a high lignin removal rate at 15% water addition might be the result
of increased mass transfer of DES reagent owing to its low viscosity, which eventually
enhanced the accessibility and digestibility of the halophyte [38]. These verdicts were in
line with the conclusions acquired from Hou et al. [53] and Yiin et al. [54], stating increased
delignification values by diluted malic acid-based DESs. According to New et al. [55], the
increase in water content in DES also engendered a negative effect on lignin removal as his
work validated decreased delignification rateswhen ChCl: U was momentously diluted.
In the present study, the delignification values declined when the water content increased
above 15%. The limiting factor, in this case, was the low concentration of ChCl: LA DES as
the solvent was significantly diluted by distilled water. Soares et al. [56] also uncovered
the potential of aqueous ChCl: LA solution to eliminate excessive lignin content from
Eucalyptus globulus wood due to its hydrotropic behavior that ultimately enhanced the
lignin dissolution.
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Figure 3. Effect of diluted ChCl: LA DES on delignification of Atriplex crassifolia.

3.5. FTIR Analysis of ChCl: LA Treated and Untreated Substrate

The FT-IR of DES-pretreated and raw substrate was performed for determining the
structural variations in A. crassifolia after fully optimizing diluted ChCl: LA-based pre-
treatment. The peak intensities considerably diverged in both samples and the FT-IR
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spectrum presented noteworthy variations in functional groups of diluted ChCl: LA treated
A. crassifolia in comparison to the raw biomass. ChCl: LA-treated sample showed signif-
icant lignin elimination and dissolution of lignin–cellulose bond. The peak 3415 cm−1

deviated to 3436 cm−1, specifying free hydroxyl (-OH) groups. This occurred due to the
elimination of amorphous non-cellulosic materials from the halophytic sample. An insignif-
icant deviation at peak 2900 cm−1 implied the rupture in methyl and methylene groups
in the cellulose molecules. The alteration in C=O stretching at peak 1715 cm−1 indicated
the rupture of ether linkage present between hemicellulose and lignin. Furthermore, in
contrast with untreated substrate, a decline in the intensities of aromatic skeletal peaks was
observed at 1511 cm−1, 1301 cm−1, and 1243 cm−1, confirming the considerable removal of
lignin content [33,57] as depicted in Figure 4.
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Figure 4. FT-IR spectrum of ChCl: LA pretreated and raw Atriplex crassifolia.

3.6. Recovery and Reuse of ChCl: LA DES

On account of the ability to dissolve fibers, freshly recovered DES and DES-5 showed
varied recovery potentials. The first three generations of DES provided recovery yields
of 92.5%, 91.4%, and 88.5%, respectively (Figure 5a). The results directed that ≥80% of
DES could be effectively recycled for up to five generations, suggesting high recovery rates.
However, the viscosity of the ChCl: LA decreased with each cycle because of the existence
of residual moisture. Recovered ChCl: LA DES was again reutilized for pretreatment;
≥85% lignin was eliminated and the SR% of ChCl: LA DES on Atriplex crassifolia was
also recorded as ≥30.0% after three pretreatment cycles, as shown in Figure 5b. All the
DESs provided high cellulose retention values as well. The slight alterations in SR% and
pretreatment capacities confirmed the utilization of regenerated DES as effective solvent to
make the pretreatment process profitable and cost-effective. Wang et al. [37] also reported
DES recovery via vacuum distillation and concluded that recovered DES maintained the
pretreatment efficiency.



Fermentation 2023, 9, 314 10 of 14

Fermentation 2023, 9, x FOR PEER REVIEW 10 of 14 
 

 

3.6. Recovery and Reuse of ChCl: LA DES 
On account of the ability to dissolve fibers, freshly recovered DES and DES-5 

showed varied recovery potentials. The first three generations of DES provided recovery 
yields of 92.5%, 91.4%, and 88.5%, respectively (Figure 5a). The results directed that ≥80% 
of DES could be effectively recycled for up to five generations, suggesting high recovery 
rates. However, the viscosity of the ChCl: LA decreased with each cycle because of the 
existence of residual moisture. Recovered ChCl: LA DES was again reutilized for pre-
treatment; ≥85% lignin was eliminated and the SR% of ChCl: LA DES on Atriplex crassifo-
lia was also recorded as ≥30.0% after three pretreatment cycles, as shown in Figure 5b. All 
the DESs provided high cellulose retention values as well. The slight alterations in SR% 
and pretreatment capacities confirmed the utilization of regenerated DES as effective 
solvent to make the pretreatment process profitable and cost-effective. Wang et al. [37] 
also reported DES recovery via vacuum distillation and concluded that recovered DES 
maintained the pretreatment efficiency. 

 
(a) 

 
(b) 

Figure 5. (a) Recovery yield (%) of ChCl: LA DES up to five pretreatment cycles. (b) Characteriza-
tion of Atriplex crassifolia after pretreating the substrate from regenerated ChCl: LA DESs. 

0

20

40

60

80

100

120

Fresh DES DES-1 DES-2 DES-3 DES-4 DES-5

Y
ie

ld
 o

f r
ec

ov
er

ed
 D

ES
s (

%
)

Generations of DES recovered

0
10
20
30
40
50
60
70
80
90
100

0

10

20

30

40

50

60

70

80

90

Fresh DES DES-1 DES-2 DES-3 DES-4 DES-5

%
D

el
ig

ni
fic

at
io

n

%
Bi

om
as

s r
ec

ov
er

y,
 %

C
el

lu
lo

se
,  

   
%

H
em

ic
el

lu
lo

se
So

lu
bi

liz
at

io
n 

ra
te

 (%
)

Number of ChCL:LA DES generations 

%Biomass Residue recovery %Cellulose
%Hemicellulose Solubilization rate(%)
%Delignification

Figure 5. (a) Recovery yield (%) of ChCl: LA DES up to five pretreatment cycles. (b) Characterization
of Atriplex crassifolia after pretreating the substrate from regenerated ChCl: LA DESs.

3.7. Biogas Potential of ChCl: LA Pretreated Substrate

All the ChCl: LA (fresh + recovered) pretreated halophyte samples were subjected to
biogas production through AD process. The gradual rise in biogas production was observed
until 9 days of incubation, and the peak values were obtained after 21 days. The fresh DES
and DES-1 pretreated biomass samples provided maximum biogas production values of
161 mL and 151 mL with biogas production rates of 0.32 mL/h and 0.29 mL/h, respectively
(Figure 6a). The inoculum alone produced only 40 mL of biogas while the raw substrate
generated an extremely meager biogas yield of 12.2 mL/g, as illustrated in Figure 6b, owing
to its highly recalcitrant structure towards anaerobes. The highest cumulative biogas pro-
duction yield was noted from fresh ChCl: LA pretreated Atriplex crassifolia, i.e., 32.2 mL/g.
Moreover, all DES-pretreated substrates provided production yields of ≥26 mL/g. These
results indicated the efficacy of ChCl: LA pretreatment in begetting high biogas production
values as ChCl: LA pretreatment lessened the biomass recalcitrance by breaking LCB com-
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plex structure and eliminating high lignin amounts. Yu et al. [58] also informed increased
biogas yields after pretreating substrate with DESs prior to anaerobic fermentation.
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Figure 6. (a) Cumulative biogas production (mL) from fresh and recycled ChCl: LA DES-pretreated
halophyte samples. (b) Biogas production yield (mL/g) of fresh and recovered ChCl: LA DES-
pretreated Atriplex crassifolia samples.

4. Conclusions

Among all types of DES, carboxylic acid-based DESs showed relatively better per-
formance due to their acidic and less viscous nature. Among them, ChCl: LA displayed
highest delignification values. Under optimized conditions, approximately 89.5% of lignin
elimination was achieved, and cellulose content was enriched to 79.3%. Furthermore, the
DES also displayed high recovery potential as ≥88% of ChCl: LA was recovered after three
cycles of pretreatment, while the delignification potential of the recovered DES was also
retained. ChCl: LA-based delignification of halophyte Atriplex crassifolia proved highly
effective in increasing biogas production yields as well. All the DES-pretreated substrates
yielded high cumulative biogas production values in comparison to the raw substrate
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because biogas yield increased by 37.9% for fresh ChCl: LA treated substrate due to its
increased content of cellulosic sugars, eventually suggesting the efficacy of ChCl: LA based
pretreatment for attaining enhanced biogas production values.
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