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Abstract: Milk and dairy products are among the most important foods in the human diet. They are
natural and culturally accepted and supply the human body with microorganisms that modulate the
intestinal microflora. Improper lifestyles, highly processed diets, and certain drugs may contribute
to adverse changes in the composition of the gut microflora. These changes may lead to dysbiosis,
which is associated with the pathogenesis of many gastrointestinal diseases. This review aims to
determine the effect of fermented milk products on the composition of the gut microbiota and their
possible support in the treatment of dysbiosis and gastrointestinal diseases. While most research
concerns isolated strains of bacteria and their effects on the human body, our research focuses on
whole fermented products that contain complex mixtures of bacterial strains.
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1. Introduction

In recent decades, the human diet and lifestyle have changed, with the Western diet
increasingly dominated by highly processed products that are rich in preservatives, fats and
simple sugar and low in fiber and other nutrients [1,2]. This may modulate the composition
of the gut microbiota. Further, available drugs (antibiotics, proton pump inhibitors) may
also affect the composition of the intestinal microbiota. These changes may contribute to
dysbiosis, which is currently associated with the pathogenesis of many diseases [3–5].

One of the non-pharmacological ways to enrich the depleted gut microbiota is to consume
naturally fermented dairy products, which are rich in beneficial microorganisms [6,7].

Fermented dairy products are naturally rich in postbiotics, which are defined as
preparations of non-living microorganisms and/or their components that confer a health
benefit on the host. They may be antioxidant, anti-inflammatory, anti-bacterial, anti-cancer,
and immunomodulatory, and they may support the treatment of obesity, dyslipidemia,
or hypertension. These multidirectional and pleiotropic effects result from the multitude
of compounds that are classified as postbiotics: enzymes, lipids, proteins, saccharides,
vitamins, coenzymes, organic acids, complex particles, and others. Among the postbiotics
that may be present in fermented milk products are, e.g., aminobutyric acid (GABA), amino
acids such as ornithine and tryptophan, and lactic acid. On the other hand, postbiotics may
be used in the production technology of dairy products as natural preservatives, which are
often resistant to high temperatures. An example of such a bacteriocin is nisin-a lantibiotic,
which is produced by selected strains of Lactococcus lactis. Nisin inhibits the growth of
mainly Gram-positive bacteria and is approved for use in food preservation. It seems that
postbiotics may become a new source of functional foods [8].

This review aimed to determine the effect of fermented milk products as a typical
functional food on human gut microbiota composition. Specifically, we aimed to determine
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the possible impact of nutritional treatment with fermented milk products on the gut
microorganisms, including dysbiosis, and to consider the treatment of gastrointestinal
diseases. Currently, available review studies focused mainly on isolated strains of bacteria
and their beneficial effects on the human body. Our research focuses on the whole fermented
products, not on individual isolated strains. The databases PubMed, Scopus, Cochrane
Library, Web of Sciences, and Embase were searched up to 18 January 2023 using the
following phrases: “fermented milk product” and “gut microbiota” or “fermented dairy
product” and “gut microbiota” or “fermented milk product” and “intestinal microbiota”
or “fermented dairy product” and “intestinal microbiota” to identify relevant English-
language articles. The review used only original articles assessing the effects of fermented
milk products on the gut microbiota. We did not evaluate studies that were concerned with
isolated bacterial strains. Additionally, the reference lists of retrieved articles were screened
manually to find potential relevant literature. The search strategy is presented in Figure 1.

Figure 1. Search strategy.

2. Fermented Milk Products

Milk and fermented milk products have a long history of use dating back to the seventh
millennium BC [9–11] and have been eaten since the domestication of ruminants. For at
least 10,000 years, they have been an important component of the daily diets of people
around the world, especially in the case of pastoral populations, where dairy products
have been and are the foundation of daily diets [12–14]. In recent decades, technological
innovation has led to a wide range of dairy products, some with ingredients such as fat
and lactose removed or reduced and others fortified with ingredients such as iron, sterols,
and vitamin D. Increased awareness of the link between diet and health has increased the
demand for certain types of products, such as those low in fat and calories and products to
which vitamins and minerals have been added [15].

Fermented milk products include dairy foods that have been fermented by suitable
microorganisms which convert some of the lactose to lactic acid, resulting in reduced pH
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with or without coagulation [15]. Fermented milk is prepared from whole milk, mostly
skimmed or fully skimmed and concentrated, or from a milk substitute of partially or
fully skimmed milk powder, partially or fully skimmed, that is pasteurized or sterilized
and subjected to fermentation [16,17]. These products are usually made from cow, goat,
sheep, or buffalo milk, as well as milk from other animals, such as camels, mares, and
donkeys [15].

2.1. Composition of Various Kinds of Milk Used to Produce Fermented Milk Products

Milk and fermented milk products are a major source of dietary energy, protein, and
fat, contributing an average of 134 kcal of energy/per person/day [15,18]. However, this
varies by geographic region, with the percentage of dietary energy from milk in daily food
rations in Asia and Africa lower than that in Europe and Oceania, supplying 3% and 8–9%
of energy in the diet, respectively.

Milk is composed of approximately 75–91% water, 0–9% fat, 1–6% protein, 3–7%
lactose, and minerals and vitamins, with some variation depending on the animal from
which it is obtained [19–21]. The main minerals found in milk are calcium and phosphorus,
with smaller amounts of potassium, magnesium, zinc, and selenium [22,23]. Milk is a
valuable source of water-soluble B vitamins (especially riboflavin and B12) and fat-soluble
vitamins (such as vitamins A, D, and E), which are directly related to the lipid content. It also
contains immunoglobulins, hormones, growth factors, cytokines, nucleotides, peptides,
polyamines, enzymes, and other bioactive peptides [24]. The composition of the most
common kinds of milk used to produce fermented milk products is presented in Table 1.

Table 1. The composition of milk from various animals (per 100 g of fresh milk) [15,25].

Nutrients Cow
Milk

Goat
Milk

Sheep
Milk

Buffalo
Milk

Mare
Milk

Camel
(Dromedary)

Milk

Donkey
Milk Yak Milk

Energy (kcal) 59–66 57–69 93–108 71–118 42–50 44–79 32–51 87–91

Energy (kJ) 247–274 243–289 388–451 296–495 177–210 185–332 135–215 349–382

Water (g) 87.3–88.1 86.4–89.0 80.7–83.0 82.3–84.0 87.9–91.3 88.7–89.4 89.2–91.5 75.3–84.4

Protein (g) 3.2–3.4 2.9–3.8 5.4–6.0 2.7–4.6 1.4–3.2 2.4–4.2 1.4–1.8 4.2–5.9

Fat (g) 3.1–3.3 3.3–4.5 5.8–7.0 5.3–9.0 0.5–4.2 2.0–6.0 0.3–1.8 5.6–9.5

Lactose (g) 4.5–5.1 4.2–4.5 4.5–5.4 3.2–4.9 5.6–7.2 3.5–4.9 5.9–6.9 3.3–6.2

Calcium (mg) 91–120 100–134 170–207 147–220 76–124 105–120 68–115 119–134

Iron (mg) Tr.–0.2 Tr.–0.6 Tr.–0.1 0.2 * Tr.–0.2 0.2–0.3 0.2–1.0

Magnesium (mg) 10–11 13–14 18 * 2–16 4–12 12–14 4 * 8–12

Phosphorus (mg) 84–95 90–111 123–158 102–293 43–83 83–90 49–73 77–135

Potassium (mg) 132–155 170–228 120–187 112 * 25–87 124–173 50 * 83–107

Sodium (mg) 38–45 32–50 30–44 47 * 13–20 59–73 22 * 21–38

Zinc (mg) 0.3–0.4 0.1–0.5 0.5–0.7 0.5 * 0.2–0.3 0.4–0.6 0.7–1.1

Copper (mg) Tr. Tr.–0.1 0.1–0.1 Tr.–0.1 0.1–0.2 0.4 *

Selenium (µg) 1.0–3.7 0.7–1.4 1.7 *

Manganese (µg) 4–10 Tr.–18 Tr.–18 60–180

Vitamin A (µg) 30–46 30–74 64 * 69 * 14 *

Vitamin E (mg) 0.1–0.1 Tr.–0.1 0.1–0.1 0.2–2.0 Tr

Thiamin (mg) Tr. Tr.–0.1 0.1–0.1 0.1 * Tr. 0.1 * 0.1 *

Riboflavin (mg) 0.2–0.2 Tr.–0.2 0.3–0.4 0.1 * Tr. 0.1 * Tr. 0.1 *

Niacin (mg) 0.1–0.2 0.1–0.3 0.4–0.4 0.2 * 0.1 * 0.1 * Tr.
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Table 1. Cont.

Nutrients Cow
Milk

Goat
Milk

Sheep
Milk

Buffalo
Milk

Mare
Milk

Camel
(Dromedary)

Milk

Donkey
Milk Yak Milk

Pantothenic acid
(mg) 0.3–0.6 0.3–0.4 0.4–0.5 0.2 *

Vitamin B6 (mg) Tr.–0.1 0.1–0.1 0.1–0.1 0.3 * Tr.

Folate (µg) 5.0–8.0 Tr.–1.0 5.0–7.0 0.6 *

Biotin (µg) 1.4–2.5 2.0–3.0 2.5–2.5 13.0 *

Vitamin B12 (µg) 0.3–0.9 Tr.–0.1 0.6–0.7 0.4 *

Vitamin C (mg) Tr.–2.0 1.1–1.3 4.2–5.0 2.5 * 1.7–8.1 2.5–18.4

Vitamin D (µg) 0.1–0.3 0.1–0.1 0.2–0.2 0.2 *

Tr.—trace amount (<0.05); *—average value; blank spaces indicate that no data were available.

It is worth noting that both milk protein and lactose in fermented milk products
are more easily absorbed than in plain milk, as the bacterial proteolytic system partially
degrades proteins. The lactose content is lower because some is converted into lactic acid
and/or alcohol. Moreover, yogurt and fermented milk may contain more folic acid than
plain milk because some strains of lactic acid bacteria also synthesize folate. Fermentation
not only makes milk more digestible but also increases the shelf life and microbiological
safety of products [15].

2.2. Types of Fermented Milk Products

According to the European Food Information Council (EUFIC), there are over 3500 tra-
ditional, fermented food products in the world. The principal types are yogurt, kefir, soured
milk, and kumis, with lesser and regional amounts of other products (e.g., Långfil, Villi) [26].
These are classified into three different types, depending on the type of fermentation:

1. Products of lactic fermentation, where strains of mesophilic or thermophilic lactic acid
bacteria are used (e.g., yogurt).

2. Products obtained through alcohol-lactic fermentation involving yeast and lactic acid
bacteria (e. g., kefir, kumis).

3. Products with mold growth in addition to the fermentation types above (e.g., viili) [27].

Each type of fermented milk product has a specific characteristic composition, taste,
and texture, depending on the type of milk, the starter cultures, and the method of prepara-
tion (Table 2). There are four categories of fermented products based on these characteristics:
moderately sour types with a pleasant aroma associated with diacetyl, sour and very sour
types owing to high acid production, ethanol in addition to lactic acid, and probiotic
fermented milk products [17,28].

Table 2. Characteristics of selected fermented milk products [17,27,29–37].

Fermented Milk
Product Type of Milk Fermentation Culture Basic Product Characteristic

Yogurt
All types, especially

cow, goat, sheep, and
buffalo milk

Streptococcus (Sc.) thermophilus and
Lactobacillus (Lb.) delbrueckii sp. Bulgaricus

Tart flavor and texture related to the
fermentation of sugars in milk and the

production of lactic acid.

Kefir Especially from cows,
goats, or sheep milk

Lc. lactis subsp. lactis, Lc. lactis subsp. cremoris,
citrate-positive Lc. lactis,

Ln. mesenteroides subsp. cremoris, Ln. mesenteroides
subsp. dextranicum,

Sc. thermophilus,
Lb. delbrueckii subsp. bulgaricus, Lb. acidophilus,

Lb. helveticus, Lb. kefir, Lb. kefiranofaciens,
Kluyveromyces marxianus,

Saccharomyces spp.

From the North Caucasian regions
and Turkey;

contains the characteristic microflora
of kefir grains;

sour, bitter, and slightly carbonated
taste similar to drinkable yogurt.

The starter culture used affects the
viscosity and chemical composition

of kefir.
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Table 2. Cont.

Fermented Milk
Product Type of Milk Fermentation Culture Basic Product Characteristic

Kumis
Mare and donkey milk

(Columbian kumis
from cow milk)

Lb. acidophilus, Lb. delbrueckii subsp. bulgaricus,
Saccharomyces lactis,

Kluyveromyces marxianus
Pichia membranaefaciens
Saccharomyces cerevisiae

Traditionally produced by fermenting
raw milk with yeast and lactic

acid bacteria.

Långfil Cow milk Lc. lactis ssp.

Swedish ropy sour milk requires a low
acidification temperature and

long maturation;
mildly acidic with a chewy and

cohesive texture.

Viili Cow and other milk Lc. lactis,
Geotrichum candidum

Finnish ropy milk product;
semi-solid structure with a sharp taste

and good diacetyl flavor.

Grassis Camel milk
Lc. paracasei subsp., Lc. plantarum, Lc. lactis,

Enterococcus spp., and
Leuconostoc spp.

Consumed in various regions of
the Sudan;

obtained by semi-continuous or
fed-batch fermentation process in
large skin bags containing a large

quantity of previously soured product.

Filmjölk Cow milk Lc. lactis, and
Ln. mesenteroides subsp. Cremoris

Traditional fermented milk products
from Sweden;

a mild and slightly sour taste.

Buttermilk All types of milk,
especially cow milk

Lc. lactis subsp. lactis, Lc. lactis subsp. cremoris,
Lc. lactis, and

Ln. mesenteroides subsp. Cremoris

Obtained during the production of
butter, containing water-soluble milk
components and bioactive material

derived from milk fat
membrane globules.

Dadih Buffalo milk

Lb. casei subsp. casei,
Ln. paramesenteroides, Lb. plantarum,

Lc. lactis subsp. lactis, Lc. lactis
subsp. cremoris, citrate-positive Lc. lactis,

Enterococcus faecium

Traditional fermented milk popular in
West Sumatra (Indonesia);

-produced by pouring fresh, raw,
unheated milk into a capped bamboo

tube and allowing it to ferment
spontaneously at room temperature

for a few days.

Dahi
(Curud)

Cow milk, and
sometimes buffalo, yak,

or goat milk

Sc. thermophilus
Lb. delbrueckii subsp. bulgaricus or

Lc. lactis subsp. lactis, Lc. lactis subsp. cremoris,
citrate-positive Lc. Lactis

Popular throughout the Indian
subcontinent (around 90% of the total

fermented milk products produced
in India);

obtained from pasteurized or boiled
milk fermented with a culture.

Yakult Cow milk Lb. casei subsp. casei

Japanese sweetened fermented milk;
consists of water, skimmed milk,

glucose-fructose syrup, sucrose and
bacterial strains.

Kurut Yak milk and other
animal milk

Lb. delbrueckii and
Lb. helveticus

Traditional product in
northwestern China;

obtained by drying yogurt or ayran
after filtration with the addition

of salt.

Tarag Goat and cow milk Lb. helveticus and
Lb. delbrueckii ssp. bulgaricus

Traditional product in Mongolia
and China;

produced from raw whole milk by
backslopping method.

Leben Cow, goat, sheep, and
camel milk

Lc. lactis and
Sc. thermophilus,

Enterococcus faecium

Traditional fermented milk from the
Middle East and North Africa;

produced from raw milk

Khoormog Camel milk Lc. helveticus, Lc. kefiranofaciens and Lc. delbrueckii
Mongolian traditional food;

a sour and alcoholic taste from
raw milk.

In addition, fermented milk products can be divided into concentrated, flavored, and
fermented milk drinks. The concentrated drink is a fermented milk product in which the
protein has been increased before or after fermentation to a minimum of 5.6%—for example,
Leben. Flavored milk products are composite milk products containing a maximum of
50% of non-dairy ingredients (such as nutritive and non-nutritive sweeteners, fruits, juices,
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pulps, cereals, chocolate, nuts, coffee, spices, and other harmless natural flavorings). The
non-dairy ingredients can be added before or after fermentation. Fermented milk drinks
contain a minimum of 40% fermented milk, as well as other microorganisms, in addition to
the specific starter cultures [22]. Yogurt, eaten together with other ingredients such as fruit,
may provide combined health benefits through potential prebiotic and probiotic effects.
Yogurts are a potential source of probiotics, while fruits are rich in fiber, antioxidants,
vitamin C, and potential prebiotics. Yogurt and fruit, separately, may have a protective
effect against specific diet-related diseases, such as obesity and type 2 diabetes [38].

3. Gut Microbiota

The human body is colonized by a huge number of microorganisms, both internally
and externally [39,40]. Microbes colonize the human body immediately after birth and
persist until death [41,42]. They account for over 1 kg of human body weight and at
least ten times the number of human eukaryotic cells. Most microorganisms colonize
the digestive tract, constituting the so-called gut microbiota, and include bacteria, fungi,
eukaryotes, viruses, phages, and archaea. Humans and microbes have developed complex
symbiotic relationships of co-evolution, co-adaptation, and interdependence. The proper
term for the relationship between humans and their microbiota is mutualism (both humans
and microbes have their benefits) [40]. As already mentioned, the digestive tract is the
most inhabited system, but the degree of colonization is not uniform. Differences in the
environments in the parts of the digestive tract cause the diversity of the composition of
microorganisms [39,43–46], as set out below:

Oral cavity—the number of microorganisms reaches 108 CFU/mL, predominately Strep-
tococcus, Peptococcus, Staphylococcus, Bifidobacterium, Lactobacillus, and Fusobacterium genera.

Stomach and duodenum—the secretory effect of the stomach (lowering the pH to
1–2) and duodenum results in the death of most bacteria, so the number of bacteria in
the stomach is less than 101–103 CFU/mL (mainly Lactobacillus, but also Helicobacter py-
lori), and the number of bacteria in the duodenum is 101–104 CFU/mL (Lactobacillus and
Streptococcus predominate).

Jejunum and ileum—the number of microorganisms increases to 105–107 CFU/mL,
and these are mainly bacteria of the genera Bacteroides, Lactobacillus, and Streptococcus. In
the ileum, the number of microorganisms reaches 107–108 CFU/mL, with the predominant
genera of Bacteroides, Clostridium, Enterococcus, Lactobacillus, and Veillonella, and species
from the Enterobacteriaceae family.

Large intestine—the most metabolically active organ of the human body with approxi-
mately 70% of all microorganisms colonizing the digestive tract inhabiting the colon. The
colonization density of the large intestine is 1010–1012 CFU/mL, predominately Bacillus,
Bacteroides, Clostridium, Bifidobacterium, Enterococcus, Eubacterium, Fusobacterium, Peptostrep-
tococcus, Ruminococcus, and Streptococcus [47–49].

3.1. Factors Affecting Variability in Gut Microbiota Composition

The gut microbiota consists of five basic types of bacteria (Firmicutes, Bacteroidetes,
Actinobacteria, Proteobacteria, and Fusobacteria), constituting up to 90% of the gut microbiome.
However, this proportion may not be similar in all individuals, due to interpersonal
differences and the multitude of factors explained in this section [50,51].

It is impossible to precisely determine what microorganisms and in what numbers
should be present in the human intestines, or what “profile” of microbes is indicated or not
recommended for health. The composition of the intestinal microflora is individualized [52].
Nevertheless, the presence of certain species may predispose to the development of certain
disease entities, e.g., inflammatory bowel disease, cancer, allergies, or obesity [53–57].

Diet has an important influence on gut microbiota composition. To confirm this
hypothesis, some researchers sequenced the oral microbiota from the skeletal teeth of
people living in different eras, showing that the most significant changes in the human
gut microflora took place during two social and nutritional breakthroughs in the history
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of mankind: the transition from the Palaeolithic era of hunter-gatherers to the Neolithic
era of agriculture (10,000 years ago), with diets rich in carbohydrates, and the beginning of
industrialization (about two centuries ago), characterized by diets rich in processed flour
and sugar. Further studies have shown differences in the composition of the gut microbiota
among different populations, possibly due to the variability in diet and genetics [58–60].
Considering the gut microbiota at the taxonomic level of species, there is considerable
variation between individuals, such that the composition of the microbiota can be compared
to a fingerprint. Both endogenous and exogenous factors will affect the composition of the
microflora. The diversity among individuals is easy to understand when we consider the
countless factors that influence the composition of the gut microbial ecosystem. The host’s
genetic background plays an important role in the first colonizing bacteria through the
bacterial attachment sites (pioneer flora) [61–63]. Pioneer flora modulates host gene expres-
sion, affecting subsequent microbial flora. In addition, environmental factors, such as age,
diet, stress, and medications, strongly affect the human microbiota composition [64–66].

Other factors influencing the microbiome are the maternal vaginal and gut microflora,
which may affect the fetal microflora; the composition and development of the child’s
gut microflora are greatly influenced by the type of childbirth (natural or by caesarean
section) and feeding (mother’s milk vs. infant formulae). In addition, the composition
of the microbiota is affected by therapeutic procedures, hygiene, exposure to the natural
environment, and genetic origins, as evidenced by studies on identical twins [61,67–69].

Although long ignored, viruses play an important role in the gut ecosystem, with 90%
of the intestinal virome consisting of bacteriophages and the remaining 10% being plant
and zoonotic viruses that are constantly introduced with food [70,71].

Factors affecting the development of the human gut microflora are strongly related to
child development and adult life. At the taxonomic level, a healthy adult human microbiota
consists mainly of Firmicutes and Bacteroidetes, which may account for 70% of the total
microbiota. Proteobacteria, Verrucomicrobia, Actinobacteria, Fusobacteria, and Cyanobacteria
can also be found in lower percentages. Obligate anaerobes dominate and outnumber
facultative anaerobes by two orders and aerobes by three orders [72–74].

The gut microbiota has been divided into three main enterotypes, with each enterotype
characterized by a relative abundance of one of the following types of bacteria [40,42,75,76]:

• Bacteroides (more represented in enterotype 1),
• Prevotella (more numerous in enterotype 2),
• Ruminococcus (dominant in enterotype 3).

The prevalence of a particular enterotype may depend on long-term dietary habits;
indeed, a high-fat and high-protein diet promotes the growth of enterotypes 1 and 3, while
a high-carbohydrate diet supports the growth of enterotype 2. Recent findings suggest that
the composition of the gut microbiota is also influenced by short-term dietary changes [40].
Nevertheless, these three variants seem to be independent of body mass index, age, gender,
or nationality [42].

Once the composition of the intestinal microflora is established, it theoretically remains
stable throughout adult life. Some differences can be observed between the intestinal
microbiota of the elderly and young adults, mainly due to the dominance of the genera
Bacteroides and Clostridium in the elderly and Firmicutes in young adults [42]. However,
it should be emphasized that diet, stress, and medications (antibiotics, proton-pump
inhibitors, opioids) can significantly affect the microbiota profile [77–79].

3.2. Main Functions of the Gut Microbiota

The gut microbiota plays an important role in maintaining health, mainly participating
in the development of immunity and regulating several basic metabolic pathways [5,47,52].
The state of eubiosis and dysbiosis of the intestinal microflora also strongly affects health
and disease [41,80,81].

Quantitative and/or qualitative changes in the gut microflora impair this homeostasis,
leading to the development of diseases related to the gut microflora, such as functional
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diseases of the gastrointestinal tract, infectious diseases of the intestine, inflammatory
bowel diseases, liver diseases, gastrointestinal cancers, obesity and metabolic syndrome,
allergies, diabetes, and autism [47,53,54,80,82]. The distal section of the human intestine
is considered an anaerobic bioreactor with metabolic activity comparable to that of the
liver; therefore, the microbiota can be regarded as an organ with specific functions [83,84].
An organ that consumes, conserves, and redistributes energy undergoes physiologically
important chemical changes and can maintain and repair itself by self-replication.

The mechanisms of action of probiotic strains [8,85–89] include the following:

1. Protective function; One of the leading defence mechanisms is the occupation of an
ecological niche, which makes it difficult for pathogenic bacteria to reach the intestinal
epithelial layer. At the same time, numerous commensal bacteria block receptors
are recognized by pathogenic bacteria. An example is Lb. plantarum, which uses
mannose receptors for adhesion. The same receptors are necessary for the adhesion of
enteropathogenic Escherichia coli strains. Moreover, commensal bacteria compete with
pathogens for nutrients and production of compounds with bacteriostatic/bactericidal
activity (bacteriocins, organic acids, hydrogen acid, compounds of the lactoperoxidase
system, and others), modification of the intestinal environment to make it unfavorable
for the development of harmful microorganisms (lowering pH), thereby maintaining
the continuity of the gastrointestinal mucosa: stimulating the secretion of mucin
“sealing” the intestinal epithelium and production of short-chain fatty acids and
polyamines (regeneration of the epithelium and the effect on cell maturation).

2. Digestive function: Gut microbiota is involved in the digestion of numerous com-
pounds that are otherwise inaccessible to humans, such as cellulose, pectin, or lignin.
These compounds are converted into simple sugars or short-chain fatty acids. An
interesting example here may be Bifidobacterium longum subs. infantis colonizing the
intestines of newborns and breaking down HMO (human milk oligosaccharider)
sugars not broken down by human digestive enzymes. However, bacteria provide
not only nutrients but also vitamins necessary for humans, such as K, B1, B6, B12, or
folic acid.

3. Immune function and Stimulation of the immune system: Probiotic bacteria do not
differ significantly from pathogenic bacteria, and ingredients such as lipopolysaccha-
ride (LPS), peptidoglycan, or lipoteichoic acids are recognized by the TLR (tool-like
receptor) in the same way. These receptors are involved in stimulating the immune
response by promoting the production of pro-inflammatory cytokines (such as TNF-α
or IL-1, 6, 8, 12). The NF-κB transcription factor is also activated, leading to, e.g., pro-
duction of anti-bacterial proteins (defensins) by enterocytes. Epithelial cells can also
produce other anti-bacterial substances, such as lysozyme or phospholipase. Probiotic
bacteria have developed several adaptations and interactions with the host organism
that allow them to survive and colonize the gastrointestinal tract (e.g., Bifidobacterium
longum and Bacteroides thetaiotaomicron together can reduce the expression of genes
responsible for fighting gram-positive bacteria. Bifidobacterium bacilli can also inhibit
the signal stimulating the production of RegIIIγ lectin, which is a consequence of
activation of TLR receptors, and Enterococcus has the ability to induce the expression
of genes responsible for the production of IL-10, having an anti-inflammatory effect).

4. Anti-cancer function: Bacterial enzymes play an important role in carcinogenesis.
Probiotic strains can reduce the activity of carcinogens, e.g., the Lb. acidophilus strain
causes a decrease in the activity of 1,2-dimethylhydrosine and the Bifidobacterium
longum strain reduces the activity of 2-amino-3-methyl-limidazal (4,5-t) choline. More-
over, Lb. casei (LC9018) strains induce immune response mechanisms against cancer
cells. In addition, the reduction of hepatic lipogenesis by probiotic strains may be use-
ful in the treatment of cancer. Figure 2 illustrates the functions of the gut microbiota.
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Figure 2. Functions of the gut microbiota [8,85–88].

3.3. Eubiosis and Dysbiosis

The adult intestines are in a state of eubiosis, i.e., a physiological balance regarding
the amount, diversity, and composition of microorganisms inhabiting, for example, the
digestive tract. The intestinal microbiota in the eubiotic state is characterized by the pre-
dominance of potentially beneficial species, mainly two types of bacteria, Firmicutes and
Bacteroides, while potentially pathogenic species, such as those belonging to the type Pro-
teobacteria (Enterobacteriaceae), are present in a low percentage [41,90,91]. Dysbiosis occurs
when this balance is disturbed for various reasons (e.g., antibiotic therapy or changing
the diet) [41,80,81,90] and can be a consequence of growth, change in composition, or
disappearance of microbiota. There are three types of dysbiosis, consisting of [92]:

1. Loss of beneficial organisms (antibiotics),
2. Excessive growth of potentially harmful organisms (infections, lack of hygiene), and
3. lLss of overall microbial biodiversity (poor diet).

The most common variation factors in the composition of the microbiota are [68,93,94]
the following:

• food, food additives, and alcohol consumption—unhealthy eating habits negatively
affect the composition of the gut microflora and can act as a disease-causing factor
impacting metabolic pathways. A high-fat diet and meat are associated with an
increased risk of Crohn’s disease (CD) and ulcerative colitis (UC). The risk of inflam-
matory bowel syndrome (IBS) can be reduced by modulating the structure of the gut
microflora and/or its metabolome with a vegetarian diet [95–98];

• antibiotics and medication—the main consequence of antibiotic treatment is the elim-
ination of sensitive microorganisms (symbiotic bacteria) and the selection and mul-
tiplication of dysbiotic bacteria or fungi—primarily pathogenic. This imbalance of
the ecosystem can lead to diarrhea due to the pathological proliferation of oppor-
tunistic endogenous pathogens, such as Clostridium difficile and vancomycin-resistant
enterococci. Moreover, patients treated with antibiotics are more susceptible to infec-
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tions caused by hexogen pathogens due to the loss of microbiota integrity and barrier
function [99],

• age (in people over 70, the number of Bacteroides and Bifidobacterium decreases), gender
(the effect of sex hormones), stress (under stress, the bacteria such as Lactobacillus
Bacteroides spp. and Clostridium spp. decrease), lifestyle (smoking habits and drug
consumption can together contribute to gut dysbiosis),

• gastrointestinal disorders and infections.

Qualitative and quantitative disturbances in the gut microbiota may lead to the de-
velopment of intestinal (e.g., gastritis, diarrhea due to Clostridium difficile, small intestinal
bacterial overgrowth (SIBO), colorectal cancer, or stomach cancer) or systemic diseases
(type 1 and 2 diabetes mellitus, obesity, neurologic and psychiatric diseases, cardiovascular
diseases, autoimmune diseases), underlying such chronic diseases as inflammatory bowel
disease, which includes CD or ulcerative colitis [100–109]. However, a specific link between
IBS and changes in the intestinal microbiome is not easy to establish, as these changes
may be as much a cause as a result of the onset of disease symptoms. Studies conducted
using animals that do not produce T and B lymphocytes confirmed the influence of bacteria
such as Helicobacter hepaticus on the formation of IBS symptoms [110,111]. A change in the
proportion of Gram-positive (especially Clostridium leptum) and Gram-negative gastroin-
testinal flora, particularly of the Bacteroidetes type, was also noted. An excessive amount
of Gram-negative bacteria, which, due to the presence of a lipopolysaccharide wall, has a
stronger effect on the immune system, may cause IBS [112–114]. Therefore, in many cases,
they can be considered the disease’s primary etiological factor.

Moreover, dysbiosis can also be associated with the formation of neoplastic changes.
The process of carcinogenesis related to dysbiosis may be affected by several mechanisms,
such as the imbalance of signals stimulating and inhibiting the development of inflamma-
tion, the cytotoxic effect and the associated excessive proliferation of epithelial cells, and
the production by microorganisms of toxic, intermediate products of metabolism that can
damage the cellular epithelium [59,93,100].

4. The Influence of Fermented Milk Products on the Microbiota Composition

Over the last decade, the human gut microbiota has gained more attention due to its
beneficial effects on human health, as improving the composition of the gut microflora can
prevent and support the treatment of numerous diseases. In particular, gastrointestinal
disorders, such as ulcerative colitis, irritable bowel syndrome, or diarrhea, are associated
with altered patterns of gut microflora [100,112,115–117].

Some studies on healthy people and people with gastrointestinal disorders suggest
that fermented milk products benefit gut microflora. Most studies of fermented milk
products consumed by healthy individuals have been safe, with no adverse side effects,
and have beneficial effects on the gut microbiota. The influence of fermented milk products
on the microbiota composition in healthy people is presented in Table 3.
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Table 3. The influence of fermented milk products on the microbiota composition in healthy people.

Fermented Milk
Products Used Type of Bacteria Dose Time of

Intervention Study Population Effect References

Yogurt
vs.

Milk fermented with
yogurt cultures and

Lb. casei
vs.

Nonfermented gelled
milk

Both fermented products
contained at least
1 × 106 CFU/g
Lb. bulgaricus,

1 × 109 CFU/g
Sc. thermophilus, and

1 × 108 CFU/g Lb. casei

125 g/d of one of the
three products

1 week baseline
period,

1 month
supplementation

period, and
1 week follow-up

Period

Infants:
39 healthy infants

(randomly assigned to
one of three groups)
aged 10–18 months

In the yogurt group, the number of
Enterococci in the feces increased,

and the activity of β-glucuronidase
significantly decreased.

The percentage of branched-chain
and long-chain fatty acids

significantly decreased.

Guerin-Danan et al.,
1998 [118]

Yogurt
(three different

yogurts)

Lactobacilli
6 × 107–2.4 × 108/g yogurt

- Yogurt 1–Lb. casei
2.4 × 108 CFU/g yogurt,

- Yogurt 2–Lb. acidophilus
6.0 × 107 CFU/mL yo-
gurt and Lb. delbrueckii
4.5 × 107 CFU/mL yogurt,

- Yogurt 3–Lb. delbrueckii
1 × 108 CFU/g yogurt

One serving per day
depending on the

study group:
Yogurt 1–110 g/day,

Yogurt
2–180 mL/day

Yogurt 3–90 g/day

20 days

Adults:
15 healthy adults

(9 males and 6 females)
were assigned to one of

three groups;
aged 24–46 years

The consumption of yogurts with
probiotic strains was no more

effective than yogurt which does
not contain probiotic strains on the
human fecal microbial composition.
Bacteroides and Prevotella population
levels and the Clostridium coccoides
Eubacterium rectale group in fecal

samples tended to change in
response to ingestion, however, the

change was not related to the
yogurt type.

The bacterial community in human
feces may be altered by yogurt
consumption but not related to

probiotic lactic acid bacteria.

Uyeno et al.,
2008 [119]

Strawberry yogurt
with Bifidobacterium
animalis subsp. lactis

BB-12
vs.

Yogurt without
BB-12 (control group)

Bifidobacterium animalis
subsp. lactis

(1 × 1010 colony/100 mL)
and

Sc. thermophilus and
Lb. delbrueckii subsp.

Bulgaricus

Four fluid ounces
(112 g) per day 90 days

Children:
172 children from

Washington (randomly
assigned to one of

two groups);
aged 2–4 years

Yogurt was well tolerated in
children but did not decrease

absences due to illnesses in daycare.

Merenstein et al.,
2011 [87]
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Table 3. Cont.

Fermented Milk
Products Used Type of Bacteria Dose Time of

Intervention Study Population Effect References

Yogurt with
Bifidobacterium
longum BB536

vs.
Ultra-high-

temperature
pasteurized milk

Bifidobacterium longum BB536
4.27 ± 1.25 × 108 CFU of

living BB536
(more than

1.12 ± 0.62 × 108 CFU of
BB536 at the end of

the study)
and

1 × 109 CFU of lactic
acid bacteria

One portion per day

- 160 g of yogurt
with B. longum
BB536

or

- 200 mL of ultra-
high temperature
pasteurized milk

8 weeks

Adults:
32 healthy adults

(11 male and 21 female)
from Eastern Japan

(randomly assigned to
one of two groups); the
mean age in the yogurt

group was
41.1 ± 10.2 years, and in

the milk group,
38.6 ± 7.5 years

The consumption of yogurt
significantly decreases

enterotoxigenic Bacteroides fragilis in
the gut microbiota.

Odamaki et al.,
2012 [120]

Yogurt with
Bifidobacterium

animalis subsp. lactis
BB-12

vs.
Yogurt without

BB-12 (control group)

Bifidobacterium animalis
subsp. lactis

(1 × 1010 CFU/100 mL)

Four fluid ounces
(112 g) per day 10 days

Adults:
40 healthy adults

(16 male and 24 female)
randomly assigned to

one of two groups;
yogurts with BB-12
(n = 19) and control

group (n = 21);
mean age in the yogurt
group of 33 years and
the control group of

29 years

Bifidobacterium lactis fecal levels
were modestly higher in the yogurt

with BB-12 group.
In a small subset of participants,
consuming yogurt with BB-12

activated an array of immune genes
associated with regulating and

activating immune cells.

Merenstein et al.,
2015 [121]

Yogurt with
Bifidobacterium

animalis subsp. lactis
BB-12

Bifidobacterium animalis
subsp. lactis BB-12

Twice a day,
125 mL of yogurt in

the morning and
evening

30 days

Adults:
150 healthy volunteers
from Russia (no exact
information about the

age of the patients)

Gut microbe content showed an
increase in the presence of

potentially beneficial bacteria,
especially the genus Bifidobacterium,
Adlercreutzia equolifaciens and Slackia

isoflavoniconvertens.
Increased ability to metabolize

lactose and synthesize amino acids
while reducing the potential for

lipopolysaccharide synthesis.

Volokh et al.,
2019 [122]
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Table 3. Cont.

Fermented Milk
Products Used Type of Bacteria Dose Time of

Intervention Study Population Effect References

Fermented milk
product

vs.
Control group
(without any
intervention)

Lactobacillus casei strain
Shirota at the minimum

concentration of
6.5 × 109 CFU

Commercially
available fermented

milk product (65 mL)
taken during

breakfast

6 weeks

Children:
18 healthy children;

study group (n = 6) and
control group (n = 12);

aged 12–18 years

Fermented milk product ingestion
by healthy children does not result

in a more diverse and stable gut
microbiota composition.

El Manouni El
Hassani et al.,

2019 [123]

Fermented milk
products

Lactocaseibacillus paracasei
strain Shirota

0.9–40 billion CFU per bottle
Intake ≥ 3 days/week 1 year

Adults:
218 Japanese

participants; aged
66–91 years

Stabilisation of the gut microbiota in
the elderly.

Amamoto et al.,
2021 [124]

Strawberry yogurt
(control group)

vs.
Strawberry yogurt
with strain BB-12

added
pre-fermentation

vs.
Strawberry yogurt
with BB-12 added
post-fermentation

vs.
Capsule containing

BB-12

Bifidobacterium animalis
subsp. lactis BB-12

(log10 10 ± 0.5 × 109 or
3.16 × 109 and

3.16 × 1010 CFU of BB-12/
portion, in capsules

log10 10 ± 0.5 CFU of
BB-12/capsule

240 g yogurt/day.

4 treatments each
lasting 4 weeks, and
a 2 week wash-out
compliance break

between treatments

Adults:
36 healthy adults;

29 finished at least one
treatment period
(18 females and

11 males); mean age of
28.1 ± 0.6 years

Consumption of yogurt with BB-12
or capsule did not significantly alter
the gut microbiota composition, gut
transit times, and fecal excretion of

short-chain fatty acids.
A significant gender effect was
observed when comparing the

gut microbiota.
Daily consumption of BB-12 in

yogurt (with strain BB-12 added
pre-fermentation and

post-fermentation) resulted in a
higher relative abundance of

B. animalis.

Ba et al., 2021 [125]

Yogurt
vs.

Control group
(without any
intervention)

Lactic acid bacteria
1.4 × 109 CFU g−1

175 g of plain organic
milk yogurt 8 weeks

Adults:
52 postmenopausal
women from Lativa;
control (n = 26) and
experimental group

(n = 26);
aged 44–69 years

No significant changes in the gut
microbiome were related to the

consumption of yogurt.
Consumption of food products like
grains, grain-based products, milk
and milk products, and beverages

(tea, coffee) is associated with
differences in the composition of the

gut microbiome.

Aumeistere et al.,
2022 [126]
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In a study by Guerin-Danan et al., increased enterococci in infant feces were observed
during 1-month supplementation of milk fermented with yogurt cultures (Lb. bulgaricus
and Sc. thermophilus) and Lb. casei [118]. This may have been due to the survival of
S. thermophilus during its passage through the gastrointestinal tract or to an increase in
the number of endogenous enterococci. Uyeno et al. observed that the consumption by
adults of three different yogurts changed the bacteroides and Prevotella population levels
and the Clostridium coccoides-Eubacterium rectale group in fecal samples [119]. However, the
changes did not appear to be related to the types of milk products. Additionally, yogurt
consumption may alter these changes, but not the types of lactic acid bacteria. The changes
in the gut microflora in adults also occurred after 8 weeks of consumption of yogurt
with Bifidobacterium longum BB536, compared to UHT milk groups (decreases Bacteroides
fragilis) [120]. Ten-day supplementation of yogurt with Bifidobacterium animalis subsp. lactis
BB-12 increased fecal levels of Bifidobacterium lactis [121], and 30 days of supplementation
increased Bifidobacterium, Adlercreutzia equolifaciens, and Slackia isoflavoniconvertens [122].
Moreover, Amamoto et al. observed intakes of ≥ three days per week of fermented milk
products (Lb. paracasei strain Shirota) stabilized the gut microbiota in the elderly [124]. In
contrast, no effect on gut microbiota was observed by El Manouni El Hassani et al. [123]
after 6 weeks of supplementation of fermented milk product with Lb. casei strain Shirota in
children, or by Aumeistere et al. after 8 weeks of supplementation of yogurt with lactic
acid bacteria in adults [126].

In addition, studies of healthy adults on the influence of fermented milk products
on the composition of the gut microflora have shown that they may activate an array
of immune genes associated with regulating and activating immune cells. Volokh et al.
reported that 30 days of supplementation of yogurt with Bifidobacterium animalis subp. lactis
BB-12 increased the ability to metabolize lactose and synthesize amino acids while reducing
the potential for lipopolysaccharide synthesis [122]. Levels of the transcription factor
GATA3, CD80, an early inducer of T-cell proliferation, CXCL10, and pro-inflammatory
TNF-α were upregulated at least five-fold in blood cells isolated from adults consuming
yogurt with Bifidobacterium BB-12, compared to the control group.

The influence of fermented milk products on the gut microbiota depends on the type
of fermented product and the bacterial strain used, the number of bacteria, the time of
supplementation, and the study group. In addition, age and ethnicity seem to play roles,
but due to the small number of studies and subjects, this topic requires further research.

The influence of fermented milk products on the gut microbiota composition in hu-
mans with gastroenterological diseases, such as diarrhea, ulcerative colitis, and irritable
bowel syndrome, are presented in Table 4.
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Table 4. The effect of fermented milk products on the microbiota composition in humans with gastrointestinal disorders.

Fermented Milk
Products Used Type of Bacteria Dose and Time of

Intervention Time of Intervention Study Population Effect References

Diarrhea

Yogurt Sc. thermophilus and
Lb. bulgaricus

Individual dosage
(depending on lactose)

per kilogram of
body weight

4 days

Children:
9 Algerian boys with

diarrhea of >1 month in
duration, clinically mild

malnutrition, villus
atrophy, and lactose

maldigestion;
aged 7–29 months

Replacing milk (infant
formula) with yogurt

reduced lactose
malabsorption and
tended to improve
lactose intolerance

and diarrhea.

Dewit et al., 1987 [127]

Yogurt prepared from
milk formulae

vs.
Milk formula

Sc. thermophilus and
Lb. bulgaricus

Individual dosage per
kilogram of body weight
150–180 kcal/kg/day for
all foods (children aged

3–6 months received
4 servings of milk or

yogurt, children aged
6–16 months received

3 servings, and children
aged 12–36 months

received 2 servings).

5 days

Children:
52 children with

persistent diarrhea
(duration > 13 days but

<29 days); randomly
assigned to one of two
groups; yogurt (n = 25)

and milk (n = 27);
age 3–36 months

Clinical failure was
observed in 42% of

children receiving milk
and 14%

receiving yogurt.
Children consuming

yogurt gained weight
despite lower energy
intake, had less liquid

stools, and required less
oral rehydration solution

than children
receiving milk.

Boudraa et al., 1990 [128]

Yogurt prepared from
milk formulae

vs.
full-strength milk

formulae

Sc. thermophilus and
Lb. bulgaricus

120 mL/kg body weight
in seven divided

feedings
72 h

Children:
96 malnourished boys;
randomly assigned to

one of two groups;
yogurt (n = 47) and milk

(n = 49);
age 4–47 months

The treatment failure
rate was similar in

both groups.
Children who consumed

milk had more weight
gain at the end of the

study and after recovery.
Yogurt for malnourished

children with acute
diarrhea has no

significant clinical
benefit over milk.

Bhatnagar et al.,
1998 [129]
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Table 4. Cont.

Fermented Milk
Products Used Type of Bacteria Dose and Time of

Intervention Time of Intervention Study Population Effect References

Standard yogurt
vs.

Fermented milk with
yogurt cultures and

Lb. casei
vs.

Jellied milk
(control group)

L casei 1 × 108 CFU/mL
One of three products

125 g or 250 g according
to age

Three periods of
1 month, followed by

1 month without
intervention

Children:
287 children with acute
diarrhea over a 6-month

observation period;
mean age of

18.9 ± 6 months

The incidence of
diarrhea was not
different between

the groups.
The severity of diarrhea
significantly decreased

with the
supplementation of

L. casei fermented milk
compared with the

jellied milk.

Pedone et al., 1999 [130]

Pasteurized yogurt and
routine hospital care

vs.
Routine hospital care

(control group)

Lb. bulgaris 5 × 104 /mL
and Sc. thermophilus

5 × 104/mL
15 mL/kg/day Until hospital discharge

Children:
80 children with

moderate dehydration
and acute non-bloody,
non-mucoid diarrhea;
randomly assigned to

one of two groups;
yogurt (n = 40) and

control group (n = 40);
aged 6–24 months

Children receiving
yogurt observed a

reduction in the
frequency of diarrhea,

fewer days in the
hospital, and more

weight gain compared to
the control group.

Pashapour and Iou,
2006 [131]

Fluid yogurt prepared
from commercial yogurt

vs.
Lyophilized

Saccharomyces boulardii

1 × 107 CFU/100 mL of
Lb. bulgaricus and

S. thermophilus
(yogurt group)

Yogurt group:
15 mL twice a day for
children < 2 years and
30 mL twice a day for

children ≥ 2 years
Lyophilized

Saccharomyces boulardii
group:

250 mg twice a day in
children ≥ 2 years and
125 mg twice a day in

children < 2 years of age

Until the resolution of
the diarrhea

Children:
55 children with

diarrhea; randomly
assigned to one of two
groups; yogurt (n = 27)

and lyophilized
Saccharomyces boulardii

(n = 28);
age 5 months–16 years

The effect of yogurt was
comparable with that of

lyophilized
Saccharomyces boulardii in

the treatment of
acute diarrhea

Eren et al., 2010 [132]
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Table 4. Cont.

Fermented Milk
Products Used Type of Bacteria Dose and Time of

Intervention Time of Intervention Study Population Effect References

Ulcerative Colitis (UC)

Bifidobacteria-
fermented milk

vs.
control group

1 × 1010 CFU of
Bifidobacterium breve, and

Bifidobacterium bifidum,
and Lb. acidophillus

YIT 0168

100 mL/day 1 year

Adults:
21 patients with UC
remission; randomly

assigned to one of two
groups; study group

(n = 11), control group
(n = 10);

age 39–60 years

Significant reduction in
exacerbation of
symptoms after

bifidobacteria fermented
milk supplementation.

Reduction in the
percentage of Bacteroides

vulgatus and luminal
butyrate and good

recovery of probiotic
strains in the stools.

Increases in protein and
albumin levels.

Ishikawa et al.,
2003 [133]

Bifidobacteria fermented
milk
vs.

Fermented milk without
live bifidobacteria

(control group)

≥1 × 1010 CFU of
Bifidobacterium bifidum

strain Yakult and
Lb. acidophillus strain

100 mL/day 12 weeks

Adults:
20 patients with

active UC,
randomly assigned to

one of two groups; study
group (n = 10), control

group (n = 10);
mean age of 30.2 years

for the study group and
33.7 years for the

control group

Increase in probiotic
strains and butyrate in

the feces.
Improved clinical

activity index;
endoscopic activity

index and histological
scores compared to the

control group.

Kato et al., 2004 [134]
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Table 4. Cont.

Fermented Milk
Products Used Type of Bacteria Dose and Time of

Intervention Time of Intervention Study Population Effect References

Fermented milk product
(Cultura)

1 × 108 CFU/mL milk
Lb. acidophilus La-5 and

B. lactis BB-12
500 mL 4 weeks

Adults:
three groups: UC group
with ileal-pouch-anal-
anastromosis (n = 51,
mean of age 40 years),
familial adenomatus

polyposis with
ileal-pouch-anal-

anastromosis (n = 10,
mean of age 35 years)

and UC with ileorectal
anastromosis (n = 6,

mean of age 42 years)

Increased number of
lactobacillus and

bifidobacterium in the UC
patients with ileal-pouch-

anal-anastromosis and
remained increased one
week after intervention.

No significant changes in
blood tests (antinuclear

antibody and
antineutrophil

autoantibodies), fecal
fungi and fecal pH.

Laake et al., 2005 [135]

Fermented milk
products with

Bifdobacterium breve
strain Yakult

1 × 1010 CFU of
Bifidobacterium breve

Lb. acidophilus
and

1 × 109 CFU of
Lb. acidophilus

One pack (100 mL) of
commercial B. breve

strain Yakult
fermented milk

(Mil–Mil)

48 weeks

Adults:
195 Japanese patients

with quiescent UC; study
group (n = 98) and

placebo group (n = 97);
aged 20–70 years

Bifidobacterium breve
strain Yakult did not

affect the time to relapse
in UC patients compared
with the placebo group.

Matsuoka et al.,
2018 [136]

Irritable bowel syndrome (IBS)

Probiotic fermented
yogurt drink

vs.
Placebo (the same

product without lactic
acid fermented bacteria)

4 × 109 CFU of
Lb. sp. HY7801,

Lb. brevis HY7401, and
Bifidobacterium longum

HY8004

One bottle (150 mL) of a
probiotic yogurt drink,

3 times/day, within
10 min after breakfast,

lunch, and dinner

8 weeks

Adults:
74 IBS patients from the

Republic of Corea;
randomly assigned to

one of two groups; study
group (n = 37) and

placebo group (n = 37);
range age of 33 years

The amount of
Lactobacilli species,

which were included in
the yogurt drink,

significantly increased in
the feces of IBS patients

receiving treatment.
Serum glucose and

tyrosine levels in IBS
patients were

normalized to those of
healthy individuals in

the study group.

Hong et al., 2011 [137]
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Studies on the effect of supplementation with fermented milk products in children
with diarrhea have shown that they do not significantly affect treatment, as replacing milk
formulae with yogurts prepared based on milk formulae did not significantly affect the
course of diarrhea compared to children receiving milk formulae. However, some studies
have shown that the administration of yogurt with Lb. casei [130] or Lb. Bulgaris [131] may
reduce the frequency of diarrhea. It is worth noting that the studies mainly concerned
infants and children up to 3 years of age. There are currently no studies evaluating the
effect of fermented dairy consumption on the gut microbiota in adults with diarrhea. Most
studies lacked a detailed description of the patient’s diet, so subsequent studies should
collect a detailed nutritional history, which would allow for the possible determination of
failures in using fermented milk products. It is also worth considering research on an older
age group, where the gut microbiota is more stabilized.

The effect of fermented milk products on UC patients was varied, with some studies
confirming the effect of fermented milk products on reducing exacerbation symptoms, and
some showing no effect on the course of UC. Ishikawa et al. observed a reduced number
of Bacteroides vulgatus and luminal butyrate in fecal samples, as well as increased serum
protein and albumin levels [133]. Kato et al. observed numbers of Bifidobacterium breve
and B pseudocatenulatum while improving clinical parameters [134]. However, Laake et al.
found no changes in serum levels of antinuclear antibodies and anti-neutrophil autoanti-
bodies despite increasing numbers of Lactobacillus and Bifidobacterium in fecal samples [135].
Matsuoka et al. reported that 48 weeks of supplementation of fermented milk products
with Bifidobacterium breve and Lb. acidophilus did not affect relapse in UC patients, compared
to the control group [136]. These differences may relate to the use of different bacterial
strains, study duration, or the study groups (stage of disease, age, ethnicity), and to the
parameters used for assessment.

The IBS effect of fermented milk products is not well known. Based on the available
literature review, one randomized study determined the effect of consuming fermented
milk products on patients with IBS. Hong et al. showed that 8 weeks of supplementation of
yogurt drinks with Lb. sp. HY7801, Lb. brevis HY7401, and Bifidobacterium longum increased
Lactobacilli species in fecal samples, compared to the control group [137]. Interestingly,
this study suggests that elevated serum glucose and tyrosine levels in IBS patients may be
reversed by probiotic supplementation and play a role in the pathogenesis of this disease.

5. Conclusions

The consumption of fermented milk products may have a beneficial effect on the
microbial biodiversity of the gut microbiota, stabilize the gut microbiota in the elderly, and
support the treatment of dysbiosis. Based on current research, there is insufficient evidence
of fermented milk products’ beneficial effects on treating gastrointestinal diseases, such as
ulcerative colitis and irritable bowel syndrome. Although the results of studies evaluating
the effect of fermented milk products on the occurrence of diarrhea are very promising
(reduction in the frequency of diarrhea, fewer days in the hospital), the topic still requires
further research. Modulating gut microbiota with fermented milk products requires further
study to optimize the microorganism used, the dose, and the duration.

Fermented milk products rich in probiotics and postbiotics exert a beneficial effect
on gut microbiota and may be developed into functional food products with immune
modulating effects.
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