
Citation: Oliva, E.; Mir-Cerdà, A.;

Sergi, M.; Sentellas, S.; Saurina, J.

Characterization of Sparkling Wine

Based on Polyphenolic Profiling by

Liquid Chromatography Coupled to

Mass Spectrometry. Fermentation

2023, 9, 223. https://doi.org/

10.3390/fermentation9030223

Academic Editors: Claudia

Gonzalez Viejo and Sigfredo Fuentes

Received: 13 January 2023

Revised: 20 February 2023

Accepted: 23 February 2023

Published: 25 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fermentation

Communication

Characterization of Sparkling Wine Based on Polyphenolic
Profiling by Liquid Chromatography Coupled to
Mass Spectrometry
Eleonora Oliva 1,2, Aina Mir-Cerdà 1,3 , Manuel Sergi 4, Sònia Sentellas 1,3,5 and Javier Saurina 1,3,*

1 Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona,
E08028 Barcelona, Spain

2 Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100 Teramo, Italy
3 Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Recinte Torribera,

E08921 Santa Coloma de Gramenet, Spain
4 Chemistry Department, University La Sapienza, 00185 Rome, Italy
5 Serra Húnter Fellow, Generalitat de Catalunya, E08007 Barcelona, Spain
* Correspondence: xavi.saurina@ub.edu

Abstract: Polyphenols are phytochemicals naturally present in wines that arouse much interest in
the scientific community due to their healthy properties. In addition, their role as descriptors of
various wine qualities, such as the geographical origin or the grape variety, cannot be underestimated.
Here, Pinot Noir and Xarel·lo monovarietal samples belonging to the sparkling wine production
process have been studied, corresponding to base wines from a first alcoholic fermentation (plus
malolactic in some cases), base wines resulting from tartaric stabilization, and sparkling wines from a
second alcoholic fermentation aged for 3 and 7 months. One of the objectives of this paper is to obtain
valuable chemical and oenological information by processing a huge amount of data with suitable
chemometric methods. High-performance liquid chromatography coupled with ultraviolet spec-
troscopy and tandem mass spectrometry (HPLC-UV-MS/MS) has been used for the determination of
polyphenols in wines and related samples. The method relies on reversed-phase mode and further
detection by multiple reaction monitoring. Concentrations of relevant phenolic compounds have
been determined, and the resulting compositional data have been used for characterization purposes.
Exploratory studies by principal component analysis have shown that samples can be discriminated
according to varietal and quality issues. Further classification models have been established to assign
unknown samples to their corresponding classes. For this purpose, a sequential classification tree
has been designed involving both variety and quality classes, and an excellent classification rate has
been achieved.

Keywords: wines; phenolic compounds; HPLC-UV-MS/MS; data processing; principal components
analysis; classification

1. Introduction

Phenolic compounds are important phytochemicals naturally occurring in oenological
products such as musts and wines. Despite the great structural diversity, they are often
classified into various families, featuring phenolic acids, stilbenes, and flavonoids as
the most remarkable classes in grape-derived matrices. The basic structural skeletons
are depicted in Table S1 (Supplementary Material) , and additional descriptions can be
found elsewhere [1,2]. This large group of molecules exhibits remarkable antioxidant
attributes responsible for beneficial features such as anti-inflammatory, cardioprotective,
antineoplastic, or antimicrobial activities [1,3].

Beyond the well-known healthy properties, the role as descriptors of different food
features dealing with the geographical origin, botanical variety, agricultural practices, or
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fermentation processes cannot be underestimated [4,5]. Phenolic compounds are originally
present in the grapes, especially in peels and seeds, while the levels in pulp are lower.
Hence, the maceration process during the vinification is fundamental to lixiviate these
compounds from the solid matter to the must. In white and rosé wines, the maceration
is minimal (or very limited), so their phenolic content is significantly lower (up to 10- to
50-fold lower) compared to red wines. Regarding the family type, hydroxycinnamic acids
are mainly detected since they are widespread in the pulp, while anthocyanins or tannins,
which provide red color and astringency to the wine, are quite residual [6–8].

In recent years, several authors investigated the descriptive ability of polyphenols
to assess different wine features. Significant differences in compositional values were
found among grape varieties, such as among Agiorgitiko and Xinomavro [9], Chardonnay,
Macabeu, Xarel·lo, and Pinot Noir [10,11], Zweigelt and Rondo [12], Vranac, Kratosija,
and Cabernet Sauvignon [13], Gran Negro, Brancellao, Mouraton [14], Campania au-
tochthonous red grapes [15], and others [16,17]. Mono- and poly-varietal wines could also
be distinguished under analogous approaches relying on compositional differences [18].
The geographical origin and “Terroir” were other qualitative features addressed through
phenolic profiling. Some illustrative examples are mentioned as follows, such as the case
of Chinese [19], South America [20,21], Mendoza (Argentina) [22], Iberian Peninsula [23],
Aquitaine (France) and Rioja (Spain) [24], Spanish [5,25], Czech [26] wines. More compre-
hensive authentication studies were established considering varietal, geographical, and
vintage features simultaneously [27]. Based on data fusion approaches, in some cases,
phenolic profiling was combined with other sources of information, such as the elemental
composition [28–30], biogenic amines and amino acids [31], or organic acids [32] for a more
exhaustive description of wine samples. In general, in these examples, conclusions achieved
with the assistance of statistics and chemometrics allowed a more efficient extraction of the
underlying patterns.

In this paper, white and rose base wines and sparkling wines were analyzed to evaluate
the ability of polyphenols as variety and quality descriptors. Although varietal issues were
commonly addressed based on phenolics—various representative examples have been
cited above—to the best of our knowledge, the use of such data for quality assessment had
not been considered previously. The quantification of phenolic acids and flavonoids was
carried out by high-performance liquid chromatography-ultraviolet detection coupled with
tandem mass spectrometry (HPLC-UV-MS/MS). The complex multivariate nature of the
relationships between features and concentrations entailed that extracting the underlying
information was difficult. Hence, statistical and chemometric methods were required to
establish patterns to characterize and authenticate the wine samples. Conclusions were
drawn concerning the influence of varietal and quality wine features on the compositional
profiles and, despite the fact that no selective markers were found, some compounds were
up-expressed in some wine classes.

2. Materials and Methods
2.1. Chemicals and Solutions

All phenolic acids and flavonoids used were of analytical grade. Gallic, homogentisic,
protocatechuic, caftaric, gentisic, vanillic, caffeic, chlorogenic, syringic, ferulic, and p-
coumaric acids, and (+)-catechin, (−)-epicatechin, ethyl gallate, tyrosol, 4-hydroxytyrosol,
resveratrol, procyanidin B1, procyanidin B2, rutin, myricetin, quercetin, kaempferol, and
apigenin were purchased from Sigma-Aldrich (St. Louis, MO, USA). Pure stock standard
solutions were prepared at a concentration of 5000 mg L−1 using methanol (UHPLC-
Supergradient, Panreac ApplyChem, Castellar del Vallès, Spain) and dimethyl sulfoxide
(for analysis, 99.9%, Panreac ApplyChem, Castellar del Vallès, Spain) —for phenolic acids
and flavonoids, respectively. Stock solutions were stored at −18 ◦C. Formic acid (>96%,
Merck KGaA, Darmstadt, Germany), methanol, and water (Elix3, Millipore, Bedford, MA,
USA) were used to prepare the mobile phase components.
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For calibration purposes, standard solution mixtures at concentrations from 0.02 to
10 mg L−1 were prepared in methanol:water (1:1, v:v) and were stored at 4 ◦C until use.

2.2. Oenological Samples

Samples analyzed in this paper were kindly provided by Codorniu S.A. (Sant Sadurní
d’Anoia, Spain). They are monovarietal products summarized in Table 1, including base
wines, stabilized wines, and sparkling wines elaborated with a white grape (Xarel·lo)
produced in Penedès (Catalonia, Spain) and a red grape (Pinot Noir) from Conca de
Barberà and Costers del Segre (both from Catalonia, Spain). This range of wine products
is representative of the different steps in the elaboration of sparkling wines following
the traditional Champenoise method [10,33]. In more detail, monovarietal base wine,
either from Xarel·lo or Pinot Noir varieties, resulted from the first alcoholic fermentation
developed in stainless steel tanks at 15 to 18 ◦C. When necessary, malolactic fermentation
(MLF) was also applied to reduce the unpleased sour taste due to high levels of malic acid.
Subsequently, the monovarietal base wines were clarified and stabilized to avoid further
precipitation of tartrate salts, thus resulting in the so-called stabilized wines. The last step
consisted of the second alcoholic fermentation in the bottle. After that, samples aged in
contact with lees for 3 and 7 months were collected for analysis.

Table 1. Set of samples under study.

Sample Code Sample Type Grape Variety Quality

BWPA Base wine Pinot noir A

SWPA Stabilized wine Pinot noir A

3MPA Sparkling wine (3 months aged) Pinot noir A

7MPA Sparkling wine (7 months aged) Pinot noir A

BWPB Base wine Pinot noir B

SWPB Stabilized wine Pinot noir B

3MPB Sparkling wine (3 months aged) Pinot noir B

7MPB Sparkling wine (7 months aged) Pinot noir B

BWPC Base wine Pinot noir C

SWPC Stabilized wine Pinot noir C

3MPC Sparkling wine (3 months aged) Pinot noir C

7MPC Sparkling wine (7 months aged) Pinot noir C

BWPD Base wine Pinot noir D

SWPD Stabilized wine Pinot noir D

3MPD Sparkling wine (3 months aged) Pinot noir D

7MPD Sparkling wine (7 months aged) Pinot noir D

BWXA Base wine Xarel·lo A

SWXA Stabilized wine Xarel·lo A

3MPA Sparkling wine (3 months aged) Xarel·lo A

7MXA Sparkling wine (7 months aged) Xarel·lo A

BWXB Base wine Xarel·lo B

SWXB Stabilized wine Xarel·lo B

3MXB Sparkling wine (3 months aged) Xarel·lo B

7MXB Sparkling wine (7 months aged) Xarel·lo B

BWXC Base wine Xarel·lo C

SWXC Stabilized wine Xarel·lo C
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Table 1. Cont.

Sample Code Sample Type Grape Variety Quality

3MXC Sparkling wine (3 months aged) Xarel·lo C

7MXC Sparkling wine (7 months aged) Xarel·lo C

BWXD Base wine Xarel·lo D

SWXD Stabilized wine Xarel·lo D

3MXD Sparkling wine (3 months aged) Xarel·lo D

7MXD Sparkling wine (7 months aged) Xarel·lo D

Apart from winemaking aspects, products were classified into four qualities (here
coded as A, B, C, and D, with A being the top quality and D the lower one) according to
agricultural and vinification criteria. The initial classification of the products in the qualities
A, B, C, and D was carried out by expert oenologists to pre-establish the oenological,
sensory, and commercial possibilities of the future wines. In general, the highest quality
wines were likely to be aged for several years and generate very select products with a high
market value. On the other hand, qualities C and D were used to produce large volumes
of wines that can only be aged for a short time, from 9 to 18 months, and were marketed
at much lower prices. Briefly, the type of grape plantation (ecological or conventional),
the type of harvest and transport (manual for class A or mechanized for B, C, and D),
the vineyard productivity (ca. from 6000 for A to more than 10,000 kg per hectare for
D) were the factors that conditioned the quality assignation. In addition to the harvest
and transport, the pressure applied in the pressing to obtain the most was a fundamental
issue in the wine quality. The higher the pressure, the higher the production yield was
obtained, but the quality was lower since a stronger extrusion led to a higher proportion
of astringent compounds and unwanted acids. In addition, the sensory freshness of the
product diminished, and the aging possibilities were more limited. Moreover, MLF was
applied to wines of C and D qualities to improve the organoleptic features leading to
creamy flavors characteristic of high levels of lactic acid. Conversely, products of A and B
quality were not subjected to MLF, so they presented fresh and fruity flavors in the mouth.

2.3. Analytical Procedure

Wines and related samples were filtered with 0.45 nylon filters (Whatman, Clifton,
NJ, USA) and analyzed by HPLC-UV-MS/MS through the multiple reaction monitoring
(MRM) acquisition mode. This method was previously established and validated by Mir-
Cerdà et al. [34]. The chromatography equipment was composed of an Agilent 1100 Series
liquid chromatograph (Agilent, Technologies, Palo Alto, CA, USA) –equipped with a
vacuum degasser (G1322A), binary pump (G1312A), and autosampler (G1367A)– coupled
to an Applied Biosystems 4000 QTrap hybrid triple quadrupole/linear ion trap mass
spectrometer (AB Sciex, Framingham, MA, USA).

The chromatographic separation relied on reversed-phase mode (Kinetex C18 column,
150 mm length × 4.6 mm I.D, 2.6 µm particle size from Phenomenex, Torrance, CA, USA)
using 0.1% (v/v) formic acid aqueous solution and acetonitrile (ACN) as the components of
the mobile phase. The elution gradient was: 0 to 10 min, 3% to 15% ACN; 10 to 20 min, 15%
to 45% ACN; 20 to 22 min, 45% to 90% ACN; 22 to 24 min, 90% ACN; 24 to 24.2 min, 90%
to 3% ACN; 24.2 to 30 min, 3% ACN. The flow rate was 0.7 mL min−1, and the injection
volume was 5 µL. UV detection was performed in the spectral range from 190 to 400 nm.

Mass spectrometry with MRM mode was used for analyte confirmation and quantifi-
cation using the corresponding standards. The electrospray source operated in negative
mode at −2500 V at a temperature of 700 ◦C. Nitrogen used as nebulizer and auxiliary gas
was set at 20, 50, and 50 arbitrary units for the curtain gas, the ion source gas 1, and the ion
source gas 2, respectively. Declustering potential (DP), collision energy (CE), collision exit
cell potential (CXP), and ion transitions pairs were optimized elsewhere [34] (see Table S2



Fermentation 2023, 9, 223 5 of 12

in the Supplementary Material for detailed information). LC-UV-MS/MS chromatograms
were acquired and processed with Analyst 1.6.2 (AB Sciex, Framingham, MA, USA). For
quantitative purposes, standard solutions of each analyte.

Samples were analyzed randomly in triplicate. Quality control (QC) and blank samples
were measured every 10 samples. The calibration curve, prepared in the concentration
range from 0.02 to 10 mg L−1, was run at the beginning and at the end of the sample set.

2.4. Data Analysis

Statistical tests, ANOVA, and boxplots were performed using Microsoft Excel (Mi-
crosoft Corporation, Redmond, WA, USA), with α = 0.05 chosen as the significance level.
Multivariate studies for preliminary data exploration by Principal Component Analysis
(PCA) and sample classification by Partial Least Squares-Discriminant Analysis (PLS-DA)
were carried out with SOLO (Eigenvector Research, Inc., Manson, WA, USA). More in-
formation on the chemometric algorithms and possibilities in food characterization and
authentication can be found in the literature [35–37].

3. Results

Concentrations of remarkable phenolic acids and flavonoids occurring in the set
of samples were determined by the HPLC-UV-MS/MS method described in the exper-
imental section. This analytical method was previously developed and validated by
Mir-Cerdà et al. [34]. Samples were analyzed randomly in triplicate. QC and blanc solu-
tions were injected every 10 samples to check the method’s reproducibility and control
the carryover. Analytes were quantified using the calibration curve prepared with the
corresponding standard solutions, which were injected at the beginning and end of the
analyses. Table S3 in the Supplementary Material details the compositional profiles of the
samples under study.

Overall, caftaric acid was the most abundant compound, with concentrations generally
higher than 10 mg L−1, reaching values ca. 26 mg L−1 in some Pinot Noir wines. Other
hydroxycinnamic acids, such as coutaric, caffeic, and coumaric acids, were also remarkable,
with concentration values ranging from 0.2 to 3.5 mg L−1. The content of hydroxybenzoic
acids was lower. Gallic acid was the most representative molecule, occurring at concen-
trations between 0.2 and 1.6 mg L−1, while other detected compounds were present at
sub-mg L−1 levels (for instance, vanillic, syringic, 4-hydroxybenzoic, 3,4-dihydroxybenzoic,
and 2,5-dihydroxybenzoic). Regarding flavonoids, astilbin was found in concentrations
ranging from ca. 0.5 to 5 mg L−1. Other identified flavonoids generally occurring at
sub-mg L−1 levels were catechin, epicatechin, and procyanidin dimers.

The compositional profiles were moderately stable throughout the winemaking pro-
cess, from the base and stabilized wines to the sparkling wines obtained after a second
alcoholic fermentation in the bottle (e.g., 3-month and 7-month-aged sparkling wines). This
finding was confirmed by ANOVA, concluding that differences in the phenolic composition
between base, stable and sparkling wines were not significant (p-values > 0.05). In contrast,
it was found that polyphenolic profiles were highly dependent on product quality and
variety. For all compounds tested, both factors were statistically significant, as well as
their interaction.

In order to illustrate the significance of quality and variety on the phenolic concentra-
tion graphically, various representative examples are shown in Figure 1. In the case of gallic
acid, for instance, the amount found in the samples increased from high to low qualities. It
was also evidenced that, in general, Pinot Noir samples were richer than Xarel·lo ones. A
similar pattern was also identified for other phenolic acids and flavonoids (e.g., vanillic
acid, astilbin, catechin, or epicatechin). For other (di)hydroxybenzoic acids, contents also
increased with decreasing the quality, but differences between Pinot Noir and Xarel·lo
were not noticeable. The behavior of caftaric acid was more peculiar since the highest
levels were obtained for the samples of the best quality. As mentioned above, the full
compositional data are in Table S3 (Supplementary Material). Here, a heatmap is depicted
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with the average analyte concentrations for each type of sample to visualize globally the
compositional patterns (see Figure 2). Although no specific class biomarkers were found,
some concentrations were up-or down-regulated in some types of samples, so the data
would be a valuable source of information to characterize and authenticate this type of wine
samples. As can be seen in Figure 2, the greater the intensity of the red hue, the greater the
concentration of analytes, while white and pale colors indicate low concentrations. In line
with the previous comments, it can be seen that Pinot Noir is richer in phenolic compounds;
also, qualities C and D contain higher concentrations of the analytes. As exceptions to this
behavior, caffeic and caftaric acids are more abundant in quality A samples, and coumaric
and coutaric acids are over-expressed in the xarel·lo variety.
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The dataset, consisting of the compositional profiles of the phenolic acids and flavonoids
in the samples, is huge, and the potential relationships between variables and sample fea-
tures are often of multivariate nature. For this reason, extracting global information on
the potential role of polyphenols as the descriptors of wine quality or varietal issues is a
difficult task. However, chemometric methods for exploratory analysis and sample classi-
fication can deal with the multivariate nature of the compositional data, thus providing
more comprehensive and accurate information.

The dataset was preliminarily studied by PCA. The matrix dimension was 112 × 18,
with 112 being the number of 98 sample replicates plus 16 QCs and 18 the number of
target compounds under study. Data were autoscaled to equalize the influence of the
most abundant compounds (e.g., caftaric, gallic, caffeic and coutaric acids, astilbin, and
catechin) with those occurring at lower levels (e.g., syringic, ferulic, and 4-hydroxybenzoic
acids). PCA results are depicted in Figure 3. In agreement with previous exploratory
results, the distribution of samples in the space of the principal components (PCs), PC1
versus PC2 (Figure 3a), revealed patterns related to the variety and quality of wines. PC1
mainly described the sample quality, with the best quality to the left and the lowest to the
right. PC2 discriminated the samples according to variety, with Xarel·lo on the top and
Pinot Noir on the bottom sectors. Moreover, QCs were grouped in a compact group in the
center of the model, thus suggesting that data were highly reproducible throughout the
chromatographic sequence of analysis and supporting the soundness of the conclusions.
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The loading plot showed the distribution of phenolic compounds in the space of PCs
(Figure 3b). It was deduced that, in general, the highest qualities corresponded to the
poorest samples. Although there are no selective markers of quality or variety for this type
of product, it was interestingly observed that some compounds predominated in the Pinot
Noir variety (e.g., gallic, vanillic, and hydroxybenzoic acids, astilbin, and hydroxytyrosol)
while other were comparable or even more abundant in Xarel·lo (e.g., caftaric, coutaric,
and caffeic acids). All these sets of complex compositional differences were responsible for
the sample distribution commented on above.

Based on the natural trends confirmed from the boxplots, statistics, and PCA, further
studies were attempted to classify the wine samples according to quality and variety
attributes simultaneously using PLS-DA. For such a purpose, a preliminary model was
established considering varieties and qualities simultaneously, so eight classes were created.
Results shown in Figure 4 are similar to those from PCA except for the rotation of the axis
and the higher class discrimination by PLS-DA. Subsequently, an 8-class classification tree
was defined from which Pinot Noir vs. Xarel·lo types were first separated, as the principal
quantitative differences were due to variety. Then, within Pinot Noir and Xarel·lo classes,
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further divisions relied on quality, with D being the first dismembered class, followed by C,
and, finally, A and B classes were split apart. Quantitative results from this classification
process are summarized in Table 2. As can be seen, Pinot Noir vs. Xarel·lo samples could be
perfectly distinguished and assigned in both calibration and cross-validation steps, with a
100% of classification rate. In a similar way, the following classification models, once Pinot
Noir vs. Xarel·lo were separated apart, were also excellent, and only one misclassification
occurred among the cross-validation results since one C sample was confounded with a
D one.

Fermentation 2023, 9, 223 8 of 12 
 

 

were also excellent, and only one misclassification occurred among the cross-validation 
results since one C sample was confounded with a D one. 

 
Figure 3. An exploratory study of samples and variables by principal component analysis. (a) The 
plot of scores; (b) The plot of loadings. 

 
Figure 4. PLS-DA results considering varieties and classes simultaneously. (a) The plot of scores; (b) 
The plot of loadings. 

Table 2. Results from two-class classification models obtained by PLS-DA according to the 
classification tree. 

Model Number of 
LV 

Calibration Validation 
Sensitivity Specificity Sensitivity Specificity 

Pinot Noir vs. Xarel·lo 4 1 1 1 1 
Within pinot noir      
D vs. others 3 1 1 1 0.93 
C vs. others 3 1 1 1 1 
A vs. B 3 1 1 1 1 
Within Xarel·lo      
D vs. others 3 1 1 0.91 1 
C vs. others 3 1 1 1 1 
A vs. B 3 1 1 1 1 

Figure 4. PLS-DA results considering varieties and classes simultaneously. (a) The plot of scores;
(b) The plot of loadings.

Table 2. Results from two-class classification models obtained by PLS-DA according to the classifica-
tion tree.

Model Number of LV
Calibration Validation

Sensitivity Specificity Sensitivity Specificity

Pinot Noir vs. Xarel·lo 4 1 1 1 1

Within pinot noir
D vs. others 3 1 1 1 0.93
C vs. others 3 1 1 1 1
A vs. B 3 1 1 1 1

Within Xarel·lo
D vs. others 3 1 1 0.91 1
C vs. others 3 1 1 1 1
A vs. B 3 1 1 1 1

4. Discussion

It is well known that, in general, red wines are richer in polyphenols, mainly because
of the winemaking process. In the red vinification, the must maceration in contact peels,
seeds, brunch stalks, and other vine solids favors the lixiviation of polyphenolic substances
to the liquid to be fermented. In the white vinification, this contact is avoided as much as
possible, so the lixiviation is minimal, and the occurrence of polyphenols in the samples
comes from the squeezed pulp. Conversely, a short maceration process is performed in rosé
wines so that a small fraction of the skin and vine soluble components can pass into the
must. In this set of wines, Pinot Noir samples of C and D quality were intended to produce
rosé wines, and concentrations of phenolic molecules predominant in the peels and seeds,
such as flavonoids, increased correspondingly. This finding is clearly shown in Figure 1a,c)
for gallic acid and astilbin, respectively.

Apart from these differences attributable to the extraction yield depending on the
maceration process, the occurrence of up-expressed metabolites when comparing different
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wine varieties is a common trend. The influence of grape variety on the compositional
profiles of phenolic acids and polyphenols has been pointed out elsewhere in various recent
papers [9,11–13]. Anyway, specific class biomarkers are quite unusual.

In the study, selective varietal molecules have not been found either, but the differences
in the compositional profiles of Pinot Noir and Xarel·lo wines are statistically significant.
In general, Pinot Noir samples display higher concentrations of most of the analytes while,
as commented above, a reduced list of hydroxycinnamic acids is more characteristic of
Xarel·lo.

As a much more novel aspect to be highlighted, this work has also revealed interesting
correlation patterns between the wine quality and the polyphenolic composition. When all
the other oenological factors were maintained constant (i.e., for samples of the same variety
and type), a progressive increase in the phenolic content was observed with decreasing
quality, as shown in Figure 1. The only exception to this practice was for caftaric and caffeic
acids, reaching the highest concentration values for samples of top quality (A quality).
This apparently odd behavior could be explained as hydroxycinnamic acids are mainly
found in the grape pulp; hence, they were better preserved when the products were treated
under neat and careful conditions, as with the A quality. In contrast, the other phenolic
acids and flavonoids coming from skins, seeds, and other grape residues already started
their lixiviation towards the must during the harvest and transport to the cellar, when the
integrity of some grape berries was broken, and there was a release of juices to the medium.
This grape berry alteration increased with decreasing the product quality, and, reasonably,
the concentrations of released polyphenols increased from the best to the poorest qualities.
Accordingly, the concentration of gallic and vanillic acids, astilbin, and epicatechin, among
others, were higher in the products of lower quality.

The conclusions gained from boxplots and statistics were globally visualized by PCA.
Results proved that the phenolic composition was an excellent source of information to
address variety and quality issues. The unsupervised data analysis showed the natural
sample structuration and clustering, offering great possibilities for sample discrimination
according to these features. PC1 mainly captured the influence of the quality, with wines of
the best quality located to the left section and samples of lower quality distributed to the
right. Conversely, PC2 retained the data variance dealing with the variety since Pinot Noir
samples were mainly to the bottom and Xarel·lo samples to the top. Moreover, samples
sharing the same quality and variety attributes clustered together regardless of other
oenological aspects such as the wine type (base wine, stabilized wine, and sparkling wine)
and aging (3 and 7 months). This means that although a slight decay in concentrations of
the target phenolic acids and flavonoids was found, compositional differences throughout
the winemaking process were much lower than those associated with varietal and quality
attributes. Here, the analyte levels were maintained approximately constant from the first
to the second fermentation and aging, and the extent of oxidation, hydrolysis, and other
(bio)chemical reactions was limited.

Regarding the sample descriptors, the loading plot revealed that caffeic acid and
its derivative (caftaric acid) were more characteristic of high-quality wines. Despite not
being specific markers, the best samples displayed amounts significantly higher of these
molecules. In comparison, the rest of the compounds were unexpressed in C and D wines.
Pinot Noir and Xarel·lo wines were distinguishable from the levels of other phenolic species
such as vanillic, syringic, and gallic acids, and astilbin, which predominated in pinot noir.
Similarly, for instance, coutaric acid was more characteristic of Xarel·lo products.

The promising sample discrimination already achieved by PCA without imposing
any class supervision foresaw the great possibilities of this set of descriptors to conduct
classification and authentication studies. This expectation was confirmed by PLS-DA, in
which various illustrative cases were considered. Since the principal sample differences
were attributable to the grape variety, the classification of wines into Pinot Noir and Xarel·lo
was first assessed. All the samples were correctly assigned to their classes. Conclusions on
the variety markers agreed with PCA. Further classification studies attempted according
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to the classification tree approach provided excellent results in the sample assignation
according to qualities. Again, caftaric and caffeic acids were the principal markers of the
top quality.

5. Conclusions

This manuscript proposes a new approach to characterize and classify wine samples
based on polyphenolic profiling and chemometric methods for data processing. The quan-
titative information was efficiently interpreted based on principal component analysis and
partial least squares-discriminant analysis, and the main sample patterns were encountered.
Despite not being selective, some tentative quality descriptors such as caffeic and caftaric
acids and some varietal markers (e.g., gallic acid, vanillic acid, and astilbin for pinot noir,
and coutaric acid for Xarel·lo) were confirmed statistically since they were up-expressed in
the corresponding classes. The conclusions on the descriptive potential of phenolic acids
and polyphenols were based on a limited set of samples involving two grape varieties and
four wine qualities. Hence, the example developed is just a proof of concept, but they could
be generalized to cases dealing with other varieties and coupages. The results obtained are
promising and open up new opportunities to study the qualities of wine products using
polyphenolic profiles as a source of information. Likewise, the proposed approach can help
to distinguish and authenticate wine samples.
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www.mdpi.com/article/10.3390/fermentation9030223/s1. Table S1. Chemical structures of principal
families of phenolic compounds tentatively present in white wines. Table S2. MRM transitions for
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(PB), C-type Pinot Noir (PC), D-type Pinot Noir (PD), A-type XarelXarel·lo (XA), B-type XarelXarel·lo
(XB), C-type XarelXarel·lo (XC), and D-type XarelXarel·lo (XD).
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