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Abstract: The production of Volatile Fatty Acids (VFAs) from wastewater holds significant importance
in the context of biorefinery concepts due to their potential as valuable precursors for various bio-
based processes. Therefore, the primary objective of this research is to investigate the fermentation of
Winery Wastewater (WW) in an Upflow Anaerobic Sludge Blanket (UASB) reactor to generate VFAs,
with particular emphasis on Caproic Acid (HCa) production and the dynamics of the microbiota,
under varying Hydraulic Retention Time (HRT) periods (8, 5, and 2.5 h). The change from an 8 h
to a 5 h HRT period resulted in an approximately 20% increase in total VFA production. However,
when the HRT was further reduced to 2.5 h, total VFA production decreased by approximately 50%.
Concerning the specific production of HCa, expressed in grams of Chemical Oxygen Demand (gCOD),
the maximum yield was observed at around 0.9 gCOD/L for a 5-h HRT. Microbial population analysis
revealed that Eubacteria outnumbered Archaea across all HRTs. Population dynamics analysis
indicated that the Firmicutes Phylum was predominant in all cases. Within this phylum, bacteria such
as Clostridium kluyveri and Clostridium sp., known for their ability to produce HCa, were identified.
Based on the results obtained, the application of the UASB reactor for WW treatment, within the
biorefinery framework, has the potential to provide a practical alternative for HCa production when
operated with a 5 h HRT.

Keywords: Winery Wastewater; anaerobic digestion; Dark Fermentation; hydraulic retention time;
caproic acid

1. Introduction

The circular economy represents the emerging socio-economic and environmental
model emphasizing a production and consumption approach centred on sharing, lending,
reusing, repairing, revitalising, and recycling existing materials and products, rather than
disposing of them as waste [1,2]. Indeed, considering that the EU generates over 2 billion
tonnes of waste each year, effectively addressing this challenge is critical for environmental
security and combating climate change [2].

This substantial volume of materials originates from various sectors of the economy,
including agriculture, industry, energy, services, and even households. Cow’s milk, grapes,
and olives serve as the primary components in the creation of some of the world’s most
prized food products, including cheese, wine, and olive oil. These foods items, particularly
grapes and olives, are mainly found in the Mediterranean region, notably in France, Greece,
Italy, Spain, and Tunisia. However, their production generates a significant amount of
waste, with wine production in particular resulting in significant production of Winery
Wastewater (WW) [3,4].

The application of circular economy principles to this WW can involve its utilization
as secondary raw materials [3–6]. Incorporating WW and its derived products into the

Fermentation 2023, 9, 958. https://doi.org/10.3390/fermentation9110958 https://www.mdpi.com/journal/fermentation

https://doi.org/10.3390/fermentation9110958
https://doi.org/10.3390/fermentation9110958
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com
https://orcid.org/0000-0002-3240-7417
https://orcid.org/0000-0003-2611-2978
https://doi.org/10.3390/fermentation9110958
https://www.mdpi.com/journal/fermentation
https://www.mdpi.com/article/10.3390/fermentation9110958?type=check_update&version=1


Fermentation 2023, 9, 958 2 of 18

concept of a biorefinery is one way to achieve this. A biorefinery is a facility that integrates
processes and equipment to convert biomass into fuels, energy, and chemicals, as defined
by the National Renewable Energy Laboratory (NREL). Within this concept, we can identify
the anaerobic biorefinery, which is based on Anaerobic Digestion (AD) of organic matter to
produce a range of value-added products, including Volatile Fatty Acids (VFAs) and biogas
(bio-hydrogen (H2) and/or methane (CH4)) [7]. Biogas, generated through AD, serves
as a significant source of renewable energy, finding applications in electricity generation
and heat supply. Additionally, VFAs are produced as a product of this process and can
be used as a direct feedstock for the production of various bio-based products (e.g., bio-
H2, CH4, solvents, or biopolymers). Therefore, both biogas (CH4 and bio-H2) and VFAs
can be integrated into a biorefinery scenario [8]. Within this concept, the production and
utilisation of biogas as bioenergy (renewable energy) represent a significant technological
advancement, and AD from waste presents an appealing pathway to attain this goal [9].

AD is a multistage process involving hydrolysis, acidogenesis, acetogenesis, and
methanogenesis, with biogas as the final product. In contrast, Acidogenic (dark) Fermenta-
tion (AF) encompasses only the hydrolysis and acidogenesis stages within AD, resulting
in the production of VFAs and bio-H2 as the final product. The bacteria engaged in these
initial stages belong to several phyla, including Firmicutes, Bacteriodetes, Spirochaetes,
Actinobacteria, Chloroflexi, and Proteobacteria [10,11].

Microorganisms play a pivotal role in AD, as they are indispensable for the process.
Analysing microbial communities can be accomplished through various techniques, includ-
ing DNA sequencing, metagenomics, metatranscriptomics, and metaproteomics. These
methods offer insights into the diversity, dynamics, and functional capabilities of microbial
populations, thereby contributing to a comprehensive comprehension of microbial ecology
and their interactions within the studied ecosystem, which is vital for achieving optimal
performance.

In recent decades, the effectiveness of anaerobic technology in wastewater treatment
has become increasingly evident [12]. Various technologies are available for AD of wastes
and effluents, with options including suspended and adhered biomass reactors. Adhered
biomass reactors (advanced reactors) offer several advantages compared to suspended
biomass reactors. These advantages include a higher specific weight, enabling them to
stay in the system even with upflow conditions, and the ability to handle higher feed rates
without significantly increasing reactor volume [10]. Among these options, the Upflow
Anaerobic Sludge Blanket (UASB) reactor emerges as an effective anaerobic process for
treating wastewater with high organic loads, as evidenced by its successful applications [6,13].
The start-up of the UASB reactor requires a period of acclimatisation of the anaerobic sludge
contained within the reactor (approximately one third of the reactor volume). This start-
up phase holds critical importance for all types of anaerobic reactors [14]. In high-rate
anaerobic technology reactors, like the UASB, the activation phase of anaerobic sludge must
be carefully managed to preserve the existing structure (microbial communities present
in different layers) and prevent the detachment of non-attached biomass. The integrity of
granular sludge stands as the critical feature in the UASB reactor, ultimately shaping the
success of processes within its reaction column [15]. Nevertheless, it is important to note
that biomass does not always have to be in granular form or attached biomass. In cases
where the UASB reactor is employed to treat domestic wastewaters/blackwaters. biomass
can be in suspension form [16].

The Hydraulic Retention Time (HRT) exerts a significant influence on the performance
of the AD process. In UASB reactors with supported biomass, it is important to distinguish
between the HRT and the Solids Retention Time (SRT) of the biomass. As the HRT decreases,
the Organic Loading Rate (OLR) increases [6,17]. It is important to investigate the impact of
HRT for each operated AD system, considering the specific substrates or substrate mixtures
used as feedstock. Gaining insight into the optimal HRT is vital for comprehending each
process, establishing the best operating conditions, and ultimately achieving maximum
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yields. This knowledge also contributes to a broader perspective that is essential for
successful future industrial scale-up [18].

The production of methane, and, thus, the possibility of energy recovery, is one of
the advantages of the UASB reactor [19]. Additionally, the production and recovery of
VFAs is of great interest due to their high potential as a renewable carbon source. VFAs
have a wide range of applications in various industries (pharmaceutical, food, or chemical),
and they can serve as valuable feedstock (biogas, biodiesel, or bioplastics). Consequently,
VFA recovery through AD is becoming a prominent area of research [20]. While UASB
reactors have been explored for VFA production, the emphasis has primarily been on Short
Chain Fatty Acids (SCFAs) [19]. There is a growing focus on the production of valuable
and versatile SCFAs such as Acetic Acid (HAc), Butyric Acid (HBu), and Propionic Acid
(HPr) [21,22].

More recently, there has been a growing interest in the production of Medium-Chain
Fatty Acids (MCFA), such as Caproic Acid (HCa), from organic waste and wastewater [23].
This interest arises from the potential to convert soluble SCFAs into less water soluble
MCFAs through a process known as Chain Elongation (CE). In VFA extraction, the cost
associated with acid solubility accounts for approximately 30% to 40% of the overall
process cost, rendering the entire endeavour economically unfeasible. As an alternative,
the production of less soluble acids could be a viable solution [8]. MCFAs can be produced
through chemical processes that traditionally use fossil sources [11,24,25]. This process
involves adding two carbons to the carbon chain length of SCFAs and utilising ethanol
(EtOH), which is often present in winery effluent, as an Electron Donor (ED) to facilitate
this conversion [22,23,26,27].

The primary advantage of utilizing EtOH to produce HCa lies in the energy gained
during the formation of the product. According to stoichiometric reactions, one mole of HCa
contains approximately 3452 kJ of energy [24]. Therefore, when aiming to produce HCa
through fermentation, it is crucial to consider the requirements of the microbiota involved
in the process. Specific anaerobic bacteria, such as Clostridium kluyveri and Clostridium sp.
are capable of producing HCa from various carbon sources. C. kluyveri employs ethanol
and acetate or succinate, whereas C. sp. utilizes galactitol or glucose for this purpose [25].

The current study aimed to investigate the effects of Hydraulic Retention Times (HRTs)
in an Upflow Anaerobic Sludge Blanket (UASB) reactor with Winery Wastewater (WW), to
produce a Volatile Fatty Acids (VFAs) effluent enriched in caproic acid (HCa), an important
Medium-Chain Fatty Acid (MCFA). Furthermore, the influence of Hydraulic Retention
Times (HRTs) changes on microbial communities was investigated.

2. Materials and Method
2.1. Substrate Characterization

The substrate used in this study was the synthetic WW (see Table 1), which was
prepared by combining white and red table wines in a 50:50 ratio to achieve a concentration
of 17.1 mL/L of wine in water.

Table 1. Initial characterization of synthetic Winery Wastewater (WW).

Parameters WW

TCOD (g/L) 2.14 ± 0.01
SCOD (g/L) 1.81 ± 0.13

TSS (g/L) 0.24 ± 0.01
VSS (g/L) 0.16 ± 0.01

pH 7.45 ± 0.27
EtOH (gEtOH/L) 0.036 ± 0.002

PO4-P (mgPO4-P/L) 5.83 ± 0.26
TAN (gNH4/L) 0.24 ± 0.02

TVFA (gCOD/L) 0.20 ± 0.01
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Additionally, 0.5 g/L ammonium chloride was added to serve as a nitrogen source
in the system, which is essential for microbial growth [28]. Given that the optimal Car-
bon/Nitrogen (C/N) ratio should be around 30:1 and above 8:1 to prevent inhibition of
microbial activity due to ammonia accumulation [29,30].

Finally, the pH was adjusted using a 5 M sodium hydroxide solution until neutrality
was achieved (approximately 0.25 mL/L).

Winery Wastewater (WW), Total Chemical Oxygen Demand (TCOD), Soluble Chemical
Oxygen Demand (SCOD), Total Suspended Solids (TSS), Volatile Suspended Solids (VSS),
Ethanol (EtOH), Phosphorus Phosphate (PO4-P), Total Ammonia Nitrogen (TAN), Total
Volatile Fatty Acid (TVFA).

2.2. Operating Conditions

The design of the UASB reactor is relatively simple [31]. The experiments were con-
ducted using a 5-litre capacity UASB digestion reactor, as shown in Figure 1, representing
a design previously developed by the research group. In this case, the system had been
acclimatised and adapted to the substrate. The initial anaerobic inoculum was sourced
from an industrial UASB reactor with a well-developed granular structure. The inoculum
consisted of anaerobic granular sludge from an industrial UASB reactor used for treating
paper mill wastewater, maintained at a temperature of 30–32 ◦C. During the start-up phase,
one-third of the lab-scale UASB reactor’s volume was inoculated with anaerobic granular
sludge to achieve an initial concentration in the reactor of around 2%.
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Figure 1. Diagram of the reactor with labelled components: IN: for feeding the reactor from a tank
using a pump; OUT: for the treated effluent overflow; Gas: for biogas output and collection in a
Tedlar bag; R: for recirculation inside the reactor facilitated by a peristaltic pump.

The top of the reactor is equipped with five different ports, each serving a specific
purpose. One port is designated for feeding the feedstock, while two other ports facilitate
the recirculation of the effluent. The fourth port is utilised for the release of biogas. The
treated effluent is collected from the overflow at the top of the UASB reactor and directed
into a separate tank. Most of the solids accumulate at the bottom of the reactor, forming a
sludge bed. A triphasic separator is located at the top of the reactor to prevent solids from
leaving the system with the effluent.

Both the feed and recirculation processes operated continuously, with a peristaltic
pump driving the operations. The pump speed for recirculation was carefully adjusted to
maintain a total biomass uptake velocity (Vuptot) of approximately 0.6 m/h as a typical
operating condition for this type of reactor [32].

The reactor had previously been operated under different HRTs for screening purposes.
Using this as a reference, the experimental design for this study was proposed with three



Fermentation 2023, 9, 958 5 of 18

distinct HRTs; one optimal, one critical, and one in between. Additionally, it was considered
that macroscopic changes in the control parameters could be observed between one HRT
and the other.

A high OLR and a low HRT promote the growth of hydrolytic and acidogenic bacteria,
facilitating the accumulation of VFAs [11]. Therefore, a descending HRT sequence of 8,
5, and 2.5 h was employed. These values corresponded to OLRs, expressed in grams of
Chemical Oxygen Demand (gCOD), of 6.4, 10.3, and 20.6 gCOD/(L·d), respectively, as
shown in Table 2. Each HRT was maintained for a minimum of one month to ensure stable
performance during each operating period.

Table 2. Variation of Organic Loading Rate (OLR) and feed flow at different Hydraulic Retention
Times (HRTs).

HRT (h) 8 5 2.5

OLR (gCOD/(L·d)) 6.4 ± 0.01 10.3 ± 0.01 20.6 ± 0.01
FV (L/d) 15 24 48

FR (mL/min) 10.41 16.67 33.33

Grams of Chemical Oxygen Demand (gCOD), Feed Volume (FV), and Flow Rate (FR).
Organic Loading Rate (OLR) in gCOD/(L·d) and Hydraulic Retention Times (HRT) in h.

2.3. Analytical Methods

To start-up and monitor the reactor, an initial assessment of the substrate and routine
evaluations of critical parameters throughout the process were performed. The following
steps were carried out: pH was measured using a benchtop pH meter (Mettler Toledo, USA),
and the Total Ammonia Nitrogen (TAN) was determined using the distillation method in
adherence to standard guidelines [33].

Total Suspended Solids (TSS), Volatile Suspended Solids (VSS), Total Chemical Oxygen
Demand (TCOD), and Soluble Chemical Oxygen Demand (SCOD) were assessed using the
Standard Methods [33].

Ethanol (EtOH) and Phosphorus Phosphate (PO4-P) were analysed using a commercial
kit. EtOH analysis was conducted with a Megazyme kit (AOAC Method 2019.08). For
PO4-P quantification, the HACH TNT+ (TNT844-LM) reagent kit and a HACH® spec-
trophotometer were employed.

To determine the concentration of individual Acetic Acid (HAc), Propionic Acid (HPr),
Butyric Acid (HBu), Valeric Acid (HVa), and Caproic Acid (HCa), and cumulative Volatile
Fatty Acids (VFAs), the samples were diluted with distilled water at a ratio of 1:50 or 1:100.
Subsequently, they were filtered through a 0.20 µm filter and 0.1 M hydrochloric acid was
added. VFA concentrations were then determined using ionic chromatography (Dionex
ICS-1100 with AS23 column, Thermo Fisher Scientific, Waltham, MA, USA).

To monitor the biogas produced in the Tedlar bags, the gas composition was measured
daily using a methanimeter (Biogas 5000 gas analyser Landtec), and the daily gas volume
was determined using an acid water displacement volumetric gasometer.

2.4. Microbial Community Analysis

Microbial community analysis involves the study and characterisation of the various
microorganisms present in a specific environment or sample. These analyses typically
encompass the identification of microorganism types, their relative abundance. and their
potential roles within the ecosystem.

The microbial community analysis involved DNA sequencing of the biomass granules.
A total of seven samples were collected for microbiological analysis: the first for pre-start-
up characterization, followed by subsequent samples in the middle of each period and on
the last day of each experimental period before the new HRT was set. DNA extraction was
performed using a solid sample PowerSoil DNA Isolation extraction kit (Qiagen DNeasy
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PowerSoil Pro 2495), following the manufacturer’s instructions. The extracted samples
were then sent to an external laboratory for sequencing. The samples were stored in a cold
and aqueous solution until DNA extraction. To ensure the accuracy of the DNA extraction,
a confirmation gel test was performed. The region of interest was the V3-V4 region of the
16S rRNA gene, and the extracted DNA was stored at −80 ◦C until being sent to BMR
Genomics S.R.L. for sequencing.

Data analysis was carried out using BMR Genomics software (Qiime2 16S-V3V4
analysis Silva based).

3. Results and Discussion

Due to the strong influence of HRT and the OLR on process performance and acid
profile, researchers are exploring alternatives to Continuous Stirred Tank Reactors (CSTR).
Some of these being investigated are: the Sequence Batch Reactor (SBR), the Anaerobic
Membrane Bioreactor (AnMBR), and the UASB. These reactors offer the advantage of sepa-
rating SRT from HRT. This means that high feed rates can be achieved without significantly
increasing the reactor volume, thereby increasing the cost-effectiveness of the process [11].
In this study, the UASB reactor was chosen, as it is well-suited for treating wastewater
with low solids concentrations [4,15,34]. A wide range of industrial effluents have been
successfully treated using the UASB reactor [31].

3.1. Influence of HRT on Effluent Characteristics

The stability threshold for a high-rate reactor, such as the UASB, in AD is usually
identified as 8–6 h. Operating the reactor below this time interval can lead to destabilisation
of the microbiota [14]. For this reason, the first HRT was chosen at the upper boundary
of the specified range, set at 8 h. The second HRT was set just around the recommended
optimum value, at 5 h. Finally, an HRT of 2.5 h, below the theoretical optimal interval,
was chosen.

The analysis was carried out on the effluent of each HRT tested. Daily measurements
of pH and VFA were performed. TCOD, SCOD, TSS, VSS, and TAN were measured twice a
week. PO4-P and EtOH measurements were conducted once a week. The results presented
below in Table 3 for each HRT represent the averages of the values obtained during each
period after stabilization.

Table 3. Medium values of the characterization of the feed (influent) and the effluent for each HRT.

Influent Effluent

HRT (h)

Parameters 8 5 2.5

pH 7.45 ± 0.27 5.05 ± 0.24 4.81 ± 0.10 4.89 ± 0.10
TCOD (g/L) 2.14 ± 0.01 2.48 ± 0.21 2.47 ± 0.20 2.47 ± 0.05
SCOD (g/L) 1.81 ± 0.13 2.34 ± 0.34 2.34 ± 0.16 2.28 ± 0.18

TSS (g/L) 0.24 ± 0.01 0.06 ± 0.01 0.17 ± 0.02 0.39 ± 0.07
VSS (g/L) 0.16 ± 0.01 0.05 ± 0.01 0.06 ± 0.03 0.12 ± 0.02

TAN (gNH4/L) 0.24 ± 0.02 0.25 ± 0.02 0.12 ± 0.00 0.12 ± 0.00
PO4-P (mgPO4-P/L) 5.83 ± 0.26 2.36 ± 0.12 2.32 ± 0.07 3.51 ± 2.18

EtOH (gEtOH/L) 0.036 ± 0.002 0.012 ± 0.001 0.005 ± 0.000 0.035 ± 0.002
TVFA (gCOD/L) 0.20 ± 0.01 1.37 ± 0.16 1.72 ± 0.15 0.93 ± 0.33
HAc (gCOD/L) 0.04 ± 0.00 0.29 ± 0.07 0.17 ± 0.06 0.25 ± 0.05
HPr (gCOD/L) 0.00 ± 0.00 0.05 ± 0.01 0.08 ± 0.03 0.03 ± 0.00
HBu (gCOD/L) 0.16 ± 0.10 0.27 ± 0.05 0.63 ± 0.12 0.40 ± 0.22
HVa (gCOD/L) 0.00 ± 0.00 0.07 ± 0.04 0.06 ± 0.03 0.00 ± 0.01
HCa (gCOD/L) 0.00 ± 0.00 0.69 ± 0.13 0.78 ± 0.08 0.25 ± 0.17

TCOD: Total Chemical Oxygen Demand, SCOD: Soluble Chemical Oxygen Demand, TSS: Total Suspended Solids,
VSS: Volatile Suspended Solids, TAN: Total Ammonia Nitrogen, PO4-P: Phosphorus Phosphate, EtOH: Ethanol,
TVFA: Total Volatile Fatty Acid, HAc: Acetic Acid, HPr: Propionic Acid, HBu: Butyric Acid, HVa: Valeric Acid
and HCa: Caproic Acid.
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Process pH affects not only raw material degradability, but also the acid profile [11].
The pH in the reactor is a critical factor for VFA production because most acidogenic
microorganisms cannot survive in extreme environments (pH 3 or pH 12) [35]. Prior
research has indicated that a slightly acidic to neutral pH range (5.5–7.0) favours higher
VFA production during AF [36–38]. In order to produce VFAs from wastewater, the pH
should be kept between 5 and 6 [39]. Throughout our experimental period, the pH remained
close to 5 (5.29–4.71), which falls within the optimal range for this stage.

Most of the organic matter present in wastewater is soluble and easily biodegradable,
but it is deficient in nitrogen and phosphorus (P) [4,40]. For this reason, ammonium chloride
was added to compensate this nitrogen deficiency [40]. In particular, TAN can cause toxicity
and inhibition of anaerobic systems at concentrations above 4000–5000 mg/L [17,41,42]. In
our reactor, since the maximum concentration reached is 250 mg/L, this phenomenon was
not observed. TAN concentration remained constant during the 8 h HRT but decreased by
almost half for the other two HRTs due to net metabolic incorporation into the new biomass
within the granules [15].

As discussed in several studies, the high concentration of COD in comparison to
nutrients levels, underscores the significance of the COD:N:P ratio for biomass growth in
AD [4,43,44]. Consequently, N and P concentrations are limiting compared to COD [4,40,43].
PO4-P concentration in WW fluctuates between 40 to 5 mg/L during the various annual
stages of wine production, so, phosphorus is not a limiting factor for WW [4,40,45].

In the first two HRT, there is a net incorporation of PO4-P into the biomass, with an
effluent concentration of approximately 2.3 mg/L compared to a feed concentration of
about 6 mg/L [45]. This indicates net consumption of 60%. However, in the last HRT (2.5 h),
the mean value of PO4-P in the effluent increases to 3.5 mg/L, with a variability percentage
exceeding 60%. This suggests an unstable reactor performance and destabilisation, likely
attributed to the degradation of the granules inside the digester. The same trend can be seen
in the evolution of the solids (as discussed in Section 3.1.1), where they initially decrease
and then increase with shorter HRT. This behaviour is associated with a certain degradation
of the granule structure and, consequently, a destabilisation of the system.

The TCOD in WW is notably higher than that found in municipal wastewater, with
peaks above 35 g/L during the harvesting period [4]. The usual concentrations are
2–10 g/L, during the harvest period the range is 6–8 g/L, while for the rest of the year
the concentrations are 1–3 g/L [4,40]. In all tested HRTs, both TCOD and SCOD remained
stable, with mean values of 2.47 g/L for TCOD and 2.34 g/L for SCOD. In general, waste
materials commonly used to produce VFAs are rich in organic matter, with a TCOD above
4 g/L [17]. In our case, WW exhibited a TCOD concentration of around 2.14 g/L, a value
that falls within the typical range for non-seasonal winery effluents [4].

Some studies suggest that EtOH can contribute up to 30% of the soluble COD in
WW [4]. In this study, a net consumption of EtOH is observed in the first two HRTs, with
efficiencies reaching up to 75%. These efficiencies are directly linked to the production of
HCa, accounting for approximately 45–50% of the total VFA production (see Section 3.1.2).
On the other hand, there is no EtOH consumption in the last HRT, which is another indicator
of system destabilisation.

3.1.1. Removal Efficiencies of TSS and VSS with HRT

As the HRT decreased, there was an increase in the concentration of TSS and VSS,
as indicated in Table 3. In general, it was found that the reduction of VSS in the system
exceeded 60% during HRT of 8 h and 5 h for different OLR. The efficiency of AD treatment
can be evaluated by examining the reduction of solids, as shown in Figure 2. According to
the literature, the removal efficiency of TSS is reported to be around 70% for HRT of 8–6 h,
which is consistent with the values observed in Figure 2 [34]. The removal efficiency of TSS
decreased from 74.3% to 29.9% as the OLR increased from 6.4 to 10.3 gCOD/(L·d), and it
even reached negative values when the OLR reached 20.5 gCOD/(L·d). The increase in
the OLR, and consequently the higher upflow velocity, may be associated with a rise in
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the particles being dragged into the effluent due to the entrainment of the accumulated
particles in the sludge bed. Therefore, an increase in OLR resulted in a decrease in TSS and
VSS reduction, as reported in other studies [17], suggesting system instability, as previously
discussed for other parameters. Furthermore, it can be observed that VSS/TSS in the
effluent exhibits a linear correlation, increasing as HRT decreases, as per Equation (1) with
a R2 = 0.97.

VSS/TSS = −0.39·HRT + 4.41 (1)
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Figure 2. Evolution of suspended solid removal, total and volatile, with OLR (gCOD/(L·d)).

This parameter and its evolution indicate a net release of active biomass as HRT
decreases, which means that these microorganisms leave the system [15]. This phenomenon
is directly related to the destabilisation observed in the system, as it indicates a significant
loss of active microorganisms, which can negatively affect the efficiency and capacity of the
AD process [16].

3.1.2. VFAs Production

In AF for VFA production, retention time and mixed microbial cultures in the anaer-
obic reactor are critical operational parameters [28]. The development of different VFAs
shows variability based on these operational parameters. Previous research studies have
highlighted that acidic pH conditions and higher OLR promote VFA production [46,47].

Finding the optimum HRT is essential for achieving the highest possible production
yield. Working at higher HRTs could be advantageous for VFA production as microorgan-
isms have more time to react and hydrolysis is favoured. However, prolonged HRT could
lead to disruption of VFA production and growth of undesirable microorganisms in the AF,
such as archaea, which degrade VFAs. Therefore, acetogenesis and methanogenesis must
be prevented in order for VFAs to accumulate [11,17]. As can be seen in Figure 3, when the
HRT is augmented from 2.5 h to 5 h, there is a 46% increase in TVFA production, but when
HRT is extended from 5 h to 8 h, there is only a 26% increase. Regarding the amount of
VFA produced relative to feed (OLR), the %COD to VFA increased with increasing HRT
and was 5%, 17%, and 21% for 2.5 h, 5 h, and 8 h HRT, respectively.

HAc showed fluctuations throughout the process, initially increasing to values close
to 300 mgCOD/L, decreasing during the medium HRT and then increasing again for
the shorter HRT. HPr and HVa remained at low levels in all effluents. Finally, both HBu
and HCa followed the same trend as TVFA, reaching maximum values of 630 mgCOD/L
for HBu and 780 mgCOD/L for HCa with a 5 h HRT and decreasing by 36.5% and 68%,
respectively, when the HRT was reduced to 2.5 h.
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Figure 3. Evolution of the concentration of VFAs produced in each HRT: Acetic Acid (HAc), Propionic
Acid (HPr), Butyric Acid (HBu), Valeric Acid (HVa), and Caproic Acid (HCa). In the upper right
corner of the graph, Total Volatile Fatty Acids (TVFAs) are represented.

The three most common mixed VFAs produced by AD of waste streams are HAc, HPr,
and HBu [17,36]. However, in our study, the predominant VFA obtained is HCa, as can be
seen in Figure 3. This prevalence of HCa is attributed to the presence of EtOH in the WW.

VFAs containing more than four carbons (such as butyric, isobutyric, valeric, and
isovaleric acids) are not directly utilised by methanogenic microorganisms. They require
preliminary conversion into HAc, which serves as a precursor through direct metabolic
conversion into CH4 and carbon dioxide (CO2) [48,49].

One of the ways in which HBu and HAc are produced is through the metabolic β-
oxidation process of HCa and other VFAs [50]. This suggests that HCa is converted to
HAc [51]. For an HRT of 8, the concentration of HCa was 50%, while those of HAc and
HBu were 21% and 20%, respectively. In contrast, for HRTs of 5 and 2.5, the production of
HCa was 45% and 27%, with an increase in HBu to 37% and 43%, respectively.

HAc is the most widely used organic acid and one of the most commercially important
VFAs [36,51]. However, the global HCa market is undergoing rapid change and is projected
to reach 358.8 million by 2030, growing at an average annual rate of 8.1% [36,52]. Therefore,
achieving maximum efficiencies of this acid under the conditions described has a significant
positive impact.

There are several studies suggesting that EtOH contributes as an ED, thereby promot-
ing the production of MCFAs, including HCa. EtOH in the influent can promote hydrolysis,
with small, degraded molecules undergoing further fermentation during acidogenesis,
ultimately producing VFAs [21,22,26,27]. These studies suggest that EtOH can be used as
an ED to facilitate CE [22,24,50]. In Figure 4, it can be observed that a higher presence of
HCa in the medium corresponds to a decrease of EtOH in the effluents. According to the
stoichiometry, if there is not enough EtOH to react with all the HAc (2EtOH:1HAc), the
production of HBu and HCa is interrupted [24].
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This suggests that the use of EtOH for CE, as proposed in previous studies, aligns with
our results. For the maximum concentration of HCa at 5 h HRT, the presence of EtOH in the
medium is negligible (Figure 4). It can be observed that the initial EtOH concentration has
been reduced by approximately 68% for the 8 h HRT and 85% for the 5 h HRT. However,
for the 2.5 h HRT, its reduction is negligible and the production of HCa for this time also
decreases by 67% compared to the maximum obtained at 5 h HRT. EtOH acts as an ED and
is assimilated by microbial consortia, which use it to produce VFAs, particularly favouring
the production of MCFAs. Among the well-studied genera in this context, C. kluyveri
stands out, as it can use EtOH as an ED to produce long-chain VFAs. Similarly, the genus
Megasphaera elsdeni demonstrates the ability to employ lactate for the same purpose [20].

3.2. Biogas Production

Biogas production occurs in anaerobic environments through the action of microor-
ganisms, using VFAs as precursors [17]. It is, therefore, challenging to establish optimal
conditions for all groups of microorganisms in a digester [17,53].

AF is used to convert biodegradable biomass into VFAs, CO2, and H2 through the
action of anaerobic acidogenic microorganisms. However, the production of H2 can be
limited by the accumulation of VFAs in the system (end product inhibition) [54,55].

Regarding the biogas production (Table 4), daily analyses were carried out to control
the stability of the reactor and to establish a relationship between the biogas and the
microbial community inside the reactor.

Table 4. Medium daily values of the percentages and volume of biogas for each HRT.

HRT
(h)

Total Volume Biogas
(mL/d) CH4/CO2 CO2 (mL) CH4 (mL) % CO2 % CH4 % CODCH4

(*)

8 600 ± 35.69 12.81 ± 1.09 43.39 ± 5.98 556.18 ± 29.70 7.22 ± 0.57 92.78 ± 0.57 24.83 ± 1.35
5 897 ± 31.25 16.11 ± 1.71 52.41 ± 7.02 844.69 ± 24.23 5.83 ± 0.58 94.17 ± 0.58 23.78 ± 0.64

2.5 51 ± 61.70 6.96 ± 8.77 6.41 ± 8.54 44.57 ± 53.15 9.08 ± 5.77 90.92 ± 5.77 0.63 ± 0.74

Carbon dioxide (CO2), methane (CH4), and Chemical Oxygen Demand (COD). (*) CH4 generation expressed as %
of COD converted from OLR in each HRT.

The results show that there was a 33% increase in total biogas production when
transitioning from an 8 h HRT to a 5 h HRT. However, a significant decline of approximately
94% in biogas production was observed at the 2.5 h HRT, signifying a substantial change
in reactor stability. It can be observed that for the first two HRTs, the CH4 generation
expressed as % of the converted COD is around 24%, whereas for the 2.5 h HRT, this %
decreases to around 1%.
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The data indicate that although there were variations in the total volume of biogas
produced, the proportions of gas composition remained relatively stable. The % CO2
content remained consistent, ranging from 6% to 9% across all HRTs. Volatile Fatty Acids
(VFAs) are formed during AD, which also produces biogas as a product. Biogas is rich
in CH4, with a minimum content of 65–70%. The CH4 levels obtained in this study were
quite high, exceeding the upper boundary of 85% [31,36]. Values were around 91–94%
in all HRTs studied. Such high CH4 levels, over 90%, have also been reported in other
studies [56,57]. However, the variability of the 2.5 h HRT caused this value to fluctuate and
to decrease to 85%. This fluctuation confirmed the destabilisation of the system.

The significant variability observed in all parameters related to biogas production at
the lowest HRT was also indicative of system destabilisation.

3.3. Microbial Community Dynamics

AD is a multi-step process involving a wide variety of microorganisms, including fer-
mentative bacteria (acidogens), hydrogen-producing, acetate-forming bacteria (acetogens),
and archaea that convert acetate or hydrogen to methane (methanogens). The imbalance in
any one step can lead to the collapse of the entire system [58,59].

Operating parameters such as pH, HRT, and OLR, among others, have a synergistic
effect on the microbial communities involved in the fermentation processes, influencing
cellular metabolism [60].

In UASB reactors, it has been observed that bacteria can naturally form aggregates
in the form of flocs and granules [34]. By extracting DNA from the granules, it was
possible to identify and analyse the microbial populations. It has also allowed the study
and identification of the dominant groups of microorganisms, both their diversity and
abundance present when environmental changes occur, as well as due to the variation
of HRTs.

The microbiota was categorized into archaea and bacteria populations, resulting in
a total of 240,413 high-quality archaeal sequences and 77,632 bacterial sequences. The
relative abundance of bacterial and archaeal communities during fermentation is shown in
Figure 5a.

No significant differences were observed in the distribution of archaeal phyla among
the various HRTs. Euryarchaeota was the predominant phylum, comprising over 96% of the
archaeal population (Figure 5b). This dominance aligns with findings from other studies.
The remaining two phyla each represented less than 3% of the total archaeal population
across all HRTs [61]. The predominant genera with an abundance >15% detected in the
Pre-Start-Up (PSU) were Methanosaeta (16%), Methanobacterium (18.5%), and Methanobre-
vibacter (63%). Methanosaeta is one of the major genera of acetoclastic methanogens when
the microbial community is acclimated to HBu [62]. This genus belongs to the phylum
Halobacterota, as shown in Figure 5b, where its abundance is approximately 17% in the
PSU. However, in the different HRTs studied, its presence does not exceed 1%, and in some
cases, it is absent. On the other hand, both Methanobacterium and Methanobrevibacter
belong to the family Methanobacteriaceae (hydrogenotrophic methanogens), which reduce
CO2 with H2 [63]. For the 8 h HRT, the most abundant genus is Methanobrevibacter,
accounting for over 90%, followed by Methanobacterium at 4–8%. The remaining genera
(Methanosaeta and Methanomethylophilus) have negligible abundances, sometimes even
disappearing. In the case of 5 h HRT, we find that, as in the 8 h HRT, the two dominant gen-
era are Methanobrevibacter (93–79%) and Methanobacterium (7–19%) for the intermediate
and final samples of this HRT. Although these genera remain dominant, there is a decrease
in the abundance Methanobrevibacter accompanied by an increase in Methanobacterium.
The other two genera, as observed in other HRTs, have abundances of <2%. Finally, for the
2.5 h HRT, Methanobrevibacter initially decreases to 52% and then increases to 92%. In
contrast, Methanobacterium increases to 45% and then decreases to 8%. This shift in the
microbial community, as observed in previous sections, confirms the destabilization of the
system at this HRT.
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lution of the percentage of abundance of the Phylum Bacterium in each HRT; (c) Evolution of the
percentage of abundance of the Phylum Archaea in each HRT. (PSU (Pre-Start-Up), I (Intermediate),
and F (Final)).

Figure 5c shows the main bacterial phyla found in the different HRTs studied. Over 11
bacterial phyla were detected, and only those with a significant abundance of more than 1%
are shown, while the rest were grouped together. The most abundant bacterial phyla in all
fermentation samples were Firmicutes (>48%), Proteobacteria (>8%), and Bacteroidota (<5%).
Dominance of Firmicutes and Proteobacteria as dominant phyla has also been reported in
other studies, and in particular bacteria belonging to phylum Firmicutes have been identified
as important microorganisms for maximising VFA formation [11,61]. Bacteroidota is a
phylum involved in the degradation of complex polymers and the hydrolysis of proteins into
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VFAs (HAc) and NH3 [61,64,65]. This phylum is present with an abundance of approximately
10% for the 8 h HRT, decreases to 6% for the 5 h HRT and then increases again to 9% when
the HRT is reduced to 2.5 h. It is worth noting that in the sample taken for PSU, this phylum
had a predominance of 25%, resulting in a reduction of about 33% compared to the initial
relative abundance.

Firmicutes is a Gram-positive bacterium widely reported in AD and is known to be
important in acid hydrolysis [61,64]. The high abundance of Firmicutes, approximately
50%, may be related to its adaptation to high VFAs and low pH conditions [66]. This
phylum was found in all HRTs with the highest relative abundances, which were 55%, 69%,
and 57% for 8 h, 5 h, and 2.5 h HRTs, respectively. This phylum usually has the highest
relative abundance (65–83%) in AF [11]. Within this phylum, we can find some of the
genera known to be VFAs producers, as shown in Table 5.

The Proteobacteria phylum consists of acidogenic bacteria involved in the degradation
of organic matter and the consumption of VFAs. It was one of the dominant phyla in the
AD of sewage sludge [65,67]. We found this phylum with an abundance of 9% in the PSU,
which increased by over 50% for the 8 h and 5 h HRTs.

Spirochaetota is a phylum of syntrophic acetate-oxidising bacteria that are often
present in bacterial communities in reactors. Treponema belongs to this phylum, possesses
the capability to hydrolyse cellulose and hemicellulose to produce HAc from H2 and
CO2 [64]. In the HRTs tested, the abundance of this phylum is low, never exceeding 8% and
even disappearing in the 8 h HRT. In the specific case of the genus Treponema, it is below
2% in all cases.

Within the Desulfobacterota phylum, with an average abundance of about 3%, the
metal-reducing genus can be found, such as the species Desulfovibrio, with almost complete
dominance within its phylum. This species can grow syntrophically, producing H2, or act
as an electron carrier between species [62,68].

The first reported case of carbon CE was in 1942, in an experiment using a pure
culture of C. kluyveri, where EtOH was converted to HCa. EtOH was oxidised to HAc,
then to HBu and finally to HCa [59,69]. C. kluyveri, belonging to the order Clostridiales
and family Clostridiaceae. It was found in the reactor with a relative abundance of 0.1%
at the beginning of the reactor, 1% for the intermediate 8 h HRT and 2.7% for the final
of 8 h HRT, 1.2% for the intermediate 5 h HRT, 0.5% for the final 5 h HRT, 0.8% for the
intermediate 2.5 h HRT, and 0.7% for the final 2.5 h HRT. However, if we calculate the
specific percentage of this bacterium within the relative abundance of its genus (Table 5),
we see a predominance of 36.89% for the 5 h HRT, 24.57% for the 8 h HRT, and 7.25% for
the 2.5 h HRT, for the intermediate states of each HRT. An HRT of 5 h shows the highest
predominance of these bacteria, which is consistent with the results obtained for HCa
concentrations. The detection of Clostridium butyricum, known for its ability to produce
HBu and CO2, was observed. However, its presence was consistently at or below 1%
in all cases. In the class Clostridia, but belonging to another order, Oscillospirales, and
family Ruminococcaceae, the genus Caproiciproducens was found (Table 5). It has been
described that the strain Caproiciproducens galactitolivorans BS-1T produces H2, CO2, EtOH,
HAc, HBu, and HCa as the final metabolic products of anaerobic fermentation, which
corresponds to the production of HCa [50,59]. HCa producers, such as C. sp. (genus
Caproiciproducens) [59] among others, were found in the following proportions: 3.5% for
8 h HRT, 2.3% for 5 h HRT, and 1.7% for 2.5 h HRT.

Table 5 shows the frequency of certain genera known to produce certain VFAs. In
general, we can observe variations in abundance between the intermediate and final periods
of the 2.5 h HRT, as was observed for the Archaea.
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Table 5. Percentage of abundance of bacteria producing the different VFAs for each HRT and authors
with similar genus identification.

VFAs Genus

% Abundance

Ref.8 HRT 5 HRT 2.5 HRT

PSU I F I F I F

HAc
Acetobacter 0.21 4.08 5.77 2.02 3.36 2.93 2.24 [36,50,51,53]
Clostridium 2.11 4.07 9.13 4.88 3.65 11.03 1.01 [36,50,51,53]

HPr
Propionibacterium 0.38 0.54 0.29 0.21 1.18 0.11 [36,50]
Acidaminococcus 0.86 0.72 0.56 0.33 0.17 0.23 0.22 [70]

HBu

Butyricicoccus 0 0.02 0.04 0.1 0.03 0.05 0.1 [71]
Butyrivibrio 0.02 0.02 0.01 0 0 0.01 0.05 [36,50]

Acidaminococcus 0.86 0.72 0.56 0.33 0.17 0.23 0.22 [70]
Clostridium 2.11 4.07 9.13 4.88 3.65 11.03 1.01 [36,50]
Eubacterium 0.5 0.22 0.14 0.06 0.06 0 0.08 [36,50]

HCa
Caproiciproducens 7.27 4.72 4.11 3.83 3.19 3.14 0.97 [59]

Clostridium 2.11 4.07 9.13 4.88 3.65 11.03 1.01 [36,50,59]

4. Conclusions

The effect of Hydraulic Retention Time (HRT) on the acidogenic fermentation stage
of a UASB technology for the treatment of synthetic Winery Wastewater was investigated,
assessing various system-specific parameters and microbiota evolution.

A net generation of caproic acid was observed in all the studied HRTs. There is a
direct correlation between the final concentration of this acid and the removal of ethanol in
the effluent.

In all sceneries, the population of Eubacteria was higher than that of Archaea. The
dominant phyla within their respective domains were Euryarchaeota and Firmicutes.

The optimal operational results were obtained at 5 h HRT, where the following obser-
vations were made.

• The maximum total production of Volatile Fatty Acids in the effluent was 1.7 gCOD/L,
with a 45% of HCa (0.9 gCOD/L).

• Approximately 21% of feed COD is converted to VFA.
• The Archaeal population remained stable at over 35%, most of them (>96%) belonged

to the phylum Euryarchaeota, within which the family Methanobacteriaceae (hy-
drogenotrophic methanogens) dominated with more than 98%.

• Within the Eubacteria population, we identified genera known for their HCa produc-
tion capabilities, including Clostridium kluyveri and Clostridium sp. Both genera belong
to the dominant phylum Firmicutes, which constituted 69% of the population.

• The biogas has a high methane content (>94%), with 24% of the fed COD converted
into CH4.

When operating at the lowest HRT (2.5 h), system destabilization is observed, as
evidenced by various parameters, such as the removal efficiencies of suspended solids and
ethanol, a decrease in VFAs, and reduced biogas production.

Based on the results obtained, the application of a UASB reactor for the treatment of
WW could potentially serve as a practical alternative within the context of bio-refinery and
the circular economy for the production of caproic acid.
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