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Abstract: γ-Valerolactone (GVL) is a platform chemical for the synthesis of both biofuels and biochem-
icals. The LA production from depithed sugarcane bagasse (DSB) resulted in a 55% LA yield, and
the resulting LA was used to produce GVL. The effect of process parameters, namely, temperature
(25–200 ◦C), time (2–10 h), and catalyst loading (0.5–5 g) were investigated for the GVL production
from LA. Thereafter, the optimized conditions were used to produce GVL from LA derived from
depithed sugarcane bagasse (DSB) yielded a GVL of 77.6%. The hydrogen required for the reduction
of LA to GVL was formed in situ by formic acid and triethylamine in the presence of methanesulfonic
acid (MsOH). Different solvents (including water and alcohols) were also tested to determine their
effect on GVL yield, and water yielded the highest GVL of 78.6%. Different types of catalysts, which
included mineral acids and ionic liquids, were used to determine their effect on GVL yield, and to
provide a benchmark against MsOH. The GVL yield from DSB-derived LA is 1.0% lower than the
GVL yield from a commercial sample of LA. LA generated from DSB has the potential to replace
fossil fuel-derived LA.

Keywords: hydrogenation; levulinic acid; γ-valerolactone; depithed sugarcane bagasse; ionic liquids

1. Introduction

The increase in global temperatures due to the release of greenhouse gases mainly due
to carbon dioxide released by the combustion of fossil fuels has led to the development
of renewable and sustainable sources of energy and chemicals from biomass [1]. Fossil
fuels are converted to carbon-based chemicals and fuels and combusted to produce en-
ergy. Biomass-derived platform chemicals are nontoxic, biodegradable, and are used to
produce energy, feedstock chemicals, and fine chemicals [2,3]. Many platform chemicals
are derived from biomass, including succinic acid, furfural, 2,5-furandicarboxylic acid,
3-hydroxypropionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic
acid, hydroxybutyrolactone, glycerol, sorbitol, and xylitol [4–6]. Levulinic acid (LA) is an
important derivative that can be obtained from second-generation lignocellulosic biomass.
It is a versatile platform chemical, which can be used for several applications, for example in
the production of polymers, lubricants, fuels, coatings, or pharmaceuticals [7]. LA was iden-
tified as one of the 15 most promising carbohydrate-derived platform chemicals by the US
Department of Energy [8,9]. One of the LA derivatives, γ-valerolactone (GVL) is also a plat-
form chemical for the synthesis of both biofuels and biochemicals. Some of the chemicals
produced from GVL are: butene, toluene, 1,4-pentanediol, 4-hydroxypentanamide, methyl
pentanoate, 5-methyltetrahydrofolate, and α-methylene-γ-methyl-γ-butyrolactone [10].

GVL is produced by catalytic hydrogenation of LA [11], using homogeneous and hetero-
geneous catalysts, or metal-free catalysts [12–14] with no external hydrogen source. Figure 1
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illustrates the reaction steps of producing GVL from depithed sugarcane bagasse (DSB); the
first reaction includes the production of LA from DSB using 1-ethyl-3-methylimidazolium
hydrogen sulfate [EMim][HSO4] as a catalyst and the second reaction includes the production
of GVL from LA using methanesulfonic acid (MsOH) as a catalyst, and formic acid as the
hydrogen donor with trimethylamine (Et3N) as a stabilizer [15].
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GVL can be used as a solvent [16] or “drop-in” fuel because of its physicochemical
properties such as: inertness towards oxygen and water, high boiling and flash point, low
melting point, and low vapor pressure [17,18]. GVL is mostly used as a solvent for lacquers,
insecticides, liquid fuel, food additives and adhesives, and it is also used in cutting oil,
brake fluid, and as a coupling agent in the dye bath [19,20]. Aromas is one of the main GVL
manufacturers, accounting for roughly 62% of global output. Kunshan Qiandeng Baihua,
Zhongyue Aroma, Soda Aromatic, Inoue Perfumery MFG, and others are also involved
in GVL manufacture [21]. The Global Gamma-valerolactone (CAS 108-29-2) market is
expected to grow at a CAGR of 5.02% from 2022 to 2030 [22]. GVL is a better alternative to
ethanol as a fuel additive due to its lower vapor pressure, relatively higher energy content,
safety in storage, and more importantly, it does not form an azeotrope with water [10,15].

In general, longer reaction times favor higher yields of GVL [2,15,19,20], which make
it a more energy intensive process; therefore, a method needs to be developed that would
have a shorter reaction time while producing a higher yield. Metal-based catalyst for GVL
production can produce up to 96–100% of GVL yield [2,15,20,23] but the high cost of these
metal catalysts means that they are not affordable for scale-up applications. Common noble
metals for GVL production from LA are palladium (Pd) and ruthenium (Ru) [15].

Dutta et al. [24] showed that non-noble metals such as copper (Cu) and zirconium
(Zr) catalysts contribute in a green GVL production because of their higher abundance
and milder reaction conditions (e.g., low pressure and temperature without an external
source of H2). Non-noble metals can replace noble metals such as Pd and Ru, with the
latter having been extensively used as the catalyst for GVL production from LA [25].

Currently, there are numerous methods for producing GVL through hydrogenation of
levulinic acid in the presence of molecular hydrogen, alcohol, or formic acid and a catalyst.
Heterogeneous catalysts are more commonly used when compared to homogeneous cat-
alysts [16]. To the authors’ best knowledge, no ionic liquids (ILs) have been used for the
conversion of LA to GVL in the absence of a noble metal [21,26,27]. ILs are a class of salts
that are liquid at 100 ◦C and can be employed as solvents or catalysts. ILs are sometimes
known as “designer solvents” because their unique characteristics are tailored to a specific
purpose by suitable cation or anion modification. When compared to traditional volatile
organic solvents often used in industry, ILs have little vapor pressure. As a result, IL evapo-
ration into the atmosphere is limited, and environmental pollution is negligible. This is one
of the reasons why ILs are considered environmentally friendly solvents. Ionic liquids are
not flammable, are thermally and chemically stable, are recoverable, and are recyclable [28].
Many ILs can dissolve biomass-related chemicals and are effective reaction solvents or
catalysts; they are intensively investigated for converting biomass-related compounds into
materials and second-generation biofuels [26], hence they will also be investigated in this
work. Formic acid has the potential to be used as a hydrogen source in the production of
GVL from LA [29,30]. In situ formation of formic acid and LA during biomass fractionation
allows for the former to convert LA to GVL using the green chemistry principle of “atom
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economy” [10]. For the first time, the environmentally friendly catalyst methanesulfonic
acid (MsOH) will be employed to catalyze the manufacture of GVL from LA in this work.
LA will be generated from sugarcane bagasse. The impact of several catalysts, including
two ionic liquids, will also be investigated. According to the literature, ionic liquids have
never been utilized without noble metals.

In this work, GVL production from commercial LA was optimized using MsOH
because sulfonic acids are strong, non-oxidizing, biodegradable compounds that are en-
vironmentally friendly, highly reactive catalysts, and less corrosive [31]. The investigated
parameters were time, temperature, and catalyst loading. The optimized conditions for the
GVL production from commercial LA were then used to produce GVL from DSB-derived
LA. The optimum conditions were also used to investigate the effect of other catalysts and
solvents on the yield of GVL from DSB-derived LA.

2. Materials and Methods
2.1. Materials

All the chemicals were purchased from Merck (Johannesburg, South Africa), and
were all used without any further purification: levulinic acid (98%), methanesulfonic acid
(95%), γ-valerolactone (98%), formic acid (95%), triethylamine (95%), sulfuric acid (95%),
ethyl acetate (95%), 1-butyl-3-methylimidazolium hydrogen sulphate (≥95%), sulfuric
acid (95%), tosylic acid (98.5%), 1-ethyl-3-methylimidazolium tosylate (≥98%), butanol
(≥99.4%), ethanol (≥99.8%), and methanol (99.8%). Depithed sugarcane bagasse was
supplied by a local sugar milling research institute (SMRI) of South Africa.

2.2. Hydrogenation of Commercial LA into GVL
2.2.1. Effect of Temperature, Time, and Catalyst Loading on GVL Production from
Commercial LA Using MsOH

To determine the optimum conditions for GVL production from commercial LA, the
minimum and maximum of the investigated reaction conditions were used (Table 1). After
reviewing the literature [2,15,19,20,23] and considering the technique that was required to
be created, the minimum and maximum reaction conditions in Table 1 were chosen.

Table 1. Investigated levels for the three parameters: temperature, time, and catalyst loading
using BBD.

Factors
Range and Level

−1 0 +1

Time (h) 2 6 10
Temperature (◦C) 25 112.5 200

Catalyst loading (g) 0.5 2.75 5

A set of experiments (Table 2) were generated using the Box–Behnken design (BBD).
A constant mass of 1.0 g of commercial LA was added to a 100 mL stainless steel reactor
(Parr Instruments Company, Moline, IL, USA) with 10 mL of water, 700 µL of formic acid,
and 220 µL of triethylamine [15]. A predetermined catalyst loading of MsOH (Table 2) was
added to the reaction vessel. The mixture was stirred at 200 rpm and the duration of the
reaction was measured when the set temperature was reached. At the end of the reaction
the heat supply was removed, and the reactor vessel was inserted in a cold-water bath
to cool the reaction to room temperature. The liquid component of the cooled reaction
mixture was extracted with (10 mL × 4) of ethyl acetate; the solvent was removed by
vacuum. The products were stored in a refrigerator at 4 ◦C before high performance liquid
chromatography (HPLC) (Shimadzu, Japan) analysis. The procedure for the HPLC analysis
is detailed later.
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Table 2. Investigated reaction parameters with responses for GVL, LA conversions, and
GVL selectivity.

Run Factor 1 Factor 2 Factor 3 Response
LA Con-
version

(%)

GVL
Selectivity
(%) (SGVL)

A: Time
(h)

B: Temper-
ature
(◦C)

C: Catalyst
Loading

(g)

GVL (%)
(YGVL)

1 2 112.5 0.5 48.6 66 74

2 6 112.5 2.75 78.1 93 84

3 6 112.5 2.75 78.6 97 81

4 10 112.5 0.5 52.3 75 70

5 6 200 5 49.1 72 68

6 6 112.5 2.75 77.9 96 81

7 10 200 2.75 39.2 57 69

8 6 200 0.5 39.5 54 73

9 10 112.5 5 58.3 72 81

10 6 25 5 58 85 68

11 6 112.5 2.75 78.3 95 82

12 2 25 2.75 46.7 70 70

13 6 25 0.5 48 67 67

14 10 25 2.75 45.9 63 73

15 2 112.5 5 61 87 70

16 6 112.5 2.75 78 98 80

17 2 200 2.75 36.1 59 61

2.2.2. Effect of Catalysts on GVL Yield

The optimum condition for the GVL production from commercial LA using MsOH
was used for the following catalysts: tosylic acid [TsOH], 1-butyl-3-methylimidazolium
hydrogen sulphate [BMim][HSO4], 1-ethyl-3-methylimidazolium tosylate [EMim][OTs],
and sulfuric acid [H2SO4].

2.2.3. Effect of Solvent on the Production of GVL

Solvents: water (H2O), methanol (CH3OH), ethanol (C2H5OH), ethanol and water
(C2H5OH and H2O), and butanol (C4H10O) were used for GVL production from commercial
LA in the solvent optimization reactions using the conditions optimized for the catalyst
MsOH.

2.3. DSB Preparation

The DSB was dried in an oven (Scientific, South Africa) at 105 ◦C for 24 h, milled by
Pulverisette 16 (Fritsch, Germany), and sieved to 40-mesh particle size [32].

2.4. DSB Conversion to GVL
2.4.1. Conversion of DSB to LA

The procedure for the production of LA from DSB is similar to the one used in our
previous study [28], although for this study, the production was upscaled from the ratio (1:4)
1 g of bagasse and 4 g of 1-ethyl-3-methylimidazolium hydrogen sulfate [EMim][HSO4] to
100 g of bagasse and 400 g of [EMim][HSO4] at the CSIR’s Forestry and Forest Products
Research Centre in Durban. The reaction was carried out in a round bottom flask with a
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stirrer immersed in an oil bath for 7 h at 100 ◦C. The product was analyzed using HPLC
(Shimadzu, Japan).

2.4.2. Hydrogenation of LA Derived from DSB into GVL

The LA derived from DSB was used to produce GVL using the optimized conditions
obtained from the optimization study where a commercial sample of LA was used.

2.5. Product Analysis Using High Performance Liquid Chromatography

The qualitative and quantitative analysis of LA and GVL were carried out using HPLC
(Shimadzu, Japan) equipped with an ultraviolet detector at 210 nm fitted with a Aminex
HPX 87 H column (Bio-Rad, Hercules, CA, USA) at a flow rate of 0.5 mL/min with a
column temperature of 50 ◦C and mobile phase of aqueous sulfuric acid (0.005 M). Using
a syringe, 1 mL samples and standards were filtered over a 0.45-micron filter to prevent
any solids from entering the HPLC column. Standards were dissolved in distilled water.
The concentration of LA and GVL was calculated using standard calibration curves. The
retention time of LA and GVL was 16 and 35 min, respectively. The GVL yield (YGVL),
actual yield (Yact), theoretical yield (Yth), LA conversion (XLA), and GVL selectivity (SGVL)
were calculated according to Equations (1)–(5):

YGVL(%) =
Yact

Yth
× 100 (1)

Yact =
GVL (g)

Initial f eedstock (g)
(2)

Yth = nLA × MrGVL (3)

where nLA is the number of moles of LA and MrGVL is the molar mass of GVL. LA molar
mass is 116.11 g·mol−1 and GVL molar mass is 100.12 g·mol−1.

XLA (%) =
CLA,O − CLA

CLA,O
× 100 (4)

where CLA,O is the initial concentration of LA and CLA is the concentration of LA.

SGVL (%) =
YGVL
XLA

× 100 (5)

2.6. Experimental Design

To determine the optimum reaction conditions of GVL production from LA, response
surface methodology (RSM) and BBD were used. BBD was used to design the set of
experiments in in Table 2.

Five replicates in the central point (time: 6 h, temperature: 112.5 ◦C, and catalyst loading:
2.75 g) with a total of 17 experiments (Table 2) were performed for the optimization of GVL
production from commercial LA. The independent variables were the time (A), temperature
(B), and catalyst loading (C). The output variable Y was the yield of GVL (YGVL).

Design Expert Statistical 12 software (Stat Ease Inc., Minneapolis, USA) was used to
regress and fit the data to a second order model, as well as to calculate the analysis of
variance (ANOVA). A quadratic method was used to analyze the data. The terms of the
model were tested at the 95% confidence level (p ≤ 0.05). Five replicates were performed in
the central points to estimate random errors.

3. Results and Discussion
3.1. Effect of Temperature, Time, and Catalyst Loading for GVL Production from Commercial
LA to GVL

The hydrogenation of commercial LA to GVL was optimized using data from Table 1
and the results are shown in Table 2. The optimum conditions are: a temperature of
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112.5 ◦C, a reaction time of 6 h, and a catalyst loading of 2.75 g which yielded a maximum
GVL of 78.6%. Table 2 also shows that the hydrogenation of commercial LA to GVL is
reproducible since five runs were repeated and their response differed by <1.3%.

3.2. Response Surface Methodology (RSM) Analysis

The polynomial regression model for GVL production from commercial LA is given
in Equation (6), which was obtained from Design Expert Statistical software. Where A is
the temperature, B is the time, and C is the catalyst loading.

Y (GVL yield %) = +78.18 + 0.4062 A − 4.34 B + 4.75 C + 0.9625 AB − 1.60 AC
− 0.1100 BC − 14.91 A2 − 21.30 B2 − 8.22 C2 (6)

The optimum experimental GVL yield (78.6%) is close to the theoretical GVL yield
(78.2%) calculated from Equation (6).

Table 3 shows that the quadratic model is significant in determining the response
(model p value < 0.0001). The coefficient of determination (R2) value is 0.9998, also indicat-
ing that the variation around the average could be explained by the model, i.e., 99.98% of
the variability in the responses can be explained by the model [33]. The model F-value of
4384.69 implies the model is significant. There is only a 0.01% chance that an F-value this
large could occur due to noise in the data. p < 0.0500 indicates that the model terms are
significant at the 95% confidence level. In this case, A, B, C, AB, AC, A2, B2, C2 are significant
model terms. The lack of fit F-value of 1.57 implies the lack of fit is not significant relative
to the pure error (random error). There is a 32.77% chance that a lack of fit F-value this
large could occur due to noise. Non-significant lack of fit means that the model is fit to
predict the response.

Table 3. ANOVA for the response surface quadratic model for GVL production as a function of time
(A), temperature (B), and catalyst loading (C).

Source Sum of
Squares df * Mean

Square F-Value p-Value

GVL (R2 = 0.9998)
Model 3785.69 9 420.63 4384.69 <0.0001

A 1.32 1 1.32 13.76 0.0076
B 150.60 1 150.60 1569.84 <0.0001
C 180.12 1 180.12 1877.58 <0.0001

AB 3.71 1 3.71 38.63 0.0004
AC 10.24 1 10.24 106.74 <0.0001
BC 0.0484 1 0.0484 0.5045 0.5005
A2 936.51 1 936.51 9762.16 <0.0001
B2 1910.95 1 1910.95 19,919.77 <0.0001
C2 284.24 1 284.24 2962.92 <0.0001

Residual 0.6715 7 0.0959
Lack of fit 0.3635 3 0.1212 1.57 0.3277
Pure error 0.3080 4 0.0770
Cor total 3786.36 16

* Degrees of freedom.

The parity plot was used to determine the reliability of the model. The parity plot
of GVL yield is shown in Figure 2 where the predicted GVL yield is compared with the
experimental (observed) GVL yield. The points in the graph are in a straight line, indicating
that the model is significant and can predict GVL yields accurately.
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The response surface and contour plots (Figure 4a–c) illustrate the interaction of
the investigated factors (time, temperature, and catalyst loading) to produce GVL from
commercial LA. Figure 4a indicates that both temperature and time are significant to
GVL yield. The minimum temperature (25 ◦C) and time (2 h) yielded a low GVL yield
(46.7%). Increasing the temperature to 112.5 ◦C and time to 6 h resulted in maximum GVL
yield (78.6%); however, increasing the temperature and reaction time to 200 ◦C and 10 h,
respectively, resulted in a marked decrease in GVL yield (39.2%). Therefore, a temperature
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of 112.5 ◦C and time to 6 h are the optimum conditions for GVL production from LA using
MsOH as the catalyst.
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Figure 4b illustrates the interaction of catalyst loading and time on GVL yield. In-
creasing the catalyst loading and time from 0.5 to 2.75 g and 2 to 6 h increases the GVL
yield. A catalyst loading of 2.75 g and time of 6 h yielded higher GVL yields ranging from
77.9 to 78.6%. Increasing the time to 10 h with a catalyst loading of 2.75 g results in lower
GVL yields (39.2 to 45.9%), whereas increasing the catalyst loading from 2.75 to 5 g for a
reaction time of 10 h results in increased GVL (49.1 to 58.3%) yield. In general, increasing
the catalyst loading and time is supposed to increase the rate of reaction thereby increasing
the product yield, but that is not the case in this work. This may be due to the production
of by-products (1,4-pentanediol and 4-hydroxypentanoic acid (4-HPA)) [34]. Even if the
maximum reaction conditions produced the highest yield, increasing both time and catalyst
loading means the production process of GVL will be expensive because it will require
more energy and more catalyst.

The relationship of catalyst loading and temperature on the reaction is shown in
Figure 4c, where a catalyst loading of 2.75 g and a temperature of 112.5 ◦C produced the
maximum GVL yield (78.6%). Figure 5 indicates that moderate reaction conditions favor
a high yield of GVL whereas the minimum and maximum factors lower the GVL yield.
All the factors play an important role in the production of GVL, which was confirmed by
ANOVA (Table 3). The optimized conditions are: temperature of 112.5 ◦C, time of 6 h, and
catalyst loading of 2.75 g yielding 78.6% GVL.
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Figure 5. Effect of catalysts on GVL production from LA.

Singh et al. [35] used Ni/NiO catalyst to produce GVL from commercial LA which
showed high conversion of >90% and high selectivity of >90%; the LA conversion obtained
in this study is higher by 7%, whereas the GVL selectivity is lower by 9% and the difference
is due to the different catalysts used. Córdova-Pérez et al. [36] synthesized GVL from
LA using a nickel (Ni)-supported nanoparticle, yielding 80% of GVL after 24 h at 170 ◦C.
Because of the variable catalyst and reaction conditions, the GVL is greater than the GVL
yield observed in this work, although the response time is extremely lengthy. Specific
surface area, pore structure, functional groups, temperature, and time are all variables
that can influence catalytic activity. As a result, depending on the above criteria for each
catalyst, the product of the reaction might increase or decrease.
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3.3. Effect of Catalysts on GVL Yield

Figure 5 illustrates the effect of the catalysts on the production of GVL. Various cata-
lysts: tosylic acid [TsOH], 1-butyl-3-methylimidazolium hydrogen sulphate [BMim][HSO4],
1-ethyl-3-methylimidazolium tosylate [Emim][Ots], sulfuric acid [H2SO4], and methane-
sulfonic acid [MsOH] were used to study the catalysts’ effect on the production of GVL
from commercial LA. The maximum GVL yield was for sulfuric acid (80.9%) followed by
methanesulfonic acid (78.6%) and tosylic acid (71.4%). Although mineral acids usually
produce high yields, their disadvantages include high cost of neutralization, separation,
purification steps, and corrosiveness that needs special materials of construction. It is
necessary to separate the mineral acid from the reaction products because it negatively
affects downstream processes [20,37]. The two ionic liquids (1-butyl-3-methylimidazolium
hydrogen sulphate and 1-ethyl-3-methylimidazolium tosylate) used in this work as cata-
lysts yielded 65.1 and 58.6% of GVL, respectively, showing that ILs can catalyze LA to GVL
in the presence of formic acid and triethylamine. The two ILs, namely, [BMim][HSO4] and
[EMim][OTs], were chosen for this work because they are acidic ILs. Increases in IL acidity
results in the enhancement in both LA (100%) conversion and GVL (99%) selectivity [21].

The advantages of ILs over minerals acids are their negligible vapor pressure, non-
flammability, thermal and chemical stability, recoverability, and recyclability [38,39]. There-
fore, the ILs are preferred as catalysts for GVL production from LA although [BMim][HSO4]
yielded 15.8% less when compared to [H2SO4].

Sanchis et al. [40] used a synthesized nickel catalyst which presented a relatively high
yield and selectivity to GVL (up to 40% and >98%, respectively) in the hydrogenation of LA.
the maximum GVL yield obtained in this work is higher, however, as the nickel catalyst is
highly selective compared to MsOH. López-Aguado et al. [41] reported on GVL production,
where high LA conversion (>95%) and GVL yield (>90%) were achieved; however, the
duration of the reaction was too long (20 days) at 170 ◦C using a Zr–Al-beta zeolite catalyst.
Jori and Jadhav [42] produced GVL from biomass-derived levulinic acid using 150 wt % of
catalyst (hafnium-based carbonaceous (Hf@CCSO3H)) at 200 ◦C for 24 h in isopropanol
solvent as a hydrogen donor. In their study, 100% conversion of LA was achieved with a
high yield of 96% with more than 99% selectivity of GVL, which is higher compared to the
maximum yield obtained in this study which is due to the different catalysts and reaction
conditions used. The catalyst used by López-Aguado et al. [41] and Jori and Jadhav [42]
seem to be more effective under the harsh conditions, which is opposite of the catalyst used
in this study. When the costs of the catalysts utilized in this investigation for 100 mL were
evaluated, it was discovered that sulfuric acid was the least expensive and produced the
highest GVL. [H2SO4] costs ZAR 75.7, [TsOH] costs ZAR 222.4, [MsOH] costs ZAR 718,
[BMim][HSO4] costs ZAR 1 838, and [Emim][Ots] costs ZAR 9 360.

3.4. Effect of Solvent on the Production of GVL

There are different types of solvents that have been used for GVL production, namely,
water, ethanol, dichloromethane and water, 1,4-dioxane, and methanol [10]. Furthermore,
alcohols have been used as an H-donor for the hydrogenation of GVL production [10].
Therefore, in this work, various solvents are studied to observe their effect on the GVL
yield. The effect of the solvent in the hydrogenation of commercial LA to GVL using MsOH
is shown in Figure 6. The following solvents were used: water (H2O), methanol (CH3OH),
ethanol (C2H5OH), ethanol and water (C2H5OH and H2O), and butanol (C4H10O). Water
is the best solvent for GVL production (78.6%). Water is also a preferred solvent because of
its chemical and physical properties which makes water nontoxic to human and aquatic
organisms, easily available, and environmentally friendly [43,44]. Ethanol also had a similar
effect to water for the conversion process (76.5%). The ethanol and water mixture gave
a lower yield of GVL (61%). This could be due to the intermolecular hydrogen bonding
occurring between water and ethanol molecules preventing the conversion of LA to GVL.
Polar mixed solvents do not increase the GVL conversion. To ensure a high degree of LA
conversion, solvents such as alcohols (methanol, ethanol, butanol) or water are used [45,46].



Fermentation 2023, 9, 288 11 of 16

Hengst et al. [47] reported LA conversion of 75–100% when various alcohols were used
for GVL production with a Ni/Al2O3 catalyst. When water was used, the LA conversion
was low with 2% compared to alcohols, even though similar reaction conditions (150 ◦C,
10 bar H2, 6 h) were used; however, the GVL selectivity of water was the highest (100%).
The outcome of this study is the opposite of Hengst et al. [47], since when water was used
the LA conversion was 97% and GVL selectivity was 81%, which were higher compared to
alcohols (LA conversion, 85–95% and GVL selectivity, 60–80%). This is due to the different
conditions and catalysts used. Carbon-laden wastewater might be utilized as a hydrogen
source in the future instead of alcohols or formic acid with triethylamine [48]. Fu et al. [49]
attained higher LA conversion (100%) and GVL selectivity (99.2%) by employing dioxane as
the solvent under milder reaction conditions (180 ◦C, 2 h), even though the LA conversion
and GVL selectivity is higher. However, the CHEM21 solvent selection guide, which ranks
solvents according to the severity of safety (S), heath (H), and environmental (E) hazards,
states dioxane as not recommended due to its toxicity [24].
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3.5. DSB Conversion to GVL
3.5.1. Conversion of DSB to LA

The upscaled LA production from DSB (this work) gave an LA yield of 55% which is
0.4% higher compared to the LA yield produced for the laboratory scale [28]. This shows
that there is no significant difference that occurred when the reaction was upscaled and that
the optimized parameters can be used to reproduce the laboratory scale results. The only
difference that was observed is the amount of water required—the mixture was too thick
and therefore it required more water to be added for the mixture to be stirred. This shows
that a process that requires combining raw biomass with liquid reagents does not scale
linearly, i.e., the physical amount of biomass relative to the liquid reagents is far greater in
the large-scale process. Ramli and Amin [50] produced 24.8% of LA yield from oil palm
fronds (OPF) using 1-sulfonic acid-3-methyl imidazolium tetrachloroferrate [SMIM][FeCl4]
which is lower than the yield obtained in this work, and this may be due to different
catalysts used, or different reaction conditions.
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3.5.2. Hydrogenation of LA Derived from DSB into GVL

The use of LA derived from DSB with the optimized conditions for the commercial
LA conversion to GVL of 6 h, 112.5 ◦C, and 2.75 g of MsOH yielded a GVL of 77.6%, LA
conversion of 95%, and 82% of GVL selectivity. The GVL yield obtained from DSB-derived
LA is 1.0% less compared to the GVL yield produced from commercial LA. The difference
may be due to impurities in the LA derived from DSB, but the difference is minor. Thus,
LA derived from DSB is a promising reactant for GVL production. Barla et al. [51] used a
cobalt-based catalyst for the hydrogenation of biomass-derived LA to GVL which resulted
in a 99% conversion of LA and 80% selectivity of GVL. Although the catalysts used were
different, the LA conversion difference was 4% and GVL selectivity was 2%, which is less,
and this shows that MsOH can replace metal catalysts and that LA derived from DSB can
be used as a starting material for GVL production. Figure 7 illustrates the GVL production
from sugarcane bagasse including the reaction conditions for the two step reactions.
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3.6. Techno-Economic Assessment of GVL Production from Sugarcane Bagasse

Comprehensive techno-economic feasibility studies on the technology development
and industrial scale application of the conversion of biomass (sugarcane bagasse)-derived
levulinic acid into γ-valerolactone using methanesulfonic acid determined the cost of using
catalyst at a scaled-up level. The data in Table 4 extrapolated from the (TEA) report show
that under optimum conditions it is more economical, financially sustainable, and cost
effective to use the recyclable and recoverable catalysts. Detailed studies show the cost of
catalyst measured against reactor capacity and capital costs.

Table 4. Reactor size.

Reactor Size

Volume (L) MsOH (g) MsOH Catalyst (Kg) Catalyst Cost (USD)

0.25 20.8 8.741 0.07
1.20 237.5 100 0.83
12.0 2375.0 1000 8.33
18.1 3562.4 1.500 12.50
50 9860.9 4.152 34.60

50.18 9895.7 4.167 34.72
100.35 19,791.4 8.333 69.45
250.88 49,478.4 20.833 173.62

At scaled-up reactor capacity of 50 L and optimum conditions were attained in which
the mass transfer was at its most efficient and more economically sustainable for the
conversion of levulinic acid into γ-valerolactone using methanesulfonic acid. The cost of
production in a 250 L reactor will need a catalyst quantity just above 10 percent of the
overall volume. This implies that 90% of the reactor feedstock comprises active reagents
that will contribute towards the yield. At the optimum conditions, the catalyst costs merely
USD 34.72 for a recoverable mass of 4.167 kg of catalyst.

The amount of ionic liquid catalyst needed was varied while constantly increasing the
reactor size, as shown in Table 5. The cost increased consistently as the volume increased.
However, it remained more cost effective than using other heterogenous and homogenous
catalyst materials.
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Table 5. Amount of catalyst needed.

Amount of Catalyst Needed

Mass Feed/Batch Catalyst (kg) Cost (USD) Reactor Size (L)

1.000 0.10 0.83 1
10.000 1.00 8.33 12
15.000 1.50 12.50 18
41.667 4.17 34.72 50
83.333 8.33 69.45 100

208.333 20.83 173.62 250

The catalyst material is dispersed in the reagent solution of HCOOH and Et3N, and
the catalyst forms an ionic solution that facilitates reduction of the levulinic acid to give the
gamma-valerolactone. Table 6 presents the comprehensive capital expenditure determined
from the feedstock and reactor capacity over the actual scaled-up reactor against the market
penetration index (MPI), a unit of measurement used to show how reactor feedstock
occupancy compares to a preselected set of competitors.

Table 6. Comprehensive capital expenditure.

Reactor
Capacity

(L)

Feedstock
Reactor
Volume

(L)

MsOH
Catalyst
Feed (kg

per
Batch)

Residence
Time in
Reactor

(min
×103)

Residence
Time in 1

Batch

Number
of Rota-
tional

Stirring
in 1 h

Number
of Passes

to Get
10 min

MPI Cost
for 7 h
Resi-
dence
Time

MPI Cost
for 2 h
Resi-

dence
Time

MPI Cost
for 1 h
Resi-
dence
Time

50 2.35 10 600 0.235 2.35 3.0 ZAR
145.957

ZAR
29.191

ZAR
14.596

50 2.35 100 6.000 0.024 0.24 29.8 ZAR 1
459.574

ZAR
291.915

ZAR
145.957

50 2.35 167 10.000 0.014 0.14 49.6 ZAR 2
432.624

ZAR
486.525

ZAR
243.262

50 2.35 300 18.000 0.008 0.08 89.4 ZAR 4
378.723

ZAR
875.745

ZAR
437.872

50 2.35 658 39.480 0.004 0.04 196.0 ZAR 9
604.000

ZAR 1
920.800

ZAR
960.400

Detailed analysis of the comprehensive economic impact of the technology against
a set of competing technologies shows that the pre-eminent feature of the conversion of
biomass-derived levulinic acid into γ-valerolactone using methanesulfonic acid as the
catalyst is in the mechanism of the mass transfer that translates to a cost effective and
sustainable process at optimized conditions as indicated in Table 6. At a fixed volume of
50 L reactor size and optimum temperature and pressure, the catalyst cost will be ZAR 9
604 for a 7 h residence of the reacting materials. The ease with which the catalyst material
is recovered makes the choice of the ionic liquid catalyst more desirable and sustainable
even at scaled-up operations as shown in Table 6.

4. Conclusions

The optimization study of LA conversion to GVL showed that time, temperature, and
catalyst loading have a significant effect on the GVL yield.

The maximum GVL yield of 78.6% was obtained at 6 h, 112.5 ◦C, and 2.75 g of MsOH.
IL: 1-butyl-3-methylimidazolium hydrogen sulphate produced relatively high GVL

yield (65.1%) and could be considered for environmentally green technologies. Sulfuric
acid yielded the highest GVL, but it is toxic and corrosive.

Water produced the highest GVL yield, and the mixed solvent of water and ethanol
yielded the second-lowest GVL yield.
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The GVL yield produced from DSB-derived LA is 1.0% less compared to the GVL pro-
duced from the commercial sample of LA. LA derived from DSB is a promising replacement
of non-biomass-derived LA.
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