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Abstract: The bioconversion of environmental wastes into energy is gaining much interest in most
developing and developed countries. The current study is concerned with the proper exploitation of
some industrial wastes. Cellulosic fiber waste was selected as a raw material for producing bioethanol
as an alternative energy source. A combination of physical, chemical, and enzymatic hydrolysis
treatments was applied to maximize the concentration of glucose that could be fermented with yeast
into bioethanol. The results showed that the maximum production of 13.9 mg/mL of glucose was
achieved when 5% cellulosic fiber waste was treated with 40% HCl, autoclaved, and followed with
enzymatic hydrolysis. Using SEM and FTIR analysis, the instrumental characterization of the waste
fiber treatment confirmed the effectiveness of the degradation by turning the long threads of the
fibers into small pieces, in addition to the appearance of new functional groups and peak shifting.
A potent yeast strain isolated from rotten grapes was identified as Starmerella bacillaris STDF-G4
(accession number OP872748), which was used to ferment the obtained glucose units into bioethanol
under optimized conditions. The maximum production of 3.16 mg/mL of bioethanol was recorded
when 7% of the yeast strain was anaerobically incubated at 30 ◦C in a broth culture with the pH
adjusted to 5. The optimized conditions were scaled up from flasks to a fermentation bioreactor to
maximize the bioethanol concentration. The obtained data showed the ability of the yeast strain to
produce 4.13 mg/mL of bioethanol after the first 6 h of incubation and double the amount after 36 h
of incubation to reach 8.6 mg/mL, indicating the efficiency of the bioreactor in reducing the time and
significantly increasing the product.

Keywords: bioethanol; bioreactor fermentation; cellulosic fiber waste; enzymatic hydrolysis;
physico-chemical treatments

1. Introduction

The growing human population entails the excessive use of fossil fuels, which signifi-
cantly complicates the global warming issue [1]. The growing increase in greenhouse gas
emissions from fossil fuels threatens nearly one million species at risk for extinction [2,3].
Fossil fuels are also seen as an unsustainable source of energy generation due to their
limited supply and active role in environmental damage [4,5]. The worldwide expanding
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population drives increased mass production, which necessitates the continuous search
for cost-effective and efficient alternative energy sources of a sustainable nature [6,7]. In
this regard, bioethanol production through microbial fermentation provides significant
benefits as a green and eco-friendly technology [8–10]. In addition to its biofuel applica-
tion, bioethanol can be applied as a precursor in synthesizing diverse industry-important
compounds, including diethyl ether, ethyl acetate, acetaldehyde, etc. [11].

On the other hand, lignocellulosic wastes account for 60 billion tons/year, which
emphasizes the great environmental challenges to agriculture and industrial wastes [6].
This high availability of cellulosic wastes taps the way for second-generation bioethanol
production, where hydrolyzed cellulosic wastes are the main source of fermentable sugars
in the bioethanol production process [6,12,13]. This direction represents a dual solution
for the lignocellulosic environmental impacts and cost reduction in bioethanol production.
Furthermore, a circular economy method can fulfill the general desire for the introduction
and development of eco-friendly and affordable technology [14]. When applied in biore-
finery, these procedures may include the manufacture of bioethanol from first- through
third-generation biofuels. Sustainable development strategies are used in international
accords and coalitions to help replace fossil fuels [10,15]. Due to the current competitive
economic market and environmental situation, recycling has recently become the most
crucial method for energy conservation, especially when using combined parameters or
techniques [16].

Waste materials are changed into chemical fuels and are easily turned into sustainable
energy using conversion technology. Thermochemical, biochemical, and biological pro-
cesses are the three basic categories under which biomass energy conversion technology
is categorized [17]. The textile industry produces enormous amounts of waste, both solid
and liquid, which have the potential to be converted into bioenergy. Bioenergy production
from textile waste is a relatively untapped area of research, even though many different
types of feedstock have become realistically exploited in recent years [2]. There has been a
lot of interest in the biorefinery strategy for large-scale biomass utilization that involves the
co-production of value-added goods and bioethanol [18]. Traditionally, large-scale biofuel
manufacturing facilities, or biorefineries, have relied on a centralized supply network. The
difficulty increases, though, when the technique must be consistent with the fluctuation
in biomass quantity [19]. Therefore, the current research is directed toward implement-
ing cellulosic fiber waste for bioethanol production through a locally isolated yeast. The
different approaches for waste hydrolysis and characterization were evaluated. Different
fermentation conditions were tested and optimized, on a lab-scale level, then upscaled to a
stirred-tank fermentation bioreactor for the efficient production of bioethanol.

2. Materials and Methods
2.1. Sample Collection and Preparation

Various cellulosic wastes were collected from different local textile companies in Egypt.
The cellulosic wastes mainly included residues from the textile fabrication process, collected
from textile fabrication factories in Borg Elarab, Amria, and the 6th of October cities through
the summer of 2020.

All of the collected samples were washed with distilled water (dH2O), dried at 50 ◦C
for 48 h. The dried cellulose samples were cut into small pieces to facilitate the hydroly-
sis processes.

2.2. Optimization of the Conditions Used for the Waste Hydrolysis
2.2.1. Screening of the Optimum Chemical and Physical (Physico-Chemical) Treatments

Several pretreatment strategies were evaluated for increasing the cellulosic waste
accessibility to hydrolysis according to [20]. The cellulosic wastes (1% w/v) were treated
separately with 50 mL of different acidic and alkaline solutions, including 20% (v/v)
HCl, 20% (v/v) H2SO4, 20% (v/v) H3PO4, 100% acetic acid, 5 M NaOH, or 5 M KOH.
Each cellulosic-waste mixture was treated in four different physical regimens, including
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autoclaving for 20 min (121 ◦C and 15 psi), microwaving for 5 min, sonication for 20 min
at 75 ◦C, or heating for 20 min at 100 ◦C. Figure 1 shows the flasks before and after the
above-mentioned treatment conditions for cellulosic waste.
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Figure 1. Cellulosic fiber waste (A), after chemical treatments (B), and after autoclaving (C).

2.2.2. Optimization of HCl Concentration

Based upon the results of using different hydrolysis techniques, the effect of of HCl
(5–40% v/v) in different concentrations were evaluated on cellulosic wastes according
to [21]. 1% of cellulosic waste was added to each concentration of HCl and autoclaved for
20 min at 121 ◦C and 15 psi. The liberated glucose was evaluated at 540 nm using a glucose
kit (Biosystem, Spain).
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2.2.3. Optimization of Cellulosic Waste Concentration

The concentration of cellulosic waste supporting maximum glucose production was
evaluated at different substrate percentages according to [22].

After determining the optimum acid concentration required for the maximization of
glucose production, different percentages of the cellulosic fiber wastes were prepared and
treated with the selected optimum acid concentration. For this purpose, the concentrations
of 0.2, 1, 2, 3, 4, 5, 6, and 7% (w/v) of the cellulosic fiber waste were treated with 40% (v/v)
HCl, followed by autoclaving at 121 ◦C and 15 psi for 20 min. The glucose concentration
of each concentration was determined using a spectrophotometric technique as shown in
Section 2.5.

2.2.4. Mixed Physico-Chemical and Enzymatic Hydrolysis

Different cellulase concentrations were applied to investigate the ability of enzy-
matic hydrolysis to boost the physico-chemical treatment results [23]. In brief, after
physico-chemical treatment, the pH of the mixture was adjusted to pH 5.5 using NaOH.
Different concentrations of cellulases (produced by Trichoderma reesei ATCC 26,921 with
≥700 units/gram concentration, Sigma-Aldrich, USA) with concentrations from 8.4 to
336 U were added separately and incubated at 50 ◦C under shaking (150 rpm) for 72 h. The
initial glucose concentration was determined before enzymatic hydrolysis, while the final
glucose concentration was determined at the end of the enzymatic hydrolysis process.

2.3. Characterization of the Cellulosic Fiber Waste

The morphological and chemical structure of the cellulosic fiber waste before and after
the hydrolysis process was investigated using SEM (JEOL JSM-6360LA, Japan) and FTIR
(Shimadzu FTIR-8400 S, Japan) analysis, respectively.

2.4. Yeast Isolation and Screening for Ethanol Production

Three different rotten fruits were used as sources for isolating yeast strains according
to [24] with some modifications. Briefly, 0.1 g of rotten apple, banana, or grape were
separately suspended in 10 mL sterile saline solution 0.9% (w/v) under aseptic conditions,
where 50 µL of each serially diluted sample was inoculated to YPG plates and incubated
at 30 ◦C for 48 h. After incubation, the growing individual colonies were aseptically
transferred to fresh YPG agar plates to insure purity.

A single colony of each purified yeast isolate was inoculated into 5 mL YPG broth
(pH 5.5) in sterile falcon tubes. The tubes were anaerobically incubated at 30 ◦C for 72 h
under static conditions. To ensure anaerobic cultivation, the inoculated tubes were insulated
with Parafilm. Using spectrophotometric procedures, glucose consumption and bioethanol
production were evaluated after 72 h [25].

2.5. Determination of Glucose and Bioethanol Concentration

The glucose concentration of all treatments mentioned above was determined using
the glucose determination kit (Biosystem, Spain) according to the instruction manual. The
potassium dichromate method was applied as a fast and reliable laboratory investigation
method to investigate the concentration of the produced bioethanol after each fermentation
experiment. At the beginning, each sample was centrifuged at 10,000 rpm for 10 min. After
centrifugation, 1 mL of each fermentation sample in addition to the control samples was
diluted with 4 mL of distilled water, followed by the addition of 1 mL of 5% (w/v) K2Cr2O7.
All of the tubes were incubated in an ice bath for 3 min before the addition of 1 mL of
concentrated H2SO4 via dropper. After 10 min of frequent manual shaking and incubation
at room temperature, the spectrophotometric absorbance of each sample was measured
at 660 nm against potassium dichromate/water blank. The ethanol concentration of each
sample was determined according to a previously prepared ethanol standard curve [23].
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2.6. Optimization of the Bioethanol Production Conditions

The various cultivation conditions affecting the isolated yeast using the sugars liber-
ated from the hydrolyzed fiber waste were evaluated toward maximum bioethanol pro-
duction. The initial glucose concentration of all experiments was adjusted to 6.42 mg/mL
unless other concentrations were mentioned.

2.6.1. Effect of Aerobic and Anaerobic Cultivation on Bioethanol Production

To evaluate the effect of oxygen on bioethanol production, a volume of 250 µL of
overnight culture of G4 isolate was inoculated into multiple tubes containing 5 mL of the
hydrolyzed cellulosic fiber waste at pH 5.5. Half of the tubes were covered by parafilm
to provide anaerobic conditions, while the other tubes were left open without cover. The
control tubes included the same internal components without adding the microbe. All of the
tubes were incubated at 30 ◦C for 72 h. After incubation, the glucose and ethanol concentrations
were determined, and the results were compared with the control measurements.

2.6.2. Effect of the Cultivation Temperature on the Bioethanol Production

A volume of 250 µL of G4 isolate pre-culture in YPG broth was added to 5 mL of
cellulosic waste hydrolysate in different sterile falcon tubes. All of the tubes were then
divided into replicates and anaerobically incubated at different temperatures of 25, 30, 35,
40, and 50 ◦C for 72 h, according to [26] with some modifications. At the end of incubation,
both residual glucose and the produced bioethanol concentrations were determined.

2.6.3. Effect of Medium pH on the Bioethanol Production

The fiber waste hydrolysate was dispensed into different falcon tubes with 5 mL each.
The pH of the tubes was separately adjusted to 3, 4, 5, 6, 7, 8, 9, and 10 in replicates using
NaOH pellets [27]. Each tube was then inoculated with 250 µL of an overnight culture of
G4 isolate, except the control tubes, which were kept un-inoculated. All of the experimental
and control tubes were incubated at 30 ◦C under anaerobic conditions for 72 h. Residual
glucose and bioethanol concentrations were spectrophotometrically determined at the end
of the incubation period.

2.6.4. Effect of Yeast’s Inoculum Size on Bioethanol Production

A total volume of 5 mL fiber waste hydrolysate (pH 5) was dispensed into different fal-
con tubes, followed by the inoculation of various inoculum sizes (0.5, 1, 3, 5, 7, and 10% v/v)
of an overnight culture of the yeast used, according to [28] with some modifications. All of
the tubes, including the un-inoculated controls, were incubated anaerobically at 30 ◦C for
72 h. The residual glucose and the produced bioethanol concentrations were investigated.

2.7. Conversion Yield

The conversion efficiency or theoretical ethanol yield (%) has been calculated according
to [2] as follows:

Bioethanol yield (g/g) of glucose =
Bioethanol concerntration

( g
l

)
Initial glucose concerntration

( g
l

) (1)

Conversion efficiency (%) =
EtOH
0.51

× 100 (2)

After all, the optimization conditions for waste treatment and bioethanol production
can be illustrated in Scheme 1.
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2.8. Molecular Identification of the Yeast Isolate (G4)
2.8.1. DNA Extraction

The yeast isolate G4 was submitted for DNA extraction using Quick-DNA™ Fun-
gal/Bacterial Miniprep Kit (Zymo Research, USA).

2.8.2. PCR of 23S rRNA Gene

After the extraction of DNA, PCR was performed using universal primers. COSMO
PCR red master mix was used with the addition of 1 µM of each primer and 1 µg of the
extracted DNA with nuclease-free water up to 50 µL. The PCR program was started with a
denaturation step at 95 ◦C for 2 min followed with 30 cycles of denaturation at 95 ◦C for
15 sec, annealing at 55 ◦C for 30 s, extension at 72 ◦C for 45 s, with a final extension step at
72 ◦C for 7 min. The obtained PCR product was submitted for purification and sequencing
(Sigma, Germany).
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2.8.3. Sequencing and GenBank Submission

The obtained sequence was compared with the other sequences deposited in GenBank
to identify the isolate at both the genus and species levels. The obtained sequence was
subsequently deposited in GenBank using a unique accession number.

2.9. Bioreactor Cultivation

The production of bioethanol from cellulosic fiber waste was scaled up from the
shaking flask scale to a bench-scale bioreactor using yeast-coded G4. The bioreactor
cultivation was carried out at a stirred-tank bioreactor (Bio flow 310, New Brunswick
Scientific, USA) with a glass vessel of 7 L. The bioreactor had a digitally controlled pH
electrode, a temperature probe, and a polarography-dissolved oxygen electrode (DO). The
ethanol production was conducted at a working volume of 3 L of waste hydrolysate with
an initial pH of 5.5. The yeast pre-inoculum was prepared in a YPG medium and incubated
at 30 ◦C for 24 h to a final OD600 of 0.6. Under aseptic conditions, the ethanol production
was initiated by inoculating the bioreactor with 7% (v/v) of G4 isolate and cultivating
at 30 ◦C under batch fermentation mode. For the first 6 h of cultivation, the agitation
speed was adjusted to 100 rpm through a stirred motor equipped with two sets of 4-bladed
Rushton turbine impellers to ensure good mass transfer. No oxygen was supplied during
fermentation and the initial oxygen concentration of the prepared waste was considered
100% DO saturation. Samples were withdrawn internally from the fermentation medium,
where ethanol accumulation and glucose consumption were evaluated.

It is worth mentioning that all of the experiments were performed in triplicates.

3. Results and Discussion
3.1. Determination of the Optimum Glucose Production Conditions
3.1.1. Determination of the Optimum Physico-Chemical Treatments

Screening for the best hydrolysis conditions of cellulosic fiber wastes into glucose
units was a critical step for proper progress throughout the study. A fixed 1% concentration
of the fiber waste was treated with different acidic and alkaline solutions, followed by
physical treatments. It was reported that both diluted and concentrated acids were used to
break the rigidity of lignocellulosic wastes, and HCl and H2SO4 were the most commonly
used acids [29]. Moreover, the acid or base concentrations used were previously applied for
treating multiple cellulosic waste products, such as using 10% acids for the pretreatment
of office paper waste [30], or 20% acid concentrations for the pretreatment of cardboard
waste [31].

The treatment results (Figure 2) indicated significant variation in the waste hydrolysis
level as indicated in the glucose concentrations attributed to the hydrolysis strategy. It was
previously reported that the liberation of glucose units from cellulosic wastes was type-
dependent, since strong chemical and physical treatments were required to treat some of
these wastes, while mild pretreatment conditions could be adequate for others [32]. Among
other applied hydrolysis solutions, acidic hydrolysis with HCl was the most significant,
especially when followed with autoclaving or boiling, with maximum final glucose con-
centrations of 1.57 and 0.97 mg/mL for the two treatments, respectively. The second-best
applied acid was phosphoric acid, which showed the liberation of 0.38 mg/mL glucose
units after hot plate treatment, followed by acetic acid and sulfuric acid, which showed
0.31 and 0.30 mg/mL glucose units after sonication treatments, respectively (Figure 2). On
the other hand, the water and alkaline treatments revealed insignificant waste hydrolysis
results at most physical treatments except boiling. It was claimed that the hydrolysis of
cellulosic wastes with acids was the most potent and favored treatment method [22]. The
obtained data were in accordance with [33], who reported that the diluted acids were suffi-
cient for the hydrolysis of cellulosic wastes and for removing their hemicellulose content.
Moreover, the autoclaving of the treated wastes was also considered a potent physical
treatment method as it depended on pressure and high temperature [34].
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Figure 2. Screening of the optimum combined chemical and physical treatments resulted in the
highest production of glucose units from cellulosic fiber wastes. F1, F2, F3, F4, F5, F6, and F7 are the
treatments of 1% fiber waste using d.H2O, 20% HCl, 20% H2SO4, 20% H3PO4, 100% acetic acid, 5M
NaOH, and 5M KOH, respectively.

3.1.2. Determination of the Optimum HCl Concentration

Based upon the high potency of HCl in cellulosic waste hydrolysis, the effects of
different HCl concentrations were evaluated. The obtained results (Figure 3) revealed that
the glucose concentration was gradually increasing in proportion to the HCl concentration.
As shown in Figure 2, the glucose concentration increased from 0.33 mg/mL to 1.71 md/mL
by increasing the HCl concentration from 5 to 35%, with the maximum glucose liberation at
40% HCl (2.02 mg/mL). The results were in line with other studies that reported the potency
of HCl for maximum sugar releasing from cellulosic wastes, yet the HCl concentrations
were varied, which could be attributed to different hydrolysis conditions and lignocellulose
characteristics [35].
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and 40% HCl, respectively.
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3.1.3. Optimization of Cellulosic Waste Concentration

Different cellulosic waste concentrations were evaluated for maximum glucose-releasing
potency. The results (Figure 4) revealed that increasing the cellulosic waste concentration
also increased the hydrolysis efficiency, as indicated in the final glucose concentration.
The glucose concentration gradually increased from 0.21 to 5.18 mg/mL, starting from
0.2 to 4% of the fiber concentrations. The maximum glucose concentration (5.7 mg/mL)
was recorded at 5% waste concentration (Figure 4). Any increase in waste concentration
beyond 5% slowed the hydrolysis process and resulted in a lower glucose concentration
(5.15 mg/mL at 7% waste). Our data were in accordance with studies in the literature,
which found that using higher substrate concentrations could enhance the operability of the
hydrolysis process, thus affecting the hydrolysis rate and augmenting the glucose yield in
the hydrolysates [36–39]. However, contrary to this, our results revealed that increasing the
substrate concentration to levels above 5% resulted in lower production of the glucose units,
which indicated that 5% was the optimum substrate percentage that could be hydrolyzed
using the above-mentioned physico-chemical conditions.
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Figure 4. Determination of the optimum cellulosic fiber waste concentration that results in the highest
production of glucose units after treatment with 40% HCl, followed by autoclaving. 1AF, 2AF, 3AF,
4AF, 5AF, 6AF, 7AF, and 8AF are 0.2, 1, 2, 3, 4, 5, 6, and 7% of the cellulosic waste, respectively.

3.1.4. Mixed Physico-Chemical and Enzymatic Hydrolysis

The enzymatic waste hydrolysis was evaluated upon the resulting optimum physico-
chemical conditions to enhance the hydrolysis results. Herein, the treatment of cellulosic
fiber wastes with 40% HCl followed by autoclaving generated 20.8 mg/mL of glucose,
which was considered as the initial sugar concentration. The enzymatic hydrolysis results
(Figure 5) revealed that the application of cellulases significantly increased glucose libera-
tion, especially with prolonged hydrolysis time. The glucose concentration increased from
10.9 to 13 mg/mL with increasing cellulases concentration from 8.4 to 42 U after 72 h of
hydrolysis. The maximum glucose concentration was detected at 168 U of cellulases after
72 h as 13.9 mg/mL. However, cellulase concentration above 168 U gradually decreased
the glucose concentration titer from 12.8 to 12.4 mg/mL using 210 and 336 U of cellulase
enzymes after 72 h of incubation, respectively. Mixed chemical or physical treatment
with enzyme hydrolysis was recently identified as an efficient and reliable approach for
lignocellulosic material hydrolysis, which was in line with the current results [5,40]. How-
ever, mechanical (such as a high-pressure water jet system) and enzymatic pretreatments
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were also performed [13]. On the other hand, some researchers valorized using lignocel-
lulosic wastes such as corncob pith as the raw material for the enzymatic production of
xylooligosaccharides without pretreatment [7].
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3.2. Waste Characterization
3.2.1. SEM

The micrographs of the cellulosic fiber waste were investigated before and after the
hydrolysis process. As shown in Figure 6, the untreated cellulosic fibers appeared as long
threads with smooth surfaces and no cracks. However, the fibers’ surface turned into an
edge with short, wrinkled threads after treatment.
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Figure 6. SEM micrographs of the treated and untreated cellulosic fiber waste, (A) untreated fiber
waste at 200× magnification, (B) untreated fiber waste at 300× magnification, (C) treated fiber waste
at 200×magnification, and (D) treated fiber waste at 300×magnification.
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According to the SEM micrographs shown, it could be concluded that these micro-
graphs provided a clear indication of the degradation of the treated wastes into smaller
units, which was in accordance with the data on liberated glucose measurements and
supports the principle of the hydrolysis of cellulosic wastes into shorter polysaccharide
chains using acidic and autoclaving treatments.

3.2.2. FTIR Spectroscopic Analysis

Infrared spectroscopy is currently one of the most important analytical techniques
available to scientists. It presents a relatively easy method for obtaining direct information
on chemical changes that occur during chemical treatments. FTIR analysis was conducted
to investigate the presence of different functional groups in the treated and untreated
cellulosic waste samples. Figure 7 presents the IR spectra of the cellulosic fiber waste before
and after hydrolysis. The spectra showed characteristic peaks at 1012, 1319, 1425, 1627,
2889, and 3274 cm−1, which referred to C-O-C stretching at the β-(1→4)-glycosidic linkages,
C-C, CH2 bending, C=O stretching of polysaccharides, C-H stretching, and OH groups
stretching, respectively, which demonstrated the higher intensity of the tested cellulosic
waste [41].
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The band at ~3500 cm−1 related to the stretching of the OH groups was narrower
and had a higher intensity for the hydrolyzed samples, which demonstrated that the
treated cellulosic wastes contained more –OH groups than in the untreated samples. The
absorption peak at ~1640 cm−1 proved the degradation of cellulose and was attributed to
the C=O stretching of polysaccharides, which increased in intensity after hydrolysis [42].

Another indicator of the degradation of polysaccharides during the chemical treat-
ments was the significant decrease in the intensity of the peak around 1015 cm−1, which
was related to the (-COC) glycosidic linkage in the polysaccharides. Moreover, the peak of
C-O-C shifted from 1012 to 1038 cm−1 with a low intensity, while (C=O) shifted from 1627
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to 1635 cm−1 with a higher intensity than the untreated fibers, which was due to the acid
hydrolysis process of the waste [43,44].

3.3. Yeast Isolation from Different Fruit Samples

The rotten fruits (apple, banana, and grape) that were tested were serially diluted in
sterile saline solution and spread over YPG agar plates to isolate yeast strains. The obtained
results showed the ability of some colonies with yeast-specific characteristics to grow over
the inoculated YPG plates. A colony on each plate was tested under the optical microscope
to investigate its shape and purity (Figure 8). Each colony was named according to its
isolation source as: Ap1 from the apple sample, B2 from the banana sample, and G4 from
the grape sample.
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3.4. Screening the Bioethanol Production Potential of Isolated Yeast

The three selected yeast isolates (Ap1, B2, and G4) were tested for their ability to
ferment glucose into bioethanol using YPG broth. As shown in Table 1, the three tested
yeast isolates revealed significant bioethanol production potentials in a range from 4.23 to
4.68 mg/mL. The obtained results showed that the highest produced bioethanol concentra-
tion was recorded as 4.68 mg/mL using the G4 isolate. However, slightly lower bioethanol
concentrations were recorded as 4.23 and 4.48 mg/mL in the B2 and Ap1 isolates, respec-
tively. Therefore, the current study selected the G4 isolate as the biochemical machinery
to produce bioethanol through the fermentation of the glucose units liberated from the
cellulosic fiber wastes.

Table 1. The concentration of bioethanol produced by Ap1, B2, and G4 yeast isolates after 72 h of
anaerobic incubation in YPG broth.

Sample Residual Glucose Conc. (mg/mL) Bioethanol Conc. (mg/mL)

AP1 0.16 4.48

B2 0.38 4.23

G4 0.11 4.68

3.5. Optimization of Bioethanol Production Conditions

The cultivation conditions of the selected yeast isolate (G4) on cellulosic fiber waste
were evaluated toward maximum bioethanol production conditions.

3.5.1. Effect of Aerobic and Anaerobic Fermentation

The selected yeast isolate (G4) was incubated under aerobic and anaerobic conditions
with the cellulosic fiber waste hydrolysate to determine which of these conditions was
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optimum for maximum bioethanol production. As shown in Table 2, the highest bioethanol
concentration of 4.68 mg/mL was obtained under anaerobic cultivation conditions. The
maximum produced bioethanol titer was 22% higher than that produced under aerobic
conditions (3.82 mg/mL). In the same line, the residual glucose concentration indicated
a higher glucose consumption under anaerobic conditions (2.22 mg/mL) compared to
aerobic cultivation (2.90 mg/mL), where the initial glucose concentration was 6.81 mg/mL.
The higher bioethanol production under anaerobic conditions was in line with the high
ability of the yeast cells to grow under anaerobic conditions, which were confirmed with
the glucose consumption results [45].

Table 2. The concentration of glucose and bioethanol concentration after 72 h of incubation of G4
yeast isolates with cellulosic fiber waste hydrolysate under aerobic and anaerobic conditions.

Conditions Residual Glucose Conc. (mg/mL) Bioethanol Conc. (mg/mL)

Aerobic 2.90 3.82

Anaerobic 2.22 4.68

3.5.2. Effect of Cultivation Temperature

The incubation temperature directly influenced the yeast growth rates and substrate
consumption [46]. Therefore, the selected G4 isolate was incubated at different tempera-
tures to investigate the effect on bioethanol production. The results (Figure 9) revealed
the significant impact of cultivation temperature upon glucose consumption, and hence
bioethanol production. At 25 ◦C, the results indicated 2.20 mg/mL of bioethanol with a
residual glucose concentration of 3.92 mg/mL. The elevation of the incubation temperature
to 30 ◦C increased the bioethanol production to 3.29 mg/mL with the lowest measured
glucose residue of 3.16 mg/mL. The higher temperatures (above 30 ◦C) adversely affected
bioethanol production, where the lowest bioethanol was at 50 ◦C about 1.79 mg/mL with a
residual glucose concentration of 5.25 mg/mL. The results were in line with the reported
optimum temperature for S. cerevisiae free cells around 30 ◦C [26,47].

Fermentation 2023, 9, x FOR PEER REVIEW 15 of 21 
 

 

Table 2. The concentration of glucose and bioethanol concentration after 72 h of incubation of G4 
yeast isolates with cellulosic fiber waste hydrolysate under aerobic and anaerobic conditions. 

Conditions Residual Glucose Conc. (mg/mL) Bioethanol Conc. (mg/mL) 
Aerobic 2.90 3.82 

Anaerobic 2.22 4.68 

3.5.2. Effect of Cultivation Temperature 
The incubation temperature directly influenced the yeast growth rates and substrate 

consumption [46]. Therefore, the selected G4 isolate was incubated at different tempera-
tures to investigate the effect on bioethanol production. The results (Figure 9) revealed the 
significant impact of cultivation temperature upon glucose consumption, and hence bio-
ethanol production. At 25 °C, the results indicated 2.20 mg/mL of bioethanol with a resid-
ual glucose concentration of 3.92 mg/mL. The elevation of the incubation temperature to 
30 °C increased the bioethanol production to 3.29 mg/mL with the lowest measured glu-
cose residue of 3.16 mg/mL. The higher temperatures (above 30 °C) adversely affected 
bioethanol production, where the lowest bioethanol was at 50 °C about 1.79 mg/mL with 
a residual glucose concentration of 5.25 mg/mL. The results were in line with the reported 
optimum temperature for S. cerevisiae free cells around 30 °C [26,47]. 

 
Figure 9. Effect of different incubation temperatures on the production of bioethanol with G4 yeast 
isolate and the determination of the residual glucose concentrations. 

3.5.3. Effect of Medium pH 
The effect of different pH values on the production of bioethanol using the G4 yeast 

isolate was also investigated. The residual glucose and bioethanol concentrations in the 
fermented cellulosic fiber hydrolysate are shown in Figure 10. The results indicated that 
the lowest measured bioethanol concentrations were at pH 3 and 4; 1.54 and 2.02 mg/mL, 
respectively. The elevation of the pH to 5 increased the glucose consumption rate to 0.10 
mg/mL and the bioethanol concentration to 3.69 mg/mL. Increasing the medium pH 
(above 5) gradually decreased the bioethanol production to 3.64 mg/mL at pH 6 and 1.94 

1

1.5

2

2.5

3

3.5

4

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

25 30 35 40 50

Bi
oe

th
an

ol
 C

on
ce

nt
ra

tio
n 

(m
g/

m
l)

Gl
uc

os
e 

Re
sid

ue
 (m

g/
m

l)

Temperature (c)

Glucose Residue (mg/ml) Biothanol Concentration (mg/ml)

Figure 9. Effect of different incubation temperatures on the production of bioethanol with G4 yeast
isolate and the determination of the residual glucose concentrations.
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3.5.3. Effect of Medium pH

The effect of different pH values on the production of bioethanol using the G4 yeast
isolate was also investigated. The residual glucose and bioethanol concentrations in the
fermented cellulosic fiber hydrolysate are shown in Figure 10. The results indicated that
the lowest measured bioethanol concentrations were at pH 3 and 4; 1.54 and 2.02 mg/mL,
respectively. The elevation of the pH to 5 increased the glucose consumption rate to
0.10 mg/mL and the bioethanol concentration to 3.69 mg/mL. Increasing the medium
pH (above 5) gradually decreased the bioethanol production to 3.64 mg/mL at pH 6 and
1.94 mg/mL at pH 10. Several studies reported an optimum pH for bioethanol production
between 5 and 5.5 using some food wastes [26,48]. Lower or higher pH values for S.
cerevisiae optimum ethanol production were also reported [49,50]. These results revealed
that the optimum pH for the highest bioethanol production using the G4 yeast isolate
was 5.
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Figure 10. Effect of different pH values on the production of bioethanol using G4 yeast isolate and
the residual glucose concentrations.

3.5.4. Effect of Inoculum Size

As the number of the inoculated yeast cells greatly affects the concentration of the
product during the fermentation process, different inoculum sizes of the G4 yeast isolate
were tested for their effect on bioethanol production using fiber waste hydrolysate. As
illustrated in Figure 11, increasing the yeast’s inoculum size resulted in an increase in
the produced bioethanol concentration to a certain limit, followed by a decline in the
bioethanol concentration. A gradual increase in the bioethanol concentration started from
0.5% yeast inoculum (1.28 mg/mL) to reach 2.81 mg/mL at the 5% inoculum size, with
a maximum bioethanol production of 3.16 mg/mL at the 7% inoculum size. It is worth
mentioning that the lowest glucose residue was measured when the 7% inoculum size was
used (0.66 mg/mL). On the other hand, increasing the inoculum size to 10% reduced the
bioethanol production to 3.01 mg/mL. In a similar study, Zhang et al. reported a 7% S.
cerevisiae inoculum size for maximum bioethanol production from raw sweet potato [51].
Depending on the obtained data, it could be concluded that after the optimization experi-
ments the conversion efficiency (%) according to Equations (1) and (2) was 42%.

3.6. Molecular Identification of G4 Isolate

The molecular identification of the yeast isolate using the amplification and sequencing
of 23S rRNA and the obtained sequence was submitted to GenBank in order to obtain a
specific accession number. The obtained data revealed that the isolate belonged to the genus
Starmerella and was identified as Starmerella bacillaris (STDF-G4). The obtained sequence
was deposited in GenBank under the accession number OP872748. The similarity of the
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yeast strain with other strains in GenBank could be represented in a phylogenetic tree
analysis using the MEGA 11.0 program as shown in Figure 12.
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Figure 11. Effect of inoculum size on the production of bioethanol using G4 yeast isolate and the
residual glucose concentrations.
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Figure 12. Phylogenetic tree of Starmerella bacillaris (STDF-G4) within the relative strains. The tree
was constructed using the Maximum Likelihood tree method with bootstrap values for 500 replicates
using the MEGA 11.0 program.
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3.7. Bioreactor Cultivation

The urgent need for new sustainable fuel sources forces the continuous research in
the valorization of lignocellulosic or cellulosic wastes into bioethanol to overcome their
environmental accumulation issues, in addition to providing an ecofriendly alternative
for current fuel sources [52,53]. In this regard, the cellulosic fiber waste potential for
bioethanol production was evaluated in a bench-scale bioreactor based upon the optimiza-
tion experiment results on shake flasks. The initial glucose concentration in the applied
waste (about 8 mg/mL) was sharply decreased in the first 36 h of fermentation to reach
about 0.2 mg/mL (about 98% of the total glucose). This rapid substrate consumption rate
(dS/dT of about −0.069 g/L/h) was proportionally related to yeast cell growth, where
after the first 6 h, about 2.15 g/L of yeast cells were detected and gradually increased to a
maximum (Xmax) of about 5.6 g/L at 36 h of fermentation with a growth rate (dX/dT) of
0.17 g/L/h. The bioethanol production was in line with the cell mass increasing, where
after the first 6 h, about 4.13 mg/mL of bioethanol was detected and gradually increased to
a maximum (about 8.6 mg/mL) at the same time (36 h) with a production rate (dP/dT) of
about 0.2 g/L/h (Figure 13). After 36 h, the glucose consumption rate was significantly de-
creased almost to zero, with an insignificant reduction in glucose content from 0.2 mg/mL
to 0.1 mg/mL within 108 h (from 36–144 h), where the yeast cells sustained a stationary
phase growth pattern. The ethanol production rate was in line with glucose consumption,
where after 36 h, the bioethanol was reduced by about 48% (from 8.6 to 4.48 mg/mL) at
144 h of fermentation (108 h after maximum production). These results were consistent
with [10], who reported that the Saccharomyces cerevisiae strain succeeded in fermenting
all of the reducing sugars in the food hydrolysate into bioethanol, yielding 0.43–0.50 g of
bioethanol/g reducing sugars after 120 h of fermentation.
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Figure 13. Batch fermentation profile for bioethanol production through locally isolated Starmerella
bacillaris (STDF-G4) using cellulosic fiber waste in a bench-scale bioreactor.

4. Conclusions

In the current work, the optimized conditions of using HCl, autoclaving, and enzy-
matic hydrolysis were applied to maximize the number of glucose units released from
the fiber waste to be used as the raw material for bioethanol production. The SEM and
FTIR investigations were used to confirm the degradation process and the liberation of
the glucose units. These glucose units were effectively fermented into bioethanol using a
yeast isolate identified with molecular tools as Starmerella bacillaris STDF-G4 with accession
number OP872748. The large-scale production of bioethanol in a bioreactor fermentor was
performed and resulted in the maximization of the product in a reduced time.
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