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Abstract: In this work, sugarcane vinasse combined with organic waste (food and wasted tea)
was demonstrated to be an excellent source of biomethane synthesis from carbon-rich biowaste.
The discarded tea trash might be successfully used to generate bioenergy. The uncertainties and
costs associated with experimental testing were recommended to be decreased by the effective use
of contemporary machine learning methods such as Gaussian process regression. The training
hyperparameters are crucial in the construction of a robust ML-based model. To make the process
autoregressive, the training hyperparameters were fine-tuned by employing the Bayesian approach.
The value of R2 was found to be greater during the model test phase by 0.72%, assisting in the
avoidance of model overtraining. The mean squared error was 36.243 during the model training
phase and 21.145 during the model testing phase. The mean absolute percentage error was found
to be under 0.1%, which decreased to 0.085% throughout the model’s testing phase. The research
demonstrated that a combination of wasted tea trash, sugarcane vinasse and food waste may be a
viable source for biomethane generation. The contemporary methodology of the Bayesian approach
for hyperparameters tuning for Gaussian process regression is an efficient method of model prediction
despite the low correlation across data columns. It is possible to enhance the sustainability paradigm
in the direction of energy security via the efficient usage of food and agroforestry waste.

Keywords: machine learning; optimization; sustainability; energy production; circular economy

1. Introduction

Biofuels are greener fuels derived from bio-based resources and waste biomass which
may be used to generate heat, power and fuel. With little modification, they may be
utilized as transportation fuels [1]. Their abundance in nature, low cost, cleanliness and
environmental friendliness have made biomass resources desirable [2,3]. Using thermal,
biological and physical processes, biomass waste may be transformed into energy. Biogas
is a common biofuel. Numerous nations give attention to the development of novel
methods for producing biogas from biomass and biowaste [4,5]. Biogas created through
waste biomass is believed to be the foundation of the future energy supply. Biogas can
replace traditional fuels to provide heat and electricity. Biogas is used in several fields,
including automotive applications, energy generation and the manufacturing of chemicals
and materials. In addition, secondary waste, which is a by-product of this process, is a
high-value crop fertilizer. The generation of biogas using anaerobic digestion (AD) has
substantial benefits over other bioenergy production methods [6,7].

Food waste has detrimental environmental and socioeconomic effects. At the envi-
ronmental level, when food waste is disposed of in landfills, a tiny amount of carbon in
the trash is stored, but massively unutilized methane emissions enhance global warming
prospects [8,9]. Furthermore, food waste disrupts the biogenic cycle by polluting the soil
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and water with pathogens that develop in it. Food security, food waste-related costs and
disdain for farmers’ efforts are all key socioeconomic implications to consider. According to
a World Commission on Environment and Development assessment, emissions and waste
management issues might lead to an environmental disaster. Furthermore, governments
have been firmly encouraged to articulate policies and coordinate measures via systematic
attempts to alleviate these issues. Due to their large populations, insufficient food sup-
ply systems and ineffective management, China, the European Union (EU) and India are
significant food waste-producing nations in the world [10–12].

Developing nations have more bioenergy production potential, allowing them to meet
energy needs while also producing renewable and sustainable sources of clean energy
fuels. Sustainable development, economic progress and environmental preservation are all
important objectives that may be reached by reusing garbage. Thus, the bioenergy potential
of agrifood waste contributes to the attainment of sustainable development goals (SDGs
7 and 13) since agriculture, food and their wastes may support the notion of a circular
bioeconomy and net-zero waste by 2030. The most important waste solution is to convert
agrifood leftovers into bioenergy. However, this requires a considerable initial investment
in order to deploy appropriate and cost-effective approaches [13–15]. Tea waste (TW) is
extensively employed in a variety of industries, including bioenergy generation, bioplastic
manufacturing, polymer (mono and hybrids) composites, electrodes for supercapacitors
and emission control applications. TW is a soil softener and can be used as a cultivation
fertilizer that may also be used to remove contaminants from wastewater [16].

An alternative method of recycling used tea leaves is anaerobic digestion, which
involves decomposing organic materials in the absence of oxygen. Biogas, the byproduct
of this process, is a viable energy source that has several applications, including but not
limited to thermal and electrical power generation. By combining them with other organic
debris, used tea leaves may be composted to provide a nutrient-rich soil amendment. This
may be used to boost plant growth and soil fertility [17,18]. The process of pelletization
involves drying and compressing leftover tea leaves into pellets, which may then be utilized
as a fuel source for both heating and generating energy. By burning used tea leaves in an
incinerator, we can generate both heat and energy. When producing energy on a big scale,
this method is often used. By heating used tea leaves in a low-oxygen atmosphere, a gas
mixture comprising hydrogen and carbon monoxide may be produced. This process is
called gasification. Power plants may utilize these gases as fuel. Biodiesel is made from
spent tea leaves, which may be used as a renewable alternative to fossil fuels such as diesel.
It is worth noting that some of these techniques may not be suitable for use in producing
energy on a modest scale without more study and development [19,20]. The environmental
effects of recycling used tea leaves should also be carefully considered. There has been
little research in the domain of the co-composting/indigestion of TW. Tea farming in India
spans around 5,79,000 acres, with an estimated annual tea yield of 857,000 metric tons,
contributing to 27.51% of the total global tea production. As a result, the total TW generated
from individual plants after the processing is approximately 190.4 k metric tons [13,19,21].

Composting is a bioconversion process that involves several different kinds of microor-
ganisms that decompose waste sourced from organic feed and alter it into a stable product
known as compost. The process of composting is an ecologically friendly way of managing
organic solid waste. Compost provides a significant market for agricultural regions and
polluted areas. The compost’s stability and maturity are critical for its intended usage. An
in-vessel composting approach is recommended because it reduces the requirements for
space and extended time, which are the two most significant drawbacks. Various chemicals
and earthworms may be used to improve the process efficiency and compost quality in this
approach [22,23].

Though almost all organic wastes may be composted, owing to their physicochemical
qualities, certain organic wastes can only be treated by co-composting. Co-composting has
several benefits, including changing the content of initial moisture as well as the ratio of C
to N, enhancing the efficiency of the process and enhancing the quality of the compost. As
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a result, research in recent years has focused on the co-composting of multiple biogenic
products together [24,25]. There has been a lot of study into the co-composting of various
organic wastes but not a lot of research on the co-composting of tea wastes as well as food
wastes. TW is a carbon-rich byproduct of the paper and pulp industry that is also called
lignocellulosic biomass. TW co-composting is seen as a waste recycling procedure that
is good for the environment. The final product could be employed as a soil amendment
or fertilizer. So, it is important to look into several composting methods for recycling tea
garbage [26,27].

Biomethane may be created from food waste and sugar cane vinasse via a process
called anaerobic digestion. First, the food waste and sugar cane vinasse are mixed and put
in a sealed container called a digester. The mixture is then heated to a temperature between
35 and 40 degrees Celsius, which produces an atmosphere that is conducive to the growth
of anaerobic bacteria [28,29]. Methane and carbon dioxide are produced as a result of the
breakdown of the organic materials in the mixture by the anaerobic bacteria. After this step,
the methane is collected so that it may be converted into a source of renewable energy. The
residual by-product, termed digestate, may be utilized as a fertilizer. It is worth mentioning
that this procedure may be carried out on an industrial size or a smaller basis, such as on a
farm utilizing a small-scale anaerobic digester [30,31].

Sugarcane vinasse is a byproduct of the sugarcane industry, and it can be used for
biomethane generation through anaerobic digestion. This process involves microorganisms
breaking down the organic matter in the vinasse in the absence of oxygen, producing
methane and carbon dioxide as well as a nutrient-rich residue that can be used as a fertilizer.
Biomethane can be used as a renewable source of energy for electricity and transportation.
However, the quality of vinasse can vary depending on the sugarcane milling process,
and it may require pre-treatment before being used for biomethane production [32,33].
Vinasse is the primary by-product during the ethanol manufacturing process, and it is
created primarily during the step of distillation. Due to its significant organic content,
strong potassium and sulfate levels, acidic and caustic characteristics and high pH, vinasse
is both corrosive and alkaline. The latter occurs as a result of activities associated with the
processing of the substrate for fermentation, such as the inclusion of sulfuric acid to control
pH and prevent yeast flocculation [34,35].

Sugars that have not undergone a complete transformation retain a significant portion
of their initial structure as well as their chemical makeup, which gives them a high fer-
mentable potential. These sugars, such as glucose and fructose, are very readily accessible
to enzymes and microbes, which enables them to break down and ferment the sugars
into other molecules, such as ethanol and carbon dioxide. In addition, it is possible that
these sugars have not been completely transformed by enzymes or other processes, which
means that they are still in a condition that is readily able to be broken down and fer-
mented [36,37]. Depending on whether the fermentable sugars used to make ethanol came
from juice, molasses or a combination of the two, three different types of sugarcane vinasse
may result from the industrial process. The rate of vinasse generation and fluctuations in
the chemical oxygen demand (COD) of the biodegradable organic element found in vinasse
are two indicators of this. These comprise organic acids, glycerol and sugars that were
not completely transformed throughout the alcoholic fermentation, as well as any ethanol
that was not recovered during distillation. The fermentation process leaves vinasse with a
naturally acidic pH, which might hinder anaerobic digestion if not neutralized [5,38,39].

The co-digestion of biowaste/food waste for biomethane generation is a complex and
nonlinear process. It depends upon several independent control factors. Hence, modeling
through conventional methods is a difficult task. However, modern machine learning tech-
niques can understand the pattern involved in the input–output paradigm of food waste/agro-
waste [40–42]. Hence, in the present study, a modern ML technique is examined to model,
predict and simulate the complex, nonlinear process of organic waste co-digestion.
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2. Materials and Methods
2.1. Waste Collection and Preparation of the Substrate

The raw sugarcane vinasse was acquired from a rural-based sugar mill located near
Delhi. Before use, the vinasse (raw) was refrigerated at −5 ◦C and analyzed following
the usual procedure to estimate its approximate content and chemical oxygen demand
(COD). The test substrate was watered down to a specific conc. of COD by mixing aqua
dest beforehand and adding it to the chemical reactor, while the pH value was attuned to
7 by supplying about 50 mL of sodium hydroxide to every 1 L of the test substrate. Active
methane-producing microbe inoculums are crucial for a quick and effective start-up of an
anaerobic digester. The inoculum employed in this study was obtained from a working
anaerobic digester based on cow manure, following a well-established procedure [36,43].
Before being supplied to the bioreactor, the inoculum was filtered to keep big particles out
of the system. The conventional approach was used to characterize the inoculum to find
the COD and volatile suspended solids. Solid tea waste (STW) is a potential waste from
an organic source that is readily accessible in food factories, roadside tea shops, hotels,
university campuses and practically all residences, particularly in India. STW is discarded
in the form of wet slurry on open land after use. Its open dumping does not pose any
great challenge or environmental hazard. However, in a circular economy, it is a waste
that should be used for potential energy production. This was mixed with finely chopped-
blended organic food waste collected from the hostel mess. The pigeon droppings were
added to the slurry. Experiments were carried out in a conventional pilot-scale anaerobic
digester. The pilot plant comprised a cylindrical digester with input and exit tanks and
was constructed from FRP. The gas dome was constructed from three-layer reinforced
fabric, consisting of high-tenacity rubberized nylon fabric covered with Hypalon on the
outside and neoprene on the inside. Two segments of the FRP digester were manufactured
and joined with a vertical junction on site. The junction was equipped with flanges with
holes, and the segments were joined using bolts, with a 4 mm-thick rubber seal placed
between the flanges to make the digester leak-proof. Table 1 depicts the properties of the
feedstocks at various SV and STW proportions. The produced samples were stored in 5 L
glass reactors with air-tight sealings. Figure 1 depicts the anaerobic digesters utilized in
this investigation. In general, the trials were carried out at mesophilic temperatures. Before
closing the digesters, all reactors were flushed with nitrogen for 10 min. A mechanical
stirrer was employed to stir the mixture at regular intervals. Before measuring the biogas
volume, each waste digester was physically stirred for 1 min twice a day.

Table 1. Feedstock’s properties.

Property Sugarcane Vinasse Spent Tea Waste Food Waste

COD 31.5, g/L 21.05 32.5, g/L
pH 4 6.7 5.45

Total N 0.56, g/L N – –
Ammoniacal N 0.04, g/L – –

TOC 20.14, g/m3 – –
Volatile solid 45.84, g/m3 – –

C/N 12.36 – –
TS, % – 5.65% 13.14%

COD: chemical oxygen demand; pH: power of hydrogen; C/N: carbon/nitrogen.
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Figure 1. Biomethane digester.

2.2. Soft Computing Method for Simulation Modeling
2.2.1. Gaussian Process Regression

Carl Friedrich Gauss first developed the idea of a Gaussian process. The number of
possible measurements for a Gaussian process is infinite, as is the case with other normal
distributions. One method of machine learning that employs the kernel analysis of models
is the Gaussian process [44,45]. In other words, it provides a workable method of studying
kernel machines. During the fitting phase of a Gaussian Process Regressor, the kernel’s
hyperparameters are optimized by maximizing the log-marginal-likelihood using the past
optimizer. There is a random variable set with a joint normal distribution for all finite
components. The Gaussian process l has two main functions: the average function m(x)
and the function of kernel n (z, z’) (x). This approach incorporates the recompilation of the
target variable in addition to the other attributes (where generalization is permitted) to
facilitate the selection of a suitable noise level. Data gaps may be filled in using the global
mean or mode. Binary characteristics are the translation of nominal qualities. If the kernel
being utilized complies with Cached Kernel standards, kernel processing will be turned
off [46–48]. A simple description of GPR is appended:

The GPR method is a form of a supervised non-parametric ML technique. The GPR
is an outstanding technique based on the kernel system for training an implicit kind of
data patterns for a large number of variables, making it especially well suited for handling
challenging issues in nonlinear forecasting. The outcome ‘O’ of the function ‘f ’ with the
control factor ‘x’ in the case of forecasting problems in GPR can be represented as [49–51]:

Oi = f (xi) + ∂i; where ∂ ∼ N
(

0, ∅∂
2
)

(1)

The expression f (x) is intended to represent the type of a random variable distributed
depending on a certain GPR. Estimating the output of the function at many input positions
can assist in reducing uncertainty regarding f. The terms are always influenced by a noise
term that indicates their characteristic volatility. The data being assessed are shown in
Equation (1) [52,53]:

Z = (xi, yi) and i = 1, 2, 3, . . . , n.

Assume that xi and yi are scalar data, and ∂i is arbitrary and regularly distributed
randomized inaccuracies having an average value of ∂i = 0 and a variance of ∂2. Consider
the fact that the measured yi

′
s values (y1, y2, y3, y4, . . . , yn) T are predetermined type
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values of the f (.). As a result, yi
′
s comprises a joint-type Gaussian distribution, as shown in

Equation (2) [54,55]:

y = [y1, y2, y3, y4, . . . , yn]
T ∼ N

(
p(x), K +∅2.I

)
(2)

p(x) represents the average of vector p(). I is the unitary matrix, whereas K signifies
the covariance matrix (n × n) with the (i, j)th term Kij = k(xi, yi).

The ML technique GPR was implemented in the MATLAB program using suitable
customization for this investigation. For tuning, a large variety of factors were explored,
together with the kind of layers, the kernels and the activation function. The choice of the
hyperparameters influences the efficacy of any ML method. In hyper-parameter tuning and
grid or random search, evolutionary-type techniques are often used [56,57]. A significant
number of function evaluations are required for these strategies. Figure 2 depicts the
schematics of GPR.

Figure 2. Schematics of GPR.

2.2.2. Bayesian Approach for the Optimization of Hyperparameters

A Bayesian optimization (BO) is a substitution approach to modeling and finetuning
a complicated function for fitness by reducing the number of real function evaluations
required. For closed-form equations in which the objective function is unknown but the
data at sample values are known, the test method, which is grounded on Bayesian interpre-
tation and Gaussian processes, may be of assistance [58,59]. BO seeks to identify optimal
validation error-minimizing hyperparameters. BO uses constraints to determine the op-
timal value of a scalar goal function f (x). The function can be stochastic or deterministic,
meaning that it may produce a range of results when assessed around the identical point
x. The variables making up x might be string representations of names, actual values or
unbounded integers [60,61].

The BO approach was employed in the present study for the optimization of the
hyperparameters employed in the creation of prediction models. In the event of noise
deviation, the sigma indicates the initial value for the constructed model. The MSE was
utilized as a criterion for model selection, with k = 5. It can be employed to decrease
a ′Y′ such that Y : X → R, while X ∈ Rz, where XRz. At a time-increment step ‘t’ and
location x t, the noisy function can be expressed. It may be written [62,63]:

y = f (xt) + ∂i (3)

∂i signifies the measurement noise in this context.
This technique employs a Bayesian-based prediction framework. In that way, the

results of previous iterations are used to calculate the values for the following iteration.
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Therefore, it might be more efficient than an arbitrary choice in developing the standard
location. The principle can be phrased as follows:

p
(

t
k

)
=

p
(

k
t

)
p(t)

p(k)
(4)

The preceding probability is denoted by p(t), the proof by p(k), the probability function
by p(k/t) and the Bayesian probability by p(t/k). Here, the function of acquisition—a
parameter of the proxy model—is employed to select the next best place to assess. Those
interested in finding a proven method may go to the current literature and find that
Bayesian optimization is among them. Figure 3 depicts the BAO-based GPR flow chart.

Figure 3. BOA-GPR flow chart.

2.2.3. Statistical Evaluation of the Prediction Model

A comprehensive set of statistical indicators was used in this study to explore the BOA-
GPR’s efficacy as a predictive tool. The coefficient of determination (R2), mean absolute
percentage error (MAPE), mean squared error (MSE) and root mean square error were used to
estimate the efficacy of the forecasts generated by the recommended prognostic models. The
values of R2 should be as near to one as possible [64,65]. It is recommended that the MAPE be
lower than 10%. The following phrase was used to arrive at these values for the indices.

R2 = 1−
(

∑n
i=1
(

xo − xp
)2

∑n
i=1(xo − xm)

2

)
(5)

MAPE =
1
n ∑n

i=1

∣∣∣∣ xo − xp

xa

∣∣∣∣× 100 (6)

MSE = ∑n
i=1

(xo − xp)
2

n
(7)

RMSE =

√
∑n

i=1

(xo − xp)
2

n
(8)

Herein, the total terms are ′n′, ′i′ denotes the term under consideration, ′x′o represents
the observed values, the predicted values are shown with ′x′p and ′x′m is the mean of the
observed values.



Fermentation 2023, 9, 120 8 of 14

3. Results and Discussion
3.1. Data Analysis
3.1.1. Kendall’s Rank of Correlation

Kendall’s correlation is a non-parametric technique for determining the connection
between ranking data columns. Tau’s coefficient yields 1 for the highest correlation between
two columns and 0 for the lowest correlation. Kendall’s rank correlation gives a measure of
independence and a gauge of the intensity of the dependency between two variables that
is not dependent on the distribution. Even if Spearman’s rank correlation is sufficient for
evaluating the null hypothesis of isolation between two factors, it is not easy to understand
when the null hypothesis is rejected. This is because the null hypothesis was assumed
to be true. Kendall’s rank correlation adds to this by indicating the level of dependence
that exists between the variables that are being considered [66]. In the present study, the
parameters with a high correlation are depicted with red fonts. It was observed that a
strong correlation exists between the percentage of vinasse as well as food waste % and
biomethane production, as shown in Figure 4. The contribution of both vinasses, as well as
food waste, is equally ranked, followed by the organic loading rate (OLR) and hydraulic
retention time (HRT).

Figure 4. Kendall’s rank of correlation.

3.1.2. Pearson’s Correlation Matrix

Pearson’s technique, in contrast to Kendall’s, employs a linear method of correlation
to demonstrate linear correlation from the perspective of parametric analysis. It shows
the direct effect of parameters on the correlations among columns in a time series. The
correlation heatmap for R is shown in Figure 5. Figure 5 complements the results of
Kendall’s rank analysis, as observed by the R values of vinasse and food waste, which were
found to be numerically the same.
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Figure 5. Correlation heatmap.

3.2. Model Prediction of Biomethane Yield

The ML technique GPR was used for the model prediction in this study. The training
hyperparameters were optimized using the Bayesian approach for improved results. The
five-fold cross-validation was used to prevent model overtraining and generalization. An
autoregressive approach using the Bayesian approach was employed, and the model was
trained using the least MSE as an optimization criterion. The training progress is shown in
Figure 6. The details of hyperparameters and their finetuned settings are listed in Table 2.

Table 2. Training hyperparameters’ environment and optimized settings.

Hyperparameter Hyperparameter Range Set of Optimized Hyperparameters

Preset Bayesian approach –
Number of iterations 30 –
Acquiring function Potential improvements per second

Time limit for training False
Functional basis function Constant, Zero and Linear Zero
Signal standard deviation 19.93

Sigma value 0.0001–281.76 0.00013

Kernel function

Non-isotropic: Quadratic Rational, Matern 3/2
and 5/2, Squared Exp

Isotropic: Quadratic Rational Squared Exp,
Matern 3/2 and 5/2.

Isotropic Matern 3/2

Scale of Kernel 0.045–45 0.9792
Standardization True, False False

The created model was validated by applying it to the experimental data to assess
how well it performed. Figure 7 presents the results of the BOA-GPR-based model’s
performance. Figure 7 demonstrates that the model had satisfactory results. A reliable
model may be inferred from the fact that the majority of the data points lie on the line that
provides the greatest fit. Table 3 presents the results of the statistical analysis performed on
the model. According to the numbers that are shown in the table, the statistical values will
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improve when the model is put through its testing phase as opposed to while it is being
trained. During the model test, the values of the correlation coefficient improved, whereas
inaccuracies in the forecasting model decreased, suggesting that the model is capable of
robust generalization.

Figure 6. Model training progress.

Figure 7. Model’s performance.
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Table 3. Model’s efficiency and errors.

Statistical Indices Validation Test

R2 0.9478 0.9547

MSE 36.243 21.145

RMSE 6.0202 4.598

MAPE 0.1% 0.085%

The values of errors in the prediction data over the entire range of operations are
shown in Figure 8. It can be observed that, except for a few points, the errors were quite
low. The higher values of correlations and the low errors indicate that the BOA-GPR-based
model is a robust prognostic model.

Figure 8. Errors in prediction values.

4. Conclusions

The sugarcane vinasse mixed with organic waste (food and spent tea) was employed
in the present study for biomethane synthesis from carbon-rich biowaste. The uncertainties
reduction and cost in the experimental testing were proposed to be reduced by the effective
implementation of modern machine learning techniques, i.e., Gaussian process regression.
The training hyperparameters play a significant role in the development of a robust ML-
based model. The training hyperparameters were finetuned with the Bayesian approach to
make the process autoregressive. The following are the main outcomes of the study:

# Fivefold cross-validation helped in the prevention of model overtraining, as the value
of R2 was observed to be higher during the model test phase by 0.72%.

# The mean squared error during the model training phase was 36.243, which was
reduced to 21.145 during the model test process.

# The mean absolute percentage error was observed to be only 0.1% which was reduced
to 0.085% during the test phase of the model.
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The study showed that the modern technique of the Bayesian approach for hyperpa-
rameters tuning for Gaussian process regression is an effective method of model prediction
despite the poor correlation among data columns.
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