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Abstract: High production cost is one of the major factors that limit the market growth of polyhydrox-
yalkanoates (PHAs) as a biopolymer. Improving PHA synthesis performance and utilizing low-grade
feedstocks are two logical strategies for reducing costs. As an oleaginous yeast, Y. lipolytica has a
high carbon flux through acetyl-CoA (the main PHB precursor), which makes it a desired cell factory
for PHB biosynthesis. In the current study, two different metabolic pathways (NBC and ABC) were
introduced into Y. lipolytica PO1f for synthesizing PHB. Compared to the ABC pathway, the NBC
pathway, which includes NphT7 to redirect the lipogenesis pathway and catalyze acetoacetyl-CoA
synthesis in a more energy-favored reaction, led to PHB accumulation of up to 11% of cell dry weight
(CDW), whereas the ABC pathway resulted in non-detectable accumulations of PHB. Further modifi-
cations of the strain with the NBC pathway through peroxisomal compartmentalization and gene
dose overexpression reached 41% PHB of CDW and a growth rate of 0.227 h−1. A low growth rate
was observed with acetate as the sole source of carbon and energy or glucose as the sole substrate at
high concentrations. Using a co-substrate strategy helped overcoming the inhibitory and toxic effects
of both substrates. Cultivating the engineered strain in the optimal co-substrate condition predicted
by response surface methodology (RSM) led to 83.4 g/L of biomass concentration and 31.7 g/L
of PHB. These results offer insight into a more cost-effective production of PHB with engineered
Y. lipolytica.

Keywords: acetate; gene dosage effect; acetoacetyl-CoA synthase; compartmentalization; substrate
inhibition

1. Introduction

The increasing dependence on plastics has led to the generation of large amounts of
plastic waste. This underscores the urgent need for biodegradable material as a sustainable
replacement for petroleum-based plastics [1]. There are various alternatives to fossil-fuel-
derived plastics, such as polylactic acid (PLA), bio-polyethylene, polyhydroxyalkanoates
(PHAs), and protein-derived bioplastics [2]. PHAs are a promising option due to several
advantages and special characteristics. For instance, these polymers have elastic and crys-
talline properties similar to petroleum-based plastics such as polystyrene and polyethylene.
Their glass-to-rubber transition temperature (Tg) is commonly lower than 0 ◦C, and their
melting point (Tm) is higher than 120 ◦C in most cases. PHAs’ tensile strength is generally
higher than 20 Mpa [3]. These characteristics qualify PHAs as a potential replacement for
common plastics in the packaging industry.

Among different types of PHAs, polyhydroxybutyrate (PHB) is a naturally occur-
ring polymer produced by many different bacterial and archaea species. The recognized
advantages and special characteristics of PHB include sustainability, biocompatibility (non-
toxic), biodegradability, versatility (using injection molding, extrusion, and film blowing as
conventional techniques in plastic processing), customizability (possibility of modifying
characteristics such as flexibility, tensile strength, and degradation rate), good resistance to
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UV radiations, and insolubility in water. It is therefore considered to be one of the most
promising alternatives for the current plastic market [4], with different applications ranging
from food packaging to textiles, cosmetics, and biomedical implants.

Some microbial species that are widely studied as natural producers of PHB include
Cupriavidus necator (formerly Ralstonia eutropha), Azotobacter vinelandii, Aeromonas hydrophila,
and Pseudomonas putida [5]. To be a suitable microbial PHB cell factory, the selected species
preferably has the following properties: first, it should be a generally recognized as safe
(GRAS) microorganism; second, it should be a fast-growing organism with significant
PHB accumulation; and third, it should be able to use different and low-cost substrates [6].
However, among the PHB natural producers, very few have all these characteristics.

These challenges relying on natural PHB producers have led to various attempts using
the genetic modification of some robust GRAS microbial cell factories such as Saccharomyces
cerevisiae, Pichia pastoris, Corynebacterium glutamicum, Yarrowia lipolytica, and Zymomonas
mobilis [7]. Among these potential cell factories, Y. lipolytica is uniquely advantageous for
PHB biosynthesis. In addition to being a GRAS microorganism, Y. lipolytica grows relatively
fast with a doubling time of 1.7 h [8] and can be cultivated at various scales. Such a fast
growth can avoid bacteriophage attacks at industrial levels. Moreover, Y. lipolytica inhibits
tolerance to inhibitors and pH stresses, and forms filamentous cells at a late growth stage
that facilitate gravity separation [9].

Y. lipolytica is an oleaginous yeast with considerable potential for producing different
biochemicals on nutrient-limited media. Y. lipolytica has a high flux through acetyl-CoA.
This makes it a desired cell factory for molecules that require acetyl-CoA as an interme-
diate. These products include TGs, carotenoids, fatty acid derivatives, organic acids, and
PHAs [10]. To use its unique characteristics, some efforts were made to genetically mod-
ify Y. lipolytica to produce PHB. Generally, two strategies have been used to design PHB
biosynthesis pathways in Y. lipolytica. First, the ABC pathway consists of three genes: phaA,
phaB, and phaC. As a result of applying the ABC pathway from Ralstonia eutropha to Y.
lipolytica, Li and colleagues successfully produced PHB at up to 10.2% of cell dry weight
(CDW) when utilizing glucose as a substrate [11]. The second strategy, however, is to
introduce only the phaC gene, because other PHB precursors, such as acetoacetyl-CoA,
are naturally synthesized by Y. lipolytica. Using this strategy, in another study, the phaC
gene from Pseudomonas aeruginosa contained a PTS1 peroxisomal signal introduced to Y.
lipolytica. It resulted in an mcl-PHA accumulation of up to 5% of CDW [12]. Similar results
were observed by Rigouin and colleagues using the mutagenesis of the phaC enzyme (with
E130D, S325T, S477R, and Q481M mutations), which led to an mcl-PHA accumulation of
25% of CDW (w/w). This study showed that specific mutations in PhaC can enhance the
PHA titer and increase the length of the produced polymer, or a combination of both effects,
when expressed in bacteria [13].

Despite all these efforts, the modified strains still have a low PHB titer, which is the
major bottleneck in the scale-up process. A main reason for this is that Y. lipolytica has a
robust flux toward the lipogenesis pathway, which leads to a high lipid accumulation rather
than an accumulation of PHB [14]. Therefore, harnessing the lipogenesis pathway toward
PHB precursors seems to be an effective strategy to increase the PHB titer in Y. lipolytica.
Studies of redirecting malonyl-CoA (the main intermediate for fatty acid synthesis) into
PHB biosynthesis showed a higher PHB titer in mesophyll cells compared with the ABC
pathway in sugarcane. The NBC pathway (including the NphT7, phaB, and phaC genes)
redirects the lipogenesis pathway to PHB biosynthesis by catalyzing the condensation
reaction of malonyl-CoA to acetoacetyl-CoA. In contrast to PhaA, which conducts the
condensation reaction reversibly, NphT7 catalyzes the condensation reaction irreversibly,
resulting in a higher accumulation of PHB [15].

The compartmentalization of enzymes into organelles is a promising strategy for
limiting metabolic crosstalk and improving pathway efficiency. Indeed, the main concern
in microbial metabolic engineering for optimizing production in modified strains is con-
trolling such crosstalk between the high flux of the introduced pathway and the native
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metabolic pathways in the host cell. This challenge could be addressed in eukaryotic cells
by partitioning introduced pathways into membrane-bound subcellular organelles. An
organelle should import heterologous enzymes in order to compartmentalize heterologous
metabolic pathways. Peroxisome is primarily involved in the β-oxidation of long-chain
fatty acids, which leads to a high acetyl-CoA flux in this organelle. As a result, peroxisomes
may be a potential organelle for compartmentalizing the NBC pathway in order to redirect
lipogenesis towards the accumulation of PHB. To import proteins from the cytosol, the
peroxisomal matrix generally uses one of the PTS1 or PTS2 targeting signals recognized by
its receptor proteins. Most proteins import into the peroxisome via the PTS1 tag, which
consists of serine-lysine-leucine (SKL) amino acids at the carboxy-terminus [16].

Another bottleneck in producing PHB from modified Y. lipolytica is selecting a cost-
effective and sustainable substrate for large-scale fermentation. Indeed, several efforts
have been made to develop PHB biosynthesis using metabolically engineered Y. lipolytica
strains. In most cases, glucose is used as a substrate. Also, several studies showed glycerol
as another preferred substrate for producing biodiesel by Y. lipolytica [17].

However, there are many other substrates to consider as glucose and glycerol alter-
natives. These substrates should be considered not only due to their low cost but also
for other benefits such as sustainability and better conversion to products of interest [18].
Acetic acid and other organic acids derived from waste material are among the promising
candidates. Although acetic acid inhibits many microorganisms, including E. coli and
S. cerevisiae, Y. lipolytica, on the other hand, can readily uptake it as a substrate. This ability
of Y. lipolytica to tolerate relatively high concentrations of volatile fatty acids (VFAs) makes
it possible to utilize a variety of wastes by converting these wastes into VFAs through aci-
dogenic fermentation (the VFA route) and utilizing them as substrates for Y. lipolytica [19].
Incorporating waste as feedstock to produce biodegradable plastics would provide the
most sustainable solution to the plastic production dilemma [20]. Using acetic acid (a major
form of VFAs) as the only carbon source will, however, not satisfy the industrial demand
for rapid PHA production. The main reason for this deficiency is the unbalanced reductive
agents (as NADPH) and energy carriers (as ATP) produced during the metabolic pathway
of acetic acid [21]. Compared to VFAs, glucose showed a noticeably higher growth rate and
biomass productivity. Consequently, co-substrate utilization (glucose and VFAs) has been
proposed as a reliable, efficient, and viable method of producing PHAs [22].

In the current study, the ABC and NBC pathways were introduced into Y. lipolytica.
The resulting strains were compared for PHB biosynthesis. After assessing the efficiency
of each pathway on PHB production, the gene dosage effect and compartmentalization
strategies were implemented to further enhance the PHB titer. Also, a co-substrate strategy
was implemented using acetate as a cost-effective substrate supplemented with glucose.
The strategy was evaluated for the effect of each substrate and their mix on growth rate
and biomass PHB content. These results led to an optimized co-substrate medium for
PHB production using the engineered strain. It is expected that this study will provide
significant insights into the metabolic engineering of Y. lipolytica for PHB biosynthesis.

2. Materials and Methods
2.1. Strain Construction

The auxotrophic strain Y. lipolytica PO1f (ATCC MYA-2613) was chosen as a microbial
host for the introduced pathway. E. coli DH5α was employed for cloning the genes and
amplifying the constructed shuttle vectors. To develop constructs, single genes were
amplified using PCR and cloned by cloning vectors in E. coli. R. eutropha genomic DNA was
used as a PCR template for the phaA, phaB, and bktB genes. Pseudomonas sp. and Streptomyces
sp. genomic DNA were used for amplifying the phaC1437 and NphT7 genes, respectively.
Table 1 shows the primers used for PCR reactions. Cloned genes were assembled in E. coli–
Y. lipolytica shuttle vectors. Assembled cassettes included genes, biomarkers, and both
well-characterized promoter (TEF1, GPM, and FBA) and terminator (XPR2, OCT1, and
LIP1) elements. In the next step, the existence of the target genes within the expression
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cassettes and the integration of the constructed expression cassettes into the Y. lipolytica
genome were verified with colony PCR and markers.

Table 1. Oligonucleotides used as primers.

Primers Sequences (5′–3′) GC (%) Length (Mer) Molecular Mass (Da)

phaA-F CCCGGGTTACTTTCTCTCGACGGCC 64 25 7560.9
phaA-R AAGCTTATGACCGACGTGGTGATCGTGTCC 53 30 9238.1

phaB-F CCCGGGAGAGTCGACCTGCAG-
TTAGCCCATGTGC 65 34 10,444.8

phaB-R AAGCTTATGACCCAGCGAATCGCCTAC-
GTCACC 55 33 10,027.5

phaC1437-F CCCGGGTTATCGCTCGTGGACGTAAGTGCC 63 30 9215.0

phaC1437-R AAGCTTATGTCTAACAAGTCTAACGAC-
GAGC 42 31 9512.3

NphT7-F CCCGGGTTACCACTCAATCAGGG-
CAAAGGAAGC 58 33 10,141.6

NphT7-R AAGCTTACTGATGTGCGAT-
TTCGAATTATTGGAAC 37 35 10,800.1

bktB-F AAGCTTATGACCCGA-
GAGGTGGTGGTCGTGTCCGG 60 35 10,884.1

bktB-R CCCGGGTTAAATTCGTTCGAAGATGGC-
GGCAATGCC 56 36 11,101.3

phaC1437-SKL-F AAGCTTATGTCTAACAAGTCTAACGAC-
GAGCTGAAGTACC 43 40 12,297.1

phaC1437-SKL-R CCCGGGTTACAGCTTAGATCGCTCGTGG-
ACGTAAGTGCCAGG 60 42 12,971.4

To cultivate and screen the transformed E. coli for constructed plasmids, Luria Broth
(LB) medium (5 g/L yeast extract, 10 g/L Bacto tryptone, and 10 g/L NaCl) at 37 ◦C was
used with ampicillin as a marker. Synthetic yeast nitrogen base (YNB) media consisting of
20 g/L glucose as the carbon source at 28 ◦C was used for screening the transformed PO1f
host strain. Transformants were selected on a defined medium containing 6.7 g/L YNB
without amino acids. In each step, the medium was supplemented with 0.77 g/L CSM-Ura
(complete supplement mixture minus uracil, US-Biological, USA), 0.67 g/L CSM-leucine,
and 0.3 g/L hygromycin [11,23,24] glucose, based on the introduced vector.

Y. lipolytica wild-type strains cannot synthesize PHB naturally. However, there are
two common strategies for introducing the PHB biosynthesis pathway to non-natural PHB
producer organisms. To evaluate the efficiency of these pathways in Y. lipolytica, two vec-
tors were designed for expressing the ABC pathway and NBC pathway. These expression
cassettes contained fragments (promoters, terminators, and other regulatory elements).
The only difference was that the ABC cassette contained the phaA gene, which expressed
β-ketothiolase (pZX22), while the NBC cassette contained the NphT7 gene (pZX30). The
list of constructed vectors used in this study is provided in Table 2, along with the pro-
moter and terminator used for each gene and the copy number of heterologous genes in
recombinant strains.

To obtain the final strain, Y. lipolytica PO1f was transformed by introducing the NBC
pathway genes: phaB (from R. eutropha); phaC1437, which is a mutant of phaC encoded by
Pseudomonas sp.; and the NphT7 (acetoacetyl-CoA synthase) gene from Streptomyces sp. [11].
The modified strain was subjected to sequential transformations using integrative vectors.
These modifications include increasing the copy number of NBC pathway genes [25]. Also,
the bktB (β-ketothiolase) gene from R. eutropha was introduced to the modified strain to
catalyze the condensation of acyl-CoA and acetyl-CoA into 3-ketoacyl-CoA molecules for
copolymer synthesis in the modified strain [26].
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Table 2. Development of gene constructs with shuttle vectors for biosynthesis of PHB.

Plasmids Plasmid
Backbone

Selective
Marker

Genes Cassettes (Promoter–
Gene–Terminator)

Recombinant Strains
Gene: Copy Number

pZX22
(NBC Pathway)

pZX30 (ABC
Pathway) PHB32

pCV35 pJN34 Leucine
PTEF-NphT7-TXPR2,

PGMP-PhaC1437-TOCT1,
PFBA-PhaB-TLIP1

ph
aB

:1
,p

ha
C

14
37

:1
,N

ph
T7

:1

ph
aA

:1
,p

ha
B:

1,
ph

aC
14

37
:1

ph
aB

:3
,p

ha
C

14
37

:2
,N

ph
T7

:2
,p

ha
C

14
37

-S
K

L:
1,

bk
tB

:1

pCV88 pJN34 Uracil
PTEF-NphT7-TXPR2,

PGMP-PhaC1437-TOCT1,
PFBA-PhaB-TLIP1

pCV342 pJN44 Hygromycin
PTEF1N-PhaB-TXPR2, PTEF1N-

PhaC1437_SKL-TXPR2,
PTEF1N-bktB-TXPR2

pZX22 pBR322 Leucine
PTEF-NphT7-TXPR2,

PGMP-PhaC1437-TOCT1,
PFBA-PhaB-TLIP1

pZX30 pBR322 Leucine
PTEF-PhaA-TXPR2,

PGMP-PhaC1437-TOCT1,
PFBA-PhaB-TLIP1

To compartmentalize PHB synthesis in peroxisome organelles, PHB synthase was
tagged with SKL tripeptide at its C-terminal [16]. Figure 1A shows the constructed pathway
map. These vectors are named pCV35, pCV88, and pCV342, which are shown in Figure 1B–D,
respectively [27,28]. During a sequential transformation, Y. lipolytica PO1f was integrated
with pCV35 (PTEF-NphT7-Txpr2, PGMP-PhaC1437-Toct1, PFBA-PhaB-Tlip1, and leu2 maker),
and the resulting strain was transformed with the linearized plasmid, pCV88 (PTEF-NphT7-
TXPR2, PGMP-PhaC1437-TOCT1, PFBA-PhaB-TLIP1, and ura3 maker). This strain was subjected
to future transformation by the linearized plasmid pCV342 (PTEF1N-PhaB-Txpr2, PTEF1N-
PhaC1437_SKL-Txpr2, PTEF1N-bktB-Txpr2, and hph marker). Therefore, there were two copies
of PhaC1437, one copy of PhaC1437_SKL, two copies of NphT7, two copies of PhaB, and one
copy of bktB in Y. lipolytica PHB32 as the final strain.

2.2. Cultures for Y. lipolytica Cultivation and PHA Production

Inoculants were prepared from single colonies in 25 mL of YPD medium containing
10 g/L yeast extract, 20 g/L peptone, and 20 g/L glucose (dextrose) and incubated for
48 h at 28 ◦C with 150 rpm agitation. YNB medium was used for cell growth and PHB
production in flask experiments. The YNB medium contained 1.7 g/L YNB without AA
and 5 g/L NH4Cl. Seven different levels of glucose (0, 5, 10, 20, 50, 100, and 150 g/L)
and five different levels of sodium acetate (0, 10, 20, 50, and 100 g/L) were tested as
substrates. Then, 250 mL flasks were inoculated with 0.5% (v/v) of prepared seed of the
engineered strain and incubated at 28 ◦C for 96 h. To produce PHB in the fermenter, a
1 L bioreactor was employed. The base medium was YPD, and the bioreactor operated at
optimum concentrations of glucose (50 g/L) and sodium acetate (20 g/L). The bioreactor
was inoculated with 1% (v/v) prepared seeds, and fermentation was performed at 28 ◦C
at a constant pH of 7. After 24 h of batch culture with increased cell concentration, the
bioreactor was switched to fed-batch culture. YPD containing glucose and sodium acetate
was continuously injected into the bioreactor during this phase. This fed-batch system
was maintained with glucose and sodium acetate at their optimum concentrations for 48 h.
Filtered air was sparged into the bioreactor at a flow rate of 2.5 L/min. To maintain the
air saturation at 20%, flat blades were used with an adjusted agitation rate between 150 to
500 rpm.
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Figure 1. (A) Designed pathways (ABC and NBC) for producing PHB from acetyl-CoA as the main
precursor. In ABC pathway, PhaC catalyzes a reversible reaction for condensing two acetyl-CoA
molecules to produce acetoacetyl-CoA, while in NBC pathway, acetoacetyl-CoA is synthesized during
an irreversible reaction catalyzed by NphT7. (B) Map of pCV35 shuttle vector containing NphT7,
phaC1437, and phaB genes; LEU as auxotrophic biomarker; TEF, GPM, and FBA promoters; and XPR2,
OCT1, and LIP terminators. (C) Map of pCV88 shuttle vector having similar genes, promoters, and
terminators as pCV35, with URA3 as auxotrophic biomarker. (D) Map of pCV342 shuttle vector
containing phaB, phaC1437-SKL, and bktB genes; hygromycin as antibiotic biomarker; TEF promoter;
and XPR2 terminator.

2.3. Growth Rate and PHB Content Analysis

To detect and quantify the growth rate of the engineered strains, the optical density
(OD) of the culture at 600 nm was used to determine the cell dry weight (CDW). To measure
the intracellular PHB content, 2 mL of culture was centrifuged at 5000× g for 5 min. Then,
the pellets were washed with deionized water and dried at 55 ◦C overnight. The dried
biomass was digested using a methanolysis solution containing 97% methanol and 3%
H2SO4, 18M (v/v) to determine PHB content [11]. During the transesterification reaction,
PHB polymers were monomerized to butanoic acid, 3hydroxy-, and methyl ester.

As a brief description, 1.5 mL of methanolysis solution and 3 mL of chloroform were
added to each sample and then incubated at 95 ◦C for at least 6 h. After cooling the samples
to room temperature, 1.5 mL deionized water was added to each sample, which created
two layers. The upper layer contained water, methanol, and hydrophilic cell components,
and the lower layer contained chloroform and hydrophobic cell components, including
digested PHB (Figure 2). The separated chloroform layer was analyzed by an Agilent 7890A
gas chromatograph (Santa Clara, CA, USA) equipped with an HP-5MS 30 m × 250 µm ×
0.25 µm column. It was coupled with a 5975C mass detector. The temperature was held
at 40 ◦C for 3 min, then ramped from 40 ◦C to 280 ◦C at 10 ◦C min−1 and held for 10 min.
A standard curve was drawn using an external standard (which includes 20, 10, 5, 2, and
1 mg/mL of PHB in chloroform). By eliminating the drying step, the described method
was used to prepare the external standards.

2.4. Statistical Analysis

For each designed experiment, data were collected from three biologically independent
experiments. SAS® 9.4M7 software was applied to analyze the experimental data and
calculate parameters such as mean value, standard deviation, and standard errors. Also,
to evaluate the synergistic effects of both glucose and sodium acetate and the effects of
their high concentrations on Y. lipolytica growth and PHB content, the response surface
methodology (RSM) analysis was performed [29]. RSM analysis was conducted via the
SAS RSREG procedure [30]. For statistical analysis, linear, second-degree polynomials and
quadratic models were applied to describe the relationship between the input variables and
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the responses. Two-factor ANOVA analysis was conducted to determine the interaction
of two independent variables (glucose and sodium acetate) on the responses (growth
rate and PHB content). Using the SAS GML procedure, the F-value was calculated to
detect interactions between the variables. In this analysis, two factors were considered
as cross factors, and a completely randomized design (CRD) was used for evaluating the
interactions between these two factors.
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3. Results
3.1. Metabolic Pathway Design

A comparison of the results of the ABC pathway (Figure 3A) and NBC pathway
(Figure 3B) showed that redirecting the lipogenesis pathway toward PHB production
using the NBC pathway is a more effective strategy. As Figure 3C shows, cultivating
the transformed PO1f strain with the pZX30 vector (in YPD media with 30 g/L glucose)
led to an accumulation of PHB up to 11% of CDW. However, there was no detectable
PHB synthesis in the transformed strain with the pZX22 plasmid. Therefore, the NBC
pathway was selected as an efficient design for PHB biosynthesis in Y. lipolytica. One
reason for the high efficiency of the NBC pathway in Y. lipolytica is the high carbon flux
toward the lipogenesis pathway in this yeast. This characteristic resulted in the significant
synthesis of malonyl-CoA as a main intermediate in fatty acid production [31]. Introducing
NphT7 redirects the Y. lipolytica metabolic pathway from lipogenesis to producing more
acetoacetyl-CoA as a PHB precursor. However, no natural replicative vectors (episomes)
have been observed in Y. lipolytica. Therefore, to make impermanent the expression of ABC
and NBC pathways in this yeast, chromosomal centromere (cEN) fragments were added to
the constructed plasmids (pZX22 and pZX30) [32].
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Figure 3. (A) Map of pZX22 vector containing ABC pathway; (B) map of pZX30 vector containing
NBC pathway; (C) comparing biomass concentration and PHB accumulation in modified Y. lipolytica
strains using ABC and NBC pathways.

The enzymatic reactions employed to catalyze acetoacetyl-CoA synthesis are the
main difference between these pathways. Acetoacetyl-CoA synthesis is usually catalyzed
by acetoacetyl-CoA thiolase via the condensation of two acetyl-CoA molecules [33]. In
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the ABC pathway, phaA, phaB, and phaC are involved in PHB biosynthesis. PhaA (β-
ketothiolase) catalyzes the acetyl-CoA condensation reaction to produce acetoacetyl-CoA as
a precursor for PHB biosynthesis [11]. However, McQualter and colleagues [15] found that
using the acetoacetyl-CoA synthase instead of a β-ketothiolase enhances PHB production
in transgenic sugarcane. Their study showed that introducing the NBC PHB pathway
(containing NphT7, phaB, and phaC) instead of the ABC PHB pathway into the sugarcane
plant increased the PHB content in mesophyll cells by up to 11.8% of its CDW. It was more
than twice the ABC pathway. Other studies showed that PhaA preferentially catalyzed
thiolysis (breaking down acetoacetyl-CoA to acetyl-CoA) compared to the synthesis of
acetoacetyl-CoA [34].

On the other hand, NphT7 catalyzes acetoacetyl-CoA synthesis in an more energy-
favored reaction [33]. Indeed, the high equilibrium constant value (Km) of β-ketothiolase
to acetyl-CoA (up to 1.1 mM) compared to the low Km value of NphT7 to acetyl-CoA
(0.068 mM) and malonyl-CoA (0.028 mM) showed that NphT7 was a much more effective
enzyme for initiating the condensation reaction for producing acetoacetyl-CoA compared
to PhaA [15]. On the other hand, PhaA catalytic behavior is highly reversible. This leads
to the high tendency of this enzyme to catalyze the thiolysis reaction and break down the
acetoacetyl-CoA into two acetyl-CoA molecules, while the NphT7 enzyme exhibited more
irreversible behavior by catalyzing the condensation reaction [35].

The resulting strain from sequential transformation (by pCV35, pCV88, and pCV342
plasmids) showed a significant increase in PHB content compared to the strain modified
by pZX30, without any detectable effect on the growth rate (Figure 4A). The sequential
transformation led to a strain capable of accumulating PHB at up to 41% of CDW, which is
remarkably higher than the 11% PHB titer in the pZX30 strain (Figure 4B).
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Previous studies proved the gene dosage effect on desired gene expression in Y.
lipolytica host cells. Gene dosage refers to the number of copies of a particular gene present
in an organism’s genome. The gene dosage effect relates to how changes in the number of
copies of a gene influence an organism’s phenotype. In a study on gene-dose-dependent
overexpression of the isocitric lyase encoding gene (ICL1), multiple copies of ICL1 were
introduced to Y. lipolytica, which led to high levels of ICL1 expression in the transformant.
This overexpression resulted in a significant shift in the citric acid/isocitric acid ratio. It
also resulted in a more than 30% reduction in isocitric acid proportions without affecting
the total amount of produced acid [36]. In another study, a similar strategy was used for
the same objective (increasing the citric acid/isocitric acid ratio), this time by boosting
the aconitase encoding gene (ACO1) copy numbers. The recombinant Y. lipolytica strain
showed a high level of aconitase expression, which increased the citric acid/isocitric acid
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ratio from 41% to 68% [37]. Studies on the effect of gene dosage on the overproduction of
β-farnesene and heterologous lipase showed the same results [38,39].

3.2. Co-Substrate Strategy for PHB Production

Using acetic acid as the only carbon source led to low growth rates and biomass pro-
ductivity. This is a major issue in commercial PHA production. The efficient growth of Y.
lipolytica requires a balanced supply of ATP, acetyl-CoA, and NADPH near a 1:1:2 ratio [40].
A single acetate substrate is very efficient at producing ATP and acetyl-CoA. Acetate conver-
sion to NADPH through the oxidative pentose phosphate pathway (Ox-PPP), however, is
an intensive ATP-consuming pathway. This is the reason that growing modified Y. lipolytica
on acetate was much slower than glucose [40]. On the other hand, using glucose as the
sole energy and carbon source led to a significantly higher growth rate and PHB content.
Nevertheless, the cost of glucose seems to be a serious obstacle to the feasibility of using it
as the sole substrate in a cost-effective bioprocess for PHB production [41]. As a result, a
co-substrate strategy with a mix of glucose and sodium acetate was evaluated to determine
the feasibility of this method as a solution to the efficiency and cost dilemma. These results
showed that high concentrations of glucose and acetate inhibited the engineered strain’s
growth rate.

In the current study, 10 g/L of sodium acetate (7.2 g/L acetate) as the sole carbon
source led to a growth rate of 0.148 h−1. These results are similar to previous studies on the
Y. lipolytica wild-type strain W29, which showed a growth rate of 0.16 h−1 when cultivated
on 5 g/L of acetate [42], but are higher than SZYL004, a modified strain for using xylose as
a substrate (by overexpressing the three native genes XR, XDH, and XK). SZYL004 could
not tolerate 75 mM of acetate (6.15 g/L) [43]. However, in current research, increasing
the sodium acetate concentration to 50 g/L caused a 12% decrease in the PHB32 strain
growth rate. Increasing sodium acetate to 100 g/L (72 g/L acetate) significantly inhibited
the engineered strain.

It was previously attempted to increase Y. lipolytica’s tolerance to high acetate concen-
trations. For instance, Y. lipolytica was modified to tolerate higher acetate concentrations by
expressing acetyl-CoA synthase. It was attempted to adapt this modified strain to 50 g/L
of acetate. The resulting ACS 5.0 strain (after genetic modification and culture adaptation)
could grow effectively in 30 g/L of acetic acid, while 40 and 50 g/L of acetate showed high
toxicity for this strain [44]. Considering that the current engineered strain (PHB32) could
grow effectively on 36 g/L of acetate, with a growth rate of 0.131 h−1, this strain could be
comparable to other strains tolerating high acetate concentrations. In addition to acetate
tolerance, the PO1f Y. lipolytica strain was modified in some studies to increase its growth
rate using acetate as the sole source of carbon and energy. It was found that overexpressing
the acetyl-CoA synthetase (ACS) and acetyl-CoA carboxylase (ACC1) resulted in a strain
with a 5.27 times higher growth rate and a 5.39 times faster acetate consumption [45].

Using glucose as the sole carbon and energy source in our study showed a significantly
higher growth rate. In a flask containing YNB and 10 g/L glucose, a growth rate of 0.204 h−1

was observed. This was 38% higher than the growth rate achieved with 10 g/L of sodium
acetate. These results showed a slightly higher growth rate than a previous study on
cultivating strain Y. lipolytica H222 using glucose for citric acid production. In that study,
H222 reached 0.192 h−1 as its maximum specific growth rate [46]. In spite of this, PHB32
grows slower than Y. lipolytica IBT 446 (0.24 h−1 growth rate), with the same submerged
cultivation system and glucose as the sole carbon source [47]. In a comparison between four
different strains of Y. lipolytica, A-101, Wratislavia 1.31, Wratislavia AWG7, and Wratislavia
K1, for citric acid production from glucose, growth rates of 0.19 h−1, 0.23 h−1, 0.36 h−1, and
0.23 h−1 were observed, respectively. These results showed that strain Wratislavia AWG7
had a higher growth rate than our engineered strains [48].

The current study indicates that increasing glucose concentration from 10 g/L to
150 g/L results in a negative effect on growth rate. At 100 g/L of glucose, a growth rate of
0.163 h−1 was observed. This is 20% lower than the growth rate at 10 g/L of glucose. Such
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substrate inhibition effects were observed in other studies, which showed that increasing
the glucose concentration from 50 g/L to 200 g/L led to an intensive depletion in the
growth rate from 0.17 h−1 to 0.055 h−1 in the H222 strain [46]. A similar inhibitory effect on
the growth rate and lipid productivity in the PO1f strain was observed by increasing the
glucose concentration to 160 g/L. This was suggested to be a result of osmotic stress [49].

In the current study, the co-substrate strategy with glucose and sodium acetate showed
a synergistic effect on growth rate. The highest growth rate of 0.227 h−1 was observed
at 10 g/L of both glucose and sodium acetate. Previous studies suggested a similar
ameliorative effect of co-substrate medium on bio-oil production in Y. lipolytica. Pereira
and colleagues [50] showed that the simultaneous application of glucose and acetate
improved the growth rate of Y. lipolytica NCYC 2904. Similar studies were conducted using
agricultural wastes containing stearin, glycerol, and glucose as co-substrates. In another
study, when Y. lipolytica ACA-DC 50109 was modified to produce a cocoa-butter-like lipid,
the results demonstrated that co-substrate media could be an effective strategy for such
value-added products [51]. Our results showed that in flasks with 100 g/L of sodium
acetate as the sole substrate, there was no growth after 6 days. However, adding 5 g/L of
glucose to such flasks led to a 0.033 h−1 growth rate. Similarly, in flasks with 50 g/L of
sodium acetate as a mono-substrate, a 0.131 h−1 growth rate was observed, while using a
co-substrate strategy with the same sodium acetate concentration and 5 g/L of glucose as a
dopant resulted in a 40% increase in the growth rate up to 0.184 h−1.

Metabolism, stress-signaling pathways, and pH homeostasis are the main factors
affecting yeast’s response to acetic acid stress [52]. Among other physiological features,
cell membrane transporters play a crucial role in yeast tolerance to high acetate concen-
trations [53]. If the pH of the environment is below acetic acid’s pKa (4.76), this acid is
primarily undissociated and can be easily diffused into the cell membrane and the cy-
tosol [54]. Increasing the extracellular concentrations of acetate may lead to high passive
transport of acetate into the cytoplasm [55]. This causes intracellular acidification, inhibiting
growth and metabolism and causing oxidative damage. In this condition, pH homeostasis
stimulates the proton pumps to prevent further intracellular proton accumulation. The
active transport process consumes up to 20% of the produced ATP [56], which is considered
an energy-intensive process.

Our results showed a similar compensatory effect of acetate at high glucose con-
centrations. It was observed that adding 10 g/L of sodium acetate to all initial glucose
concentrations significantly increased growth rates. For example, while 100 g/L of glucose
had some inhibitory effect on the engineered strain, adding 10 g/L of sodium acetate
increased its growth rate by up to 15%. Co-substrate strategies using multiple carbon
and energy sources can balance key biosynthetic components. Synthetic pathways in cells
are generally complex processes involving various types of molecules as their building
blocks. Considering the nature of metabolism, each pathway shows different degrees of
efficiency in converting the various substrates into products. In the co-substrate concept,
glucose is commonly considered an energy-deficient substrate (high carbon-to-energy ratio).
This deficiency could be compensated by the simultaneous use of a substrate (such as C1
substrates) with a lower carbon-to-energy ratio as a convenient energy donor [57].

For instance, a study on gluconate doping in Y. lipolytica revealed that co-utilizing this
substrate led to accelerated acetate lipogenesis by providing NADPH through the pentose
cycle [40]. The main reason for glucose toxicity in high concentrations was the resulting
osmostress, which was compensated by acetate [58]. Previous studies showed that acetate
could increase intracellular proline concentration, which is considered an effective cellular
osmoprotectant agent [59]. Another study on the effect of acetate on Lens culinaris showed
that acetate stimulated the cellular accumulation of proline by up to 24%. It also increased
the ascorbic acid content more than 2 times and catalase activity up to 1.5 times, which
are both considered antioxidant agents [60]. Such results suggest that the co-utilization
of acetate has a compensatory effect on glucose toxicity at high concentrations because it
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triggers cells to accumulate proline with an osmoprotective effect and enhances antioxidant
concentrations and activity.

The Supplementary Material contains relevant data concerning the growth rate and
growth curves of the final modified strain in the current study. The interaction between
glucose and acetate may play a key role in the co-substrate strategy, as indicated in the
primary analysis. To reveal the interaction between acetate and glucose on the modified
strain’s growth rate, a two-factor design using the General Linear Model (GLM) was
employed. The resulting ANOVA analysis (Table 3) showed that acetate and glucose
concentrations had significant interactive effects on the Y. lipolytica growth rate.

Table 3. ANOVA results for two-factor GLM between glucose and acetate on Y. lipolytica PHB32
growth rate.

Source SS df MS F-Value p-Value

Glucose 0.110 6 0.0183 591.4 <0.0001
Acetate 0.459 4 0.1148 3702 <0.0001

Glucose * Acetate 0.078 24 0.00325 105.0 <0.0001
Model 0.647 34 0.01904 614.0 <0.0001
Error 0.002 70 0.00003

Corrected Total 0.6495 104

As shown in Table 3, both glucose (p < 0.0001) and acetate (p < 0.0001) had significant
effects on biomass concentration. Also, these results suggest that glucose and acetate had
a significant interaction (FGlucose*Acetate = 105.0, p < 0.0001) on the engineered Y. lipolytica
strain’s growth rate and biomass productivity.

The synthesis of PHB by engineered Y. lipolytica was found to be a growth-associated
product, as it accumulated in the produced biomass simultaneously with the yeast’s growth.
To determine the optimal medium for PHB production in a fed-batch system, response
surface methodology (RSM) was used. The 3D surface plot and 2D contour plot shown in
Figure 5 are graphical representations of statistical regression and growth rate prediction.
This statistical modeling and 2D contour plot suggested 50 g/L of glucose and 10 to 20 g/L
of sodium acetate as the optimum concentrations of these substrates (Figure 5A). The 3D
surface plot predicted that increasing the concentration of both glucose and acetate would
have inhibitory effects on this strain’s growth rate.
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3.3. Production of PHB in Bioreactor

In aerobic fermentation using Y. lipolytica PHB32 (in a pH-controlled and co-substrate
medium), substrate concentrations were maintained optimally with a fed-batch system
(Figure 6A). The initial concentrations of glucose and sodium acetate were set at 50 g/L
and 20 g/L, respectively, based on RSM optimal prediction (Figure 6B). The CDW reached
83.4 g/L and the PHB titer reached 31.7 g/L (Figure 6C).
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fermentation; (C) bioreactor at the end of fermentation using Y. lipolytica PHB32.

The polymer content in the fed-batch culture and flask experiments was almost the
same. This fact suggested that changing the pH and nutrient starvation during flask
cultivation (as the main inhibitory parameters in batch culture) did not affect the expression
of the introduced PHB pathway. Similar results in previous studies suggest that PHB
accumulation capacity in engineered Y. lipolytica is mainly restricted by the expression
level of the introduced heterologous PHB pathway [11]. In the current study, the PHB
content reached 38% of CDW in the modified Y. lipolytica PHB32 stain in the bioreactor
experiment using YPD medium. Compared with the previously engineered Y. lipolytica
CAB strain using the ABC pathway [11], these results are significantly higher. Y. lipolytica
PHB32 showed a noticeably high capacity for PHB production, not only for its high PHB
titer but also for its significant biomass productivity even under minimal YNB medium.

A comparison between the current and previously reported studies suggested that
the NBC pathway seems to be an efficient pathway for PHB biosynthesis in Y. lipolytica.
Haddouce and colleagues [61] showed that between six acyl-CoA oxidase (Aox) isoenzymes,
Aox3p has a key role in converting C9:0 and C13:0 fatty acids into PHA. In their study, PHA
synthase (phaC) from Pseudomonas aeruginosa was introduced to Y. lipolytica, which led to
2% PHA accumulation in produced biomass [61]. In a similar study by Rigouin et al. [13],
different variants of phaC were used as the single heterologous gene for synthesizing
medium-chain-length (mcl) PHA in engineered Y. lipolytica. Up to 25% (g/g) of PHA accu-
mulation was observed in some PhaC variants. According to their study, some modified
strains synthesized mcl-PHA with an average molar mass of 316,000 g/mol, which could
be an excellent packaging material [13]. In another study, Gao and colleagues [12] used
multicopy integration of PhaC1 (P. aeruginosa PAO1) into Y. lipolytica, leading to an engi-
neered strain that could accumulate up to 5% mcl-PHA in its biomass. Their study found
that the highest biomass concentration reached 21.9 g/L of CDW on YNB medium [12].
Clearly, the current study achieved a higher PHB titer than the previous published studies
on Y. lipolytica.

For Y. lipolytica to become an industrially favorable microbial factory for PHB pro-
duction, however, several additional modifications must be made. To increase the ac-
etate/glucose ratio, acetate uptake should be accelerated. Second, its substrate must be
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expanded to include other sugars that are abundant in lignocellulosic biomass, such as
pentose. Also, gene dosage and peroxisomal compartmentalization effects should be quan-
tified separately. Furthermore, the formation of granular PHB in peroxisome organelles
should be evaluated in the modified strain.

4. Conclusions

The NBC pathway was introduced into the Y. lipolytica genome. The resulting engi-
neered strain was capable of accumulating PHB at up to 41% of CDW in a shake flask
culture on glucose and acetate as substrates. Bioreactor cultivation led to an 83.4 g/L
biomass and a 31.7 g/L PHB concentration. These results suggest that the NBC pathway is
a more efficient strategy than the ABC pathway or introducing PhaC as a single gene path-
way in Y. lipolytica. In high concentrations, acetate or glucose as the sole carbon and energy
source showed a slow growth rate and inhibitory effects. The co-substrate strategy using
both substrates simultaneously increased the modified strain’s growth rate significantly.
The simultaneous use of glucose and acetate alleviated substrate inhibition. These results
showed the possibility of utilizing acetic acid derived from wastes for PHB production by
modifying Y. lipolytica. Also, our results indicate significantly higher PHB productivity
using Y. lipolytica PHB32 compared to previous studies.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/fermentation9121003/s1, Figure S1: Effect of co-substrate
culture on Y. lipolytica PHB32 growth rate; Figure S2: Growth curve of Y. lipolytica PHB32 using 10 g/L
of sodium acetate as the only carbon and energy source; Figure S3: Growth curve of Y. lipolytica
PHB32 using 20 g/L of sodium acetate as the only carbon and energy source; Figure S4: Growth
curve of Y. lipolytica PHB32 using 50 g/L of sodium acetate as the only carbon and energy source;
Figure S5: Growth curve of Y. lipolytica PHB32 using 100 g/L of sodium acetate as the only carbon
and energy source; Figure S6: Growth curve of Y. lipolytica PHB32 using 5 g/L of glucose as the only
carbon and energy source; Figure S7: Growth curve of Y. lipolytica PHB32 using co-substrate strategy
by 10 g/L of sodium acetate and 5 g/L of glucose; Figure S8: Growth curve of Y. lipolytica PHB32
using co-substrate strategy by 20 g/L of sodium acetate and 5 g/L of glucose; Figure S9: Growth
curve of Y. lipolytica PHB32 using co-substrate strategy by 50 g/L of sodium acetate and 5 g/L of
glucose; Figure S10: Growth curve of Y. lipolytica PHB32 using co-substrate strategy by 100 g/L of
sodium acetate and 5 g/L of glucose; Figure S11: Growth curve of Y. lipolytica PHB32 using 10 g/L of
glucose as the only carbon and energy source; Figure S12: Growth curve of Y. lipolytica PHB32 using
co-substrate strategy by 10 g/L of sodium acetate and 10 g/L of glucose; Figure S13: Growth curve of
Y. lipolytica PHB32 using co-substrate strategy by 20 g/L of sodium acetate and 10 g/L of glucose;
Figure S14: Growth curve of Y. lipolytica PHB32 using co-substrate strategy by 50 g/L of sodium
acetate and 10 g/L of glucose; Figure S15: Growth curve of Y. lipolytica PHB32 using co-substrate
strategy by 100 g/L of sodium acetate and 10 g/L of glucose; Figure S16: Growth curve of Y. lipolytica
PHB32 using 20 g/L of glucose as the only carbon and energy source; Figure S17: Growth curve of
Y. lipolytica PHB32 using co-substrate strategy by 10 g/L of sodium acetate and 20 g/L of glucose;
Figure S18: Growth curve of Y. lipolytica PHB32 using co-substrate strategy by 20 g/L of sodium
acetate and 20 g/L of glucose; Figure S19: Growth curve of Y. lipolytica PHB32 using co-substrate
strategy by 50 g/L of sodium acetate and 20 g/L of glucose; Figure S20: Growth curve of Y. lipolytica
PHB32 using co-substrate strategy by 100 g/L of sodium acetate and 20 g/L of glucose; Figure S21:
Growth curve of Y. lipolytica PHB32 using 50 g/L of glucose as the sole energy and carbon source;
Figure S22: Growth curve of Y. lipolytica PHB32 using co-substrate strategy by 10 g/L of sodium
acetate and 50 g/L of glucose; Figure S23: Growth curve of Y. lipolytica PHB32 using co-substrate
strategy by 20 g/L of sodium acetate and 50 g/L of glucose; Figure S24: Growth curve of Y. lipolytica
PHB32 using co-substrate strategy by 50 g/L of sodium acetate and 50 g/L of glucose; Figure S25:
Growth curve of Y. lipolytica PHB32 using co-substrate strategy by 100 g/L of sodium acetate and
50 g/L of glucose; Figure S26: Growth curve of Y. lipolytica PHB32 using 100 g/L of glucose as sole
carbon and energy source; Figure S27: Growth curve of Y. lipolytica PHB32 using co-substrate strategy
by 10 g/L of sodium acetate and 100 g/L of glucose; Figure S28: Growth curve of Y. lipolytica PHB32
using co-substrate strategy by 20 g/L of sodium acetate and 100 g/L of glucose; Figure S29: Growth
curve of Y. lipolytica PHB32 using co-substrate strategy by 50 g/L of sodium acetate and 100 g/L of
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glucose; Figure S30: Growth curve of Y. lipolytica PHB32 using 150 g/L of glucose as the sole energy
and carbon source; Figure S31: Growth curve of Y. lipolytica PHB32 using co-substrate strategy by
10 g/L of sodium acetate and 150 g/L of glucose; Figure S32: Growth curve of Y. lipolytica PHB32
using co-substrate strategy by 20 g/L of sodium acetate and 150 g/L of glucose; Figure S33: Growth
curve of Y. lipolytica PHB32 using co-substrate strategy by 50 g/L of sodium acetate and 150 g/L
of glucose.
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