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Abstract: Microbial-induced CaCO3 precipitation (MICP) is an innovative and rapidly developing
technology for sand solidification. The idea for this research project was built based on the concept of
sustainable development and environmental protection. The specific material used for solidification
was soluble calcium ions generated by the reaction of limestone waste, a kind of calcium-rich
industrial waste from a quarry, and acetic acid. Using Ca(CH3COO)2 (prepared from limestone waste)
as a calcium source resulted in a 31.87% lower MICP cost compared to using CaCl2. An unconfined
compressive strength (UCS) test was conducted to characterize the macroscopic mechanical properties
of bio-cured sand columns. The mineral composition and the microstructure of sand columns
were examined by using X-ray diffraction (XRD) and environmental scanning electron microscopy
(ESEM). After response surface optimization, the optimal conditions for the reaction of limestone
and CH3COOH were determined, and the calcium acetate yield was up to 96.81%. The UCS of
sand samples treated with limestone/acetic acid was 10.61% higher than that of samples treated
with calcium chloride. This research confirmed the feasibility of cheap limestone waste and soluble
calcium ions generated by acetic acid as a calcium source, instead of calcium chloride, for solidifying
sand columns in the MICP process.

Keywords: microbially induced carbonate precipitation; limestone; response surface methodology;
calcium acetate; sand fixation; Sporosarcina pasteurii

1. Introduction

Desertification, as one of the most major social and environmental problems in the
world, not only brings severe challenges to the security of the ecological environment
but also restricts the sustainable development of the national economy and affects social
stability [1,2]. According to the assessment of global desertification by the United Nations
Environment Program (UNEP), approximately two-thirds of the world’s countries and
regions are adversely affected by varying degrees of desertification. The annual direct
economic losses are estimated to be greater than $USD 400 trillion [3]. Desertification is one
of the most pressing environmental issues facing China [4]. Most of the regions affected by
desertification in China are located in arid, semi-arid, and semi-humid areas in the north.
The ecological environment in these areas is fragile, and the combination of an arid climate
and irrational human activities has led to serious desertification [5]. If sand could be used
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in a more effective way, it would result in a reduction in construction costs, as well as an
improvement in the ecological environment [6–8].

In the field of geotechnical engineering, there are two main soil improvement methods:
mechanical compaction and chemical grouting. Mechanical compaction requires large
mechanical equipment with a high cost, so it is suitable for large-scale construction. In
addition, the powerful shock waves generated in the construction process destroy the
original soil structure, and the exhaust gas generated when the diesel used in the equipment
is burned also causes damage to the environment [7,9,10]. On the other hand, the chemical
grouting method increases the mechanical strength of the soil by adding organic polymers
such as epoxy, polyester fiber, polycarboxylate, and sodium silicate [11–16]. However, most
of the materials used in the chemical grouting method are synthetic and toxic and are not
conducive to ecologically sustainable development [17]. Conversely, MICP is a kind of
calcium-carbonate-precipitated solidified sand prepared using a biological method. Its
preparation process is green, protects the environment, and has broad industrial application
and development prospects.

MICP, a biological mineralization process that is prevalent in nature [18], slowly
cements loose mineral debris in the environment to form rocks through microbial growth
and metabolism. MICP has different pathways to produce calcium carbonate, depending
on the types of microbial species [19], among which urea hydrolysis is the most common.
By adding a bacterial liquid containing urease and a cementing fluid containing calcium
ions and urea to loose sand, calcium carbonate crystals are induced to form between sand
particles by the mineralization of microorganisms, thus cementing sand soil [20]. Because
of its simple process, low energy consumption, and environmental friendliness, MICP
technology is regarded as the most promising soil improvement technology [21–23]. In
addition, it also has great potential for improving the performance of recycled aggregate,
repairing concrete cracks, and removing heavy metal ions [24–31].

On the one hand, because of the heavy usage of calcium ions during the implementa-
tion of MICP, a chemical analysis of calcium is usually conducted in the current studies,
with CaCl2 usually used as the calcium source [32]. However, the chemical analysis of cal-
cium is usually expensive, and the chloride ions produced during MICP are also corrosive
to a certain degree [33]. Therefore, the sources of calcium in MICP have been explored.
Zhang et al. [34] compared and analyzed the grouting effects of three calcium sources and
found that calcium acetate showed a better curing effect than the others. Cheng et al. [35]
put forward a new idea in this regard: sand columns with good strength can be obtained
using seawater for sand fixation when the scour times are sufficient. Choi et al. [33] used
calcium ions obtained by dissolving eggshells with vinegar as a calcium source and mea-
sured values of unconfined compressive strength (UCS) up to 400 KPa. In addition, other
calcium-rich materials such as various shells, limestone, bone meal, and steel slag were also
used as calcium sources [36–41]. In previous studies, researchers did not systematically
study the yield of calcium acetate. They only directly applied the calcium acetate generated
by the reaction of an acid with calcium-containing substances to the MICP process [33,36].
Limestone is a common nonmetallic mineral that is widely distributed in nature and easy
to obtain. China’s limestone distribution area accounts for about 5% of China’s terri-
tory, and its limestone reserves account for more than 64% of the world’s total reserves.
Cheng et al. [42] and Choi et al. [36] verified the feasibility of MICP sand consolidation with
limestone powder as the calcium source through mechanical and microstructure analyses.
Cheng et al. [42] measured that the UCS of a sand sample prepared with limestone powder
as the calcium source was about 4 MPa, which met the requirements of foundation treat-
ment for engineering construction, and UCS was 60.64% higher than that of a sand sample
prepared with the calcium chloride as a calcium source. Hence, calcium-rich industrial
waste may be a promising calcium source, but there is still a lack of systematic research on
this possibility. To adjust this research gap, we conducted in-depth and systematic research
on this issue and verified the practical application of calcium-containing waste as the MICP
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calcium source, which has important theoretical guiding significance for reducing the cost
of raw MICP materials [43,44].

On the other hand, NH3 is released in the MICP process, so reducing the emission
of NH3 would improve the practicability of MICP and achieve green production [38,45].
Yu et al. [46] proposed that microbially induced struvite precipitation (MISP) could also
reduce NH3 emissions and that its intensity could meet the engineering requirements.
Mohsenzadeh et al. [47] proposed a green and sustainable method for recycling ammonium
into struvite through a two-stage treatment process, but this method may not work for all
soils and can add some cost. Keykha et al. [48] used natural zeolite to prepare ammonia-free
carbonate for a curing test. CaCO3 crystals (calcite) were evenly distributed in the soil
samples, and the UCS values of the samples were enhanced. Xiang et al. [49] pointed out
that since NH3 can react with acetic acid to generate ammonium acetate and solidify in
cement, calcium acetate as a calcium source can dramatically lower NH3 emissions.

The purpose of this study is to consolidate loose sandy soil by using urease produced
by Sporosarcina pasteurii for biomineralization precipitation, which is a fermentation process.
The mechanical properties of the sand column were evaluated by dry density, perme-
ability coefficient, calcium carbonate content, and UCS, using calcium acetate prepared
from low-priced limestone waste as a calcium source. The mineral composition and the
microstructure of the sand columns were using X-ray diffraction (XRD) and environmental
scanning electron microscopy (ESEM) and were compared with sand columns treated with
the same concentration of calcium chloride.

2. Materials and Methods
2.1. Preparation of Bacteria Solution

Sporosarcina pasteurii (ATCC 11859) was selected to be the urease-producing bacterium
in this study and was purchased from Shanghai Huzheng Biotechnology Co., Ltd. (Shang-
hai, China). Different from the previously used NH4-YE medium, this bacterium was
cultured in an activated medium (pH 7.3) consisting of 5 g/L peptone from soya, 15 g/L
casein peptone, 5 g/L NaCl, and 20 g/L urea for 24 h [50,51]. Then, the precipitate ob-
tained after 5 min of centrifugation at 8000 rpm/min was added to a fermentation medium
(pH 8.0) consisting of 15 g/L peptone from soya, 30 g/L corn pulp powder, 3 g/L NaH2PO4,
and 10 g/L urea for 48 h [52]. Centrifugation was carried out under the same conditions,
and the bacterial weight was added to the fermentation medium for the re-suspension of
bacteria, which did not contain corn pulp powder. As a low-cost industrial by-product,
corn pulp powder has a high nutrient content. Its high protein content gives the bacteria
a higher urease activity, and it is more suitable for the growth of the bacteria used in the
MICP process than yeast extract [53,54]. Chen et al. [52] found that in this fresh substrate,
the activity of bacterial urease may enhance by 24.21 percent, and the culture medium price
was down by 50.5 percent. In addition, the UCS of the sand solidified by MICP with the
bacteria cultured in this medium was increased by 21.32 percent. All media should be auto-
claved before inoculation (sterilization at 121 ◦C for 15 min). The cultures were aerobically
cultured in a shaking flask at 30 ◦C with a speed of 200 rpm. The cell concentration was
obtained by measuring the optical density at 600 nm (OD600).

2.2. Preparation of Cementing Fluid

The cementing fluid was a mixture of calcium salts and urea. The calcium source
used in this work was a limestone powder from a quarry, which was cleaned and dried to
screen out a particle size of about 0.282 mm (50 mesh). Limestone is mainly composed of
calcium carbonate, with small amounts of aluminum, silicon, iron, magnesium, and other
minerals [36,55]. Xu et al. [56] found that the addition of magnesium ions, Ca(CH3COO)2,
and urea to MICP samples inhibited the formation of rhomboid calcite, and the presence of
magnesium ions increased the UCS values of samples by 40–200%. Lv et al. [57] also found
that adding a small amount of magnesium ions (0.05 M) in cementation was beneficial
to the improvement of the mechanical properties of MICP-treated samples. Acetic acid
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was added to dissolve the calcium and was shaken in a water bath for 3 h before filtration,
and the calcium acetate obtained after drying the solution was collected for subsequent
tests. Since calcium chloride has always been considered the first-rate calcium source for
MICP, the two calcium sources were compared in this work. As the concentration and pH
of the cementing solution affect its curing effect, the calcium carbonate production was
taken as an indicator, and urea and calcium ion solutions with different concentrations and
pH values were added for small centrifuge tube tests. The molar concentration ratio of
the calcium ion solution and the urea solution was finally determined to be 1:2.6, and the
volume ratio was 1:1. During filling, the two solutions were evenly mixed, and the pH was
adjusted to 8.1.

2.3. Preparation of Calcium Acetate
2.3.1. Single-Factor Test

The control variable method was used to investigate the effects of different factors
on the calcium acetate yield. On the basis of this study, the reaction process of acetic acid
and limestone was mainly affected by the concentration and dosage of acid. Therefore,
this experiment determined the optimal dosage of each factor by changing the reaction
temperature (25, 35, 45, 55, and 65 ◦C), solid-liquid ratio (1:8, 1:10, 1:12, 1:14, and 1:16), and
acetic acid dosage (100%, 120%, 140%, 160%, and 180%) in turn.

2.3.2. Response Surface Methodology to Optimize the Calcium Acetate Yield

All statistical analyses were performed using Design Expert 11 software. Design
Expert 11 is a very practical response surface analysis software that is mainly used for
experimental-design-related aspects; this software can make breakthrough improvements
to products or processes.

The optimal selection interval of influencing factors was determined with a single-
factor experiment. Taking the reaction temperature (A), the solid-liquid ratio (B), and the
acetic acid dosage (C) as factors, the codes −1, 0, and 1 represented the experimental levels
of their respective variables, in which −1 represented the low-level parameters, 0 was the
center point, 1 represented the high-level parameters, and the yield of calcium acetate was
the evaluation index. RSM was used to carry out the experiment (three factors and three
levels), with a total of 17 groups of samples. The specific parameters are listed in Table 1.

Table 1. Response surface test factor levels.

Level
Factors

A Reaction Temperature/◦C B Solid-Liquid Ratio C Acetic Acid Dosage/%

−1 45 1:12 140
0 55 1:14 160
1 65 1:16 180

2.3.3. Date Processing

In the single-factor experiment, each group of experiments was repeated 3 times, and
the final result was expressed as an average. The test data were analyzed and mapped
by Origin 2021 and Excel 2019, and the response surface test results were analyzed by
Design-Expert 11. In order to evaluate the accuracy and reliability of the quadratic response
surface regression model, analysis of variance (ANOVA) was proposed to examine the
significance of the source of model error [58], with p < 0.05 as the significance test standard.

2.4. Preparation of MICP-Treated Sand Columns

A PVC mold with a diameter of D = 50 mm and a height of H = 150 mm was used to
prepare sand samples in this test. The sand samples were eolian sand from the Tengger
Desert in Gansu, with particle sizes ranging from 0.106 (80 mesh) to 0.178 mm (150 mesh).
The height of the sand columns was about 80 mm. The device is shown in Figure 1a,b.
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The specific steps were as follows: First, we slowly added 10 mL of bacterial liquid. The
concentration of the bacterial liquid (OD600) was about 5.9, and the urease activity was
about 95 mM urea/min. The flow rate of the addition needed to be less than the maximum
osmotic volume. Then, we let the sample stand for half an hour after the completion of
dripping. Next, we added 90 mL of cementing fluid, request as above. A sand column
could be effectively consolidated after repeating it six times (Figure 1c).
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Figure 1. (a) Schematic of the experimental setup, (b) photo of the grouting equipment, (c) sand
samples treated with MICP for six days, (d) the unconfined compression tester.

2.5. Mechanical Test Procedure of MICP-Treated Sand Column
2.5.1. Dry Density

A sand column treated with MICP was immersed in distilled water for 24 h. After dry-
ing and demolding, the two ends were polished smooth. The quality (M, g), height (L, cm),
and diameter (D, cm) of the samples were recorded, and the dry density (ρ, g/cm3) was
determined according to Formula (1).

ρ =
4M
πLD2 (1)

2.5.2. Permeability

The permeability coefficient of the sand column was measured by the variable water
level method [59]. The specific methods are as follows: The sand column is placed in the
penetrant container. When the water level reaches a certain height, the water stop clip
is opened so that the water passes through the sample from bottom to top. When the
water on the top of the sample overflows, record the head height of the water pipe at the
beginning and the time currently, and take a certain time interval to record the head height
of the water pipe at the end. The permeability coefficient of the sand sample is calculated
according to Formula (2).

K = 2.3
aL

A∆t
lg

h0

h1
(2)
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where K is the permeability coefficient of the sand sample, cm/s; a is the cross-sectional
area of the water pipe, cm2; L is the height of the sand sample, cm; A is the cross-sectional
area of the sand sample, cm2; Delta t is the time interval, s; h0 and h1 are the beginning and
ending head heights respectively, cm.

2.5.3. UCS

The UCS test was performed using an electronic universal testing machine, UTM6503
(Figure 1d), in accordance with the ASTM D4219 [60]. The loading rate of UTM6503
was set to 1 mm/min. All tests are triplicate, and the results are shown as averages.
The crushed samples were collected for calcium carbonate content determination and
microstructure analysis.

2.5.4. The Content of Calcium Carbonate

The content of CaCO3 in the sand column was determined according to ASTM
D4373 [61]. Specific operations are as follows: First, the electronic universal testing machine
UTM6503 broken soil sample is put into the oven to dry until its weight is constant, then
ground into powder. Then the W1 weight of the soil sample powder is measured and
then reacted with the hydrochloric acid standard solution. The reaction process is stirred
appropriately. When there are no bubbles in the reaction, the reaction is judged to be over.
The reaction soil sample was cleaned with deionized water, filtered, and dried, and the
mass W2 of the reaction soil sample was obtained. The weight of calcium carbonate is the
difference between W1 and W2.

2.5.5. Microstructure Analysis

XRD was used to analyze the mineral phase components of the samples. The scanning
range (2θ) was 20–70◦, and the step length was 0.02◦/step. MDI Jade 6 software was used
to analyze the XRD patterns of the test samples to determine the crystal types contained in
the solidified sand sample block.

The size, morphology, and distribution of calcium carbonate precipitates in microbial
solidified sand samples were observed by ESEM. The dried sample was polished into a
cube of 10 × 10 × 5 mm, then ensured the surface to be tested was smooth before the gold
spraying treatment was performed.

3. Results and Discussion
3.1. Optimization of Calcium Acetate Yield
3.1.1. Single-Factor Analysis

Limestone was used as a raw material to explore the effects of the reaction temperature
(25, 35, 45, 55, and 65 ◦C), solid-liquid ratio (1:8, 1:10, 1:12, 1:14, and 1:16), and acetic acid
dosage (100%, 120%, 140%, 160%, and 180%) on the calcium acetate yield. There was an
obvious association. As shown in Figure 2a, the calcium acetate yield was the highest
when the reaction temperature reached 55 ◦C. With the increase in the reaction temperature,
the calcium acetate yield showed a trend of an inverted U curve. The reason might be
that a low temperature caused an inadequate reaction and a high temperature accelerated
evaporation, resulting in a loss of acetic acid and water, or that a high temperature caused
product degradation. Figure 2b demonstrates that the calcium acetate had the highest yield
at the solid-liquid ratio of 1:14. If the solid-liquid ratio was too small, it was difficult for the
limestone to fully react with the acetic acid, which was not conducive to the formation of
calcium acetate. If the solid-liquid ratio was too large, then the ratio not only prolonged the
later concentration time and increased the energy consumption but also caused a large loss
of calcium acetate in the crystallization filtration process and reduced the calcium acetate
yield. Figure 2c indicates that when the dosage of acetic acid was 160%, the calcium acetate
yield was the highest. In the reaction process, part of the acetic acid was hydrolyzed, and
some was volatilized. If the amount of acetic acid was small, the reaction did not finish, and
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the yield was reduced. An excessive amount of acetic acid not only wasted raw materials
and caused acid pollution but also increased the difficulty of the subsequent treatment.
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Figure 2. Yields of calcium acetate under a different (a) reaction temperature, (b) solid-liquid ratio,
and (c) acetic acid dosage conditions, showing that when the other two factors were fixed, the yield
of calcium acetate reached a peak when the temperature, solid-liquid ratio, and acetic acid dosage
were 55 ◦C, 1:14, 160%, respectively. The acetic acid dosage had the greatest influence on the calcium
acetate yield, while the temperature had relatively little influence, which was the same as the result
of the response surface analysis below.

3.1.2. Optimization Using Response Surface Methodology

In this research, optimization of the operating parameters was performed using re-
sponse surface methodology (RSM), which has not been used before. In a general way,
optimization is performed by controlling for the effect of a particular factor on the ex-
perimental effect. Although one parameter with significant effects is changed, the other
parameters are kept constant at conventional levels. RSM is an effective method to deal
with multivariable problems that are based on a mathematical statistics analysis and were
originally applied in the field of production and processing. RSM has the advantages of
a strong generalization ability and high prediction accuracy and is the most widely used
test optimization method in China and overseas [62]. Recently, the combination of RSM
and the Design of Experiment (DOE) has been recognized as an effective statistical design
method [63]. A rational experimental design method is adopted to extract certain experi-
mental data, and multiple quadratic regression equations are constructed to fit factors and
response values. A continuously varying surface model is established, the elements and
interactions that affect the test are comprehensively assessed, and the optimal horizontal
range is determined. RSM can be expressed as follows:

T =
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RSM is an effective tool to optimize the yield of calcium acetate. There are interactions
between the influencing factors during the preparation process of calcium acetate. There-
fore, it is necessary to use RSM to evaluate the interaction relationship and optimize the
conditions. In general, there are three main steps to establish an RSM: the first step is to
determine the individual variables and their variation levels; secondly, the experimental
design scheme needs to be selected to establish the response surface model of the dependent
parameter and the design variable; and the final step is the verification of the effectiveness
of the generated model. The response surface data should meet at least the following two
requirements: first, the regression model should be significant, and second, the lack of fit
item should be insignificant. If the accuracy does not meet the requirements, it is necessary
to redesign the test.

A list of the experimental scheme and the results can be found in Table 2. Design
Expert 11 software was used to analyze the test results, and a regression equation was
obtained, as shown in Formula (4):

Y = 95.93 + 0.0412A + 0.3000B + 0.5838C + 0.2625AB + 0.1050AC + 0.5875BC − 3.02A2 − 2.09B2 − 1.89C2 (4)

where Y is the calcium acetate yield, A is the reaction temperature, B is the solid-liquid
ratio, and C is the acetic acid dosage.

Table 2. Test design and results of RSM.

Run. A (◦C) B C (%)
Y (%)

Actual Value Predicted Value

1 55 1: 14 160 96.25 95.93
2 55 1: 16 180 93.51 93.42
3 55 1: 14 160 95.79 95.93
4 45 1: 14 180 91.47 91.54
5 65 1: 16 160 92.19 91.34
6 45 1: 16 160 90.88 91.9
7 65 1: 12 160 90.24 90.22
8 45 1: 14 140 90.52 90.58
9 55 1: 14 160 95.87 95.93

10 55 1: 14 160 96.13 95.53
11 55 1: 14 160 95.61 95.53
12 55 1: 12 140 91.56 91.65
13 65 1: 14 140 90.36 90.29
14 65 1: 14 180 91.73 91.67
15 45 1: 12 160 90.98 90.83
16 55 1: 16 140 91.16 91.08
17 55 1: 12 180 91.56 91.64

The ANOVA results of the regression model are listed in Table 3.
In order to analyze the degree of model fit, the F-value and p-value in the results of

the ANOVA were mainly investigated. An F-value is obtained by an F-test comparing
experimental and predicted values, and a p-value is a decreasing index indicating the
credibility of a result. When the F-value is larger, and the p-value is smaller, the regression
model is more significant. The p-value of the model was <0.0001, demonstrating that
the regression model was highly significant. The p-value of the lack of fit term was
0.7136 (>0.05), which was not significant. Adequate precision of >4 indicated the high
accuracy of this model. The R2 of a model explains the degree of difference between
responses and actual values. R2 ranges from 0 to 1, and the closer its value is to 1, the
closer the model test value is to the predicted value, and the more reliable the model is. In
this experiment, R2 was 0.9957, which indicated that the model could explain 99.57% of
the variation in response values. We also obtained the values of the adjusted R2, which
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considers the number of independent variables used to predict the target variable. The
adjusted coefficient of determination (R2

Adj) was 0.9902, close to R2, indicating that the
model fits well. CV was 0.2463, indicating that the test results had high precision and
reliability [64–66]. In general, the regression model, with a high degree of fit, a small error,
and high reliability, could be used to optimize the calcium acetate yield. According to the
value of F, the influence on the calcium acetate yield was C > B > A, that is, acetic acid
dosage > solid-liquid ratio > reaction temperature.

Table 3. ANOVA for quadratic response surface regression model.

Source Sum of Squares df Mean Square F-Value p-Value

Model 84.91 9 9.43 181.19 <0.0001 significant
A 0.0136 1 0.0136 0.2614 0.6249
B 0.7200 1 0.7200 13.83 0.0075
C 2.73 1 2.73 52.36 0.0002

AB 0.2756 1 0.2756 5.29 0.0549
AC 0.0441 1 0.0441 0.8470 0.3880
BC 1.38 1 1.38 26.52 0.0013
A2 38.34 1 38.34 736.31 <0.0001
B2 18.39 1 18.39 353.23 <0.0001
C2 15.08 1 15.08 289.63 <0.0001

Residual 0.3645 7 0.0521
Lack of Fit 0.0965 3 0.0322 0.4800 0.7136 Not significant
Pure Error 0.2680 4 0.0670
Cor Total 83.27 16

Std. Dev. 0.2282 R2 0.9957
Mean 92.64 Adjusted R2 0.9902
C.V.% 0.2463 Predicted R2 0.9770

Adeq Precision 32.6340

The influence of the interaction between the test factors on the calcium acetate yield
is shown in Figure 3. A contour shape can show the strength of an interaction between
variables [67]. When a contour line tends to be oval, it means that the two-factor interaction
is significant, while when a contour line tends to be round, it shows a non-significant
interaction between the two factors. The color of the 3D drawings, from blue to green and
red, shows the change in the production rate of calcium acetate from small to large. The
larger the slope, the faster the change. The effect on the experimental results was more
significant. It is shown in Figure 3 that the influences of the two factors had a parabolic
relationship and that both had a maximum point.

According to the obtained model, it was predicted that the optimal process conditions
for extracting calcium acetate from limestone and acetic acid were as follows: the reaction
temperature was 54.997 ◦C, the solid-liquid ratio was 1:14.191, the acetic acid dosage was
163.384%, and the calcium acetate yield was 95.994%. Taking into account the feasibility
under real operating conditions, the optimized process of calcium acetate extraction by
the reaction between limestone and acetic acid was modified as follows: the reaction
temperature was 55 ◦C, the solid-liquid ratio was 1:14, and the acetic acid dosage was
163%. The experiment was repeated three times under its modified conditions, and the
error between the predicted and actual values was compared to test the practicability of
the model. The results are listed in Table 4 below. It was found that the errors between the
actual measurements and the predicted values of the three experimental results were all
less than 5%, indicating that the obtained regression model fit well with the actual situation.
The model was reasonable and effective.
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Table 4. Comparison of predicted value and actual values under optimal conditions.

Project Predicted Value Actual Value Error/%

Calcium acetate yield/% 95.994
96.81 0.84
95.29 0.74
94.43 1.66

3.2. Macroscopic Mechanical Behavior of MICP-Cured Sand Columns

Figure 4 shows the macromechanical performance of sand samples treated using
MICP with different calcium sources. The calcium carbonate content induced by the
microorganisms was one of the important indexes to evaluate the effect of MICP. As shown
in Figure 4a, the dry density and the content of CaCO3 of the sand specimens treated with
limestone as a calcium source (later called limestone samples) were 1.6045 g/cm3 and 8.9%,
respectively, which were 4.26% and 2.42% higher than those of the sand sample treated with
the calcium chloride (later called calcium chloride samples). The permeability coefficient
was 5.0415 × 10−4 m/s, which was 4.80% lower than that of the calcium chloride sand
samples. This was consistent with the conclusion of Zhang et al. [34].

A lower permeability coefficient meant that when the sand was solidified in the desert,
rainwater seeped down slowly so that plants could grow on the desert surface [22]. If the
permeability was high, the surface of the desert remained too dry for plants to grow as the
rain seeped down. Plants are constantly photosynthesizing and producing oxygen, which
effectively reduces the greenhouse effect. In addition, this technology can be applied to
the fracture repair of rock surrounding dams or tunnels to prevent dam seepage or tunnel
water inrush [68].

UCS was considered a simple and quick way to evaluate the solidification of the sand
columns, and a plot of the results is shown in Figure 4b. The cracks in the sand sample were
vertical joint cracks, which are typical brittle failure characteristics (Figure 4c). There is an
obvious pattern in Figure 4b. UCS increased with the increased strain and then decreased
rapidly after reaching the peak value, and brittle failure occurred in the sample, which
is a very typical pattern in MICP-cured sand samples [32,36]. The UCS of the limestone
sample was 0.73 MPa, which was 10.61% higher than that of the calcium chloride sample.
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This may have been caused by the different sources of calcium used. The types of calcium
carbonate crystals induced by the microorganisms were also different, which led to different
cementation strengths between the calcium carbonate and sand particles. In addition,
CH3COO− was alkaline. The microorganisms grew well in an alkaline environment and
had higher urease activity, and MICP could generate more calcium carbonate precipitation
in alkaline conditions [69,70]. However, this strength was lower than that observed by
Sotoudehfar et al. [71], which may have been caused by the short curing days in this
experiment. Some researchers have found a strong linear relationship between the UCS of
solidified sand columns and the amount of CaCO3 deposition [72]. However, this linear
relationship is not absolute because there was no uniform distribution of CaCO3 in the
sand columns, but there is no doubt that adding calcium carbonate increases the strength
of a sample. The higher the content, the more effectively the pores between the sand grains
can be filled and bonded and the tighter the sand skeleton [34,35].
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The size of Young’s modulus indicates the rigidity of a material. The larger the Young’s
modulus, the less deformation of the material. According to the stress-strain curve, Young’s
modulus at 50 percent of peak stress (E50) was determined using the graph method. The
Young’s moduli at the E50 values of the calcium chloride and limestone samples were
17.4 MPa and 15.7 MPa, respectively. These results were higher than those of Stróżyk
and Tankiewicz because of the different soil types, calcium sources, operating steps, and
environmental factors [73].

In conclusion, limestone is considered a good source of calcium because of its low cost,
wide range of sources, and good MICP performance.

3.3. Microstructure and Mineral Analyses Using ESEM and XRD

Figure 5 illustrates the microscopic morphologies of sand samples treated with two
sources of calcium. The surface of the solidified sand columns with different calcium
sources was found to contain substantial levels of crystals, but their crystal forms were
quite different [40,74]. The precipitation of the calcium chloride sand samples was rhomboid
(a typical characteristic of calcite). These crystal particles were of different sizes. After



Fermentation 2023, 9, 307 12 of 18

further magnification, it was found that these crystals were not closely arranged and that
there were still large pores. A large number of irregular lamellar particles were found on
the limestone sand column surfaces. To further determine the mineral compositions in the
sand columns, the XRD spectra of the MICP-treated sand samples were compared with
normative spectra (Figure 6). The results suggested that the crystal structure in the calcium
chloride sample was calcite, while that in the limestone sample was mainly vaterite, and
there was also a small amount of calcite. These calcite crystals were closely combined
with vaterite crystals, which made the cementation effect better than the effect when using
calcium chloride as the calcium source. This was the reason for the mechanical properties of
the limestone sand columns being higher than those of the calcium chloride sand columns.
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Many studies have shown that the type of calcium salt has a great influence on the
type, shape, size, and spatial distribution of calcium carbonate crystals [33,36,40,57,75].
Zhang et al. [75] used three different calcium sources. In terms of the morphology of
cementation, the crystals generated from chloride samples were hexahedrons with smooth
surfaces, while for nitrate samples they were standard hexahedrons with rough surfaces.
For the acetate samples, the crystals were needle-like. Lv et al. [57] also used these three
calcium sources and found through an XRD analysis that when CaCl2 and Ca(NO3)2 were
selected as calcium sources, the generated calcium carbonate crystals were mainly calcite
crystals. When Ca(CH3COO)2 was selected as the calcium source, the crystal phase of
calcium carbonate was mainly aragonite crystal. Meanwhile, depending on the functional
groups contained in different calcium sources, the water-soluble organic matter (SM)
produced by microbial metabolism was selectively adsorbed on specific crystal planes, thus
forming different crystal shapes [76].

3.4. Analysis of the Cost of MICP

The current price of limestone is $USD 300/ton, and the price of acetic acid is $USD
860/ton. The cost of obtaining one ton of calcium acetate, based on the rate of calcium
acetate obtained in this paper, is $USD 2265. Based on the amount of calcium acetate
required by the MICP process, the cost of the calcium acetate to treat one ton of sand is
about $USD 10,872. Analytical-grade calcium chloride costs $USD 5700 per ton while
treating a ton of sand with the same concentration of calcium ions costs $USD 15,960. In
contrast, using Ca(CH3COO)2 (prepared from limestone waste) as a calcium source resulted
in a 31.87% lower MICP cost compared to using CaCl2.

4. Future Directions Regarding MICP

This study used a small system with a distributed grouting method for the curing
test. The simulation method of the MICP curing part was relatively simple. Due to
the small experimental device, the distribution of calcium carbonate was more uniform,
but this may not reflect the actual working condition. A curing test with an extensive
volume is needed as a follow-up. This also dramatically restricts the possibility of the
large-scale application of MICP [77] because the bacterial solution injected first will be
washed away by the cementing solution injected later, resulting in an uneven distribution
of bacteria. In addition, the bacteria and the cementing solution will react quickly to
precipitate upon contact. After the repeated process, the upper calcium carbonate will
accumulate continuously, and the strength will continuously improve. However, the cement
will not reach a deep depth, resulting in a low strength in the underlying layer, which will
be unable to be used in engineering construction. Furthermore, a laboratory environment is
relatively controllable, but a practical construction project is diverse. Maintaining or even
improving the curing effect of MICP in an uncontrollable external environment is also a
direction for subsequent efforts.

As seen in Figure 4c, the brittle fracture of the MICP samples in the UCS experiment
was obvious. Therefore, determining how to reduce the generation of these cracks needs
our attention. Research has shown that adding fibers could significantly improve the
strength of MICP patterns [78,79]. If these fibers are placed in the vertical direction of these
brittle fracture cracks, the fracture toughness of MICP samples may be increased.

In addition, as early as 1959 and 1962, people explored the Moon and Mars, respec-
tively, and the premise of various activities on the Moon and Mars was to establish a
base. Figure 7 briefly summarizes the exploration process of the Moon and Mars. Due
to the high cost of Earth-Moon and Earth-Mars transportation, the in-situ resource uti-
lization (ISRU) of loose regolith soil on the Moon and Mars for the MICP-fabrication of
bio-bricks for base construction could significantly reduce the cost [80]. Astronaut urine,
a troublesome contaminant for lunar bases, could be an ideal source of MICP urea for
environmentally friendly recycling [81–83]. Figure 8 gives a rough description of the MICP
space-brick preparation process [84]. Another advantage is that even if a building needs to
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be rebuilt later, the MICP space bricks can be recycled using an acid solution to make new
bio-bricks, enabling the recycling and regeneration of construction and building materials
on the Moon.
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For a microscopic insight into the fermentation process of the MICP process, we
can also expect to conduct molecular dynamics simulations of the calcium carbonate
precipitation reaction between particles. This can explain why the resulting precipitation
is mostly calcite and no other types of calcium carbonate. In addition, based on the
above kinetic model, we can also discuss how to control the fermentation process of
S. pasteurii to generate calcite precipitation, the most stable form, to improve the strength
of MICP samples.
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5. Conclusions

In this study, a MICP sand fixation test was carried out using calcium acetate produced
by an acetic acid and limestone reaction as a calcium source. The following conclusions
could be made:

1. According to a response surface analysis, the optimal process conditions for extracting
calcium acetate from limestone and acetic acid were as follows: the reaction tempera-
ture was 55 ◦C, the solid-liquid ratio was 1:14, the acetic acid dosage was 163%, and
the calcium acetate yield was 96.81%.

2. In the MICP sand fixation experiment with limestone as the calcium source, the
mechanical indexes of the calcium carbonate content, dry density, and permeability
coefficient of the sand column were better than those obtained with the calcium
chloride samples, and the UCS also increased by 10.61% compared with the calcium
chloride samples. This was due to the different crystal phases of the calcium carbonate
produced by the microorganisms in different nutrient environments, resulting in
different cementation strengths between the calcium carbonate and sand particles,
which was further confirmed using SEM and XRD. However, the microbial-induced
cement of both calcium sources was calcium carbonate. In contrast, the calcium
carbonate precipitates obtained from calcium chloride were calcite crystals, while the
calcium carbonate precipitates obtained from limestone/acetic acid were a cluster
mixture of vaterite and calcite.

3. Limestone is widely available and cheap, and the cost reduction is 31.87% compared
to using calcium chloride as a calcium source. The experimental results also showed
that limestone is an ideal calcium source for sand-solidified sand MICP.
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