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Abstract: Fermented foods refer to beverages or foods made by carefully regulated microbial growth
and the enzymatic conversion of dietary components. Fermented foods have recently become more
popular. Studies on fermented foods suggest the types of bacteria and bioactive peptides involved in
this process, revealing linkages that may have impacts on human health. By identifying the bacteria
and bioactive peptides involved in this process, studies on fermented foods suggest relationships
that may have impressions on human health. Fermented foods have been associated with obesity,
cardiovascular disease, and type 2 diabetes. In this article, fermented dairy products, vegetables and
fruits, legumes, meats, and grains are included. Two elements in particular are emphasized when
discussing the fermentation of all of these foods: bioactive chemicals generated during fermentation
and microorganisms involved during fermentation. Organic acids, bioactive peptides, conjugated
linoleic acid, biogenic amines, isoflavones, phytoestrogens, and nattokinase are a few of the bioactive
compounds included in this review. Also, certain bacteria such as Lactobacillus, Bifidobacterium,
Streptococcus, and Bacillus species, which are utilized in the fermentation process are mentioned.
The effects of both substances including anti-fungal and antioxidant properties; the modulation of
intestinal microbiota; anti-inflammatory, antidiabetes, anti-obesity, anticancer, and antihypertension
properties; and the protection of cognitive function are explained in this review.

Keywords: fermentation; fermented foods; bioactive compounds; health; microorganisms

1. Introduction

Fermentation is a food processing technique, and its origins date back many centuries.
The existence of fermented products has been demonstrated to be started in India, Iraq,
and Egypt in the years BC [1]. The definition of fermentation according to the International
Scientific Probiotic and Prebiotic Association (ISAPP) is “foods made through desired
microbial growth and enzymatic conversions of food components”. Fermentation has been
used by humans for as long as recorded history to preserve and modify food, resulting
in more stable and varied food with distinctive organoleptic, sensory, and functional
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features [2]. Due to their distinctive flavors, fermented foods are being produced and
consumed in greater quantities. There has also been a scientific concentration on the health
benefits of fermented foods and their components [3]. In the fermentation procedure,
microorganisms, specifically bacteria, yeasts, and mycelial fungus, as well as their enzymes,
produce fermented foods. Milk, cereals, vegetables, fruits, legumes, meats, and products
are food groups used in fermentation [4].

Food fermentation’s main purposes are to increase food safety and lengthen shelf
life; additionally, fermented foods have grown to be known for their positive effects on
health [5]. Foods that have undergone fermentation may produce bioactive compounds
as byproducts of the process, and fermented foods may contain live microorganisms that
have health benefits [6]. The main metabolites and microorganisms involved in food fer-
mentation may be divided into categories: alcohol, carbon dioxide (from yeast), propionic
acid (from Propionibacterium freudenreichii), lactic acid (from lactic acid bacteria (LAB) from
genera such as Lactobacillus and Streptococcus), acetic acid (from Acetobacter), ammonia,
and fatty acids (from Bacillus and molds) [7]. The metabolites produced by the fermenting
organisms limit the expansion of spoilage, and pathogenic organisms during food fermen-
tation extend the shelf life of perishable foods [8]. During fermentation, macronutrients
are broken down, and digestion is facilitated. Many fermented foods include probiotic-
potential bacteria in them [5]. Probiotics are defined in the FAO/WHO report as “Live
microorganisms which when administered in adequate amounts confer a health benefit
on the host” [9]. According to the ISAPP, these concentrations of probiotics can vary daily
from 100 million to over a trillion CFU. The majority have been studied at concentrations
of 1 to 10 billion CFU/d [10]. Fermented foods may serve as probiotic carriers, effec-
tively delivering the probiotic to the host and conferring health advantages [11]. Although
there may be a fermentation process involved, consumed fermented foods may not con-
tain live bacteria. The term “probiotic” is only used when a product has clearly shown
health advantages brought about by the action of well-defined and characterized living
microorganisms [2]. The metabolic activity of microorganisms during fermentation results
in a number of biochemical alterations that have impacts on the nutritive and bioactive
qualities of fermented foods. The bioactive components showing health benefits include
exopolysaccharides, bioactive peptides, phenolic compounds, short-chain fatty acids (SC-
FAs), conjugated linoleic acid (CLA), and γ-aminobutyric acids (GABAs) [12]. Fermented
foods and their components can have many health effects such as antioxidant, antidiabetes,
anti-inflammatory, anti-hypercholesterolemic, and microbiota modulation effects [13–16].

This review focuses on the advantages of bioactive compounds for health and the
probiotic microorganisms that occur in some foods during fermentation or are derived from
fermented foods. This article focuses on fermented foods that are frequently consumed in
the food groups of dairy, fruits, vegetables, meats, cereals, and legumes. Some fermented
foods and the health effects of the components that occur during fermentation, as well as the
health effects of probiotic microorganisms in fermented foods, are included. In summary,
this article seeks to investigate the possible health effects of fermented foods by focusing on
the following: (i) the general effects of fermented foods on health, (ii) the compounds that
occur in bioactive components during fermentation and their health effects, and (iii) the
health effects of bacteria with probiotic properties that are contained in or isolated from
fermented foods.

2. Fermented Dairy Products

Milk is an important source of macro- and micronutrients. Protein, conjugated linoleic
acid, calcium, riboflavin, and phosphorus are macro- and micronutrients that are commonly
found in milk. These nutrients have impacts on health and diseases [17]. Milk proteins
(whey and casein) have positive effects on satiety and body weight control; have hypoten-
sive, antimicrobial, anti-inflammatory, anticancer, and antioxidant effects; and cause insulin
release and glucose regulation [18]. Many fermented products such as yogurt, cheese,
and kefir are obtained via the fermentation of milk. In the production of fermented milk
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products, LAB play a crucial role [19]. Milk fermentation using yeasts, propionibacteria,
and LAB may result in the synthesis or increase in the number of bioactive compounds
that show some health benefits. These include vitamins, CLA, exopolysaccharides (EPSs),
GABAs, bioactive peptides, and oligosaccharides [20]. For example, lactic acid bacteria
and propionibacteria can increase the amounts of B12 and folic acid in fermented milk
products [21–23]. In addition, the fermentation of lactic acid in milk reduces the amount
of lactose, which may make fermented dairy products tolerable for people with lactose
intolerance [24]. The bioactive components and health effects of kefir, yogurt, and cheese,
which are widely consumed fermented dairy products, are examined in detail below.

2.1. Kefir

Kefir is an acidic alcoholic fermented dairy product with a creamy consistency and
a slightly acidic taste, originating from the Balkans, Eastern Europe, and the Caucasus.
Traditionally, kefir is produced using cow, sheep, goat, or buffalo milk [25]. Kefir grains
are used as a starter in the production of kefir. The bacteria and yeasts commonly found
in kefir grains are Lactobacillus kefiranofaciens, Lacticaseibacillus paracasei, Lactiplantibacillus
plantarum, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Kluyveromyces
marxianus ssp. Marxianus Candida kefyr, Saccharomyces cerevisiae, and Saccharomyces unis-
porus [26]. Kefir is thought to include more than 300 distinct microbial species [27]. The
microorganisms present in kefir grains may vary depending on the source of kefir, climatic
conditions, geographical origin, substrate used in the fermentation process, and production
methods [28–31].

Kefir exerts its positive effects on health through whole kefir, kefir grains, lactic acid
bacteria, yeasts, organic acids, polysaccharides (kefiran and exopolysaccharides), and vari-
ous other metabolites [32]. As a result of fermentation, there is an increase in lactic acid and
antioxidant activity in kefir compared to normal milk [33]. In addition, Propionibacterium
freudenreichii bacteria in kefir grains can cause an increase in B12 and folate levels [22].
Studies on kefir, kefir grains, and kefir components (lactic acid bacteria, organic acids,
bioactive peptides, and polysaccharides) have shown that they have antihypertensive [34],
anticancer [35], antioxidant [36], anti-inflammatory [37], antidiabetic [38], and hypocholes-
terolemic effects [39] in addition to effects on bone health [40], cognitive function [41], and
microbiota modulation [42].

The bacteria and yeasts identified in kefir can have positive effects on health. Kluyveromyces
marxianus is one of the yeasts in kefir. Its strain, obtained from kefir, has been shown to re-
main alive in the digestive system [43]. Kluyveromyces marxianus B0399 supplementation
decreased proinflammatory cytokines (tumor necrosis factor alpha (TNF-α), interleukin (IL)-6,
macrophage inflammatory protein-1 (MIP-1) α, IL-12, IL-8, interferon (IFN)-γ) and increased
SCFAs (acetate and propionate). Although there was no change in the total bacterial count, the
Bifidobacterium genus count increased [44]. Kluyveromyces marxianus A4 and A5 supplementa-
tion showed good adhesion in Caco-2 cells. Kluyveromyces marxianus A4 increased Bacteroidetes,
Bacteroidales, and Bacteroides, and Kluyveromyces marxianus A5 increased Corynebacteriales and
Corynebacterium [45]. In another study, a high concentration of Kluyveromyces marxianus A5
decreased IL-6 [46]. In this direction, kefir is effective in immune response and colonic micro-
biota modulation. The lactic acid bacteria obtained from kefir have immunomodulatory and
antioxidant effects [39,47].

As a result of fermentation in kefir, kefiran and exopolysaccharides are formed. Polysac-
charides have been described to have anticancer, anti-inflammatory, antioxidant, anti-atheroscle
rosis, and microbiota modulation effects [42,48–61]. In the study by Bengoa et al. [62], Lacti-
caseibacillus paracasei exopolysaccharides isolated from kefir increased the fecal total SCFA,
propionic acid, and butyric acid levels [62]. Lim et al. [63] found that kefir exopolysaccharides
reduced intracellular lipid accumulation and enhanced the abundance of Akkermansia spp. in
feces. Since there are many studies on the effects of kefir and its fermented components on
health, Table 1 summarizes the components and their effects.
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Table 1. Possible health effects of kefir and its components.

Bioactive Components Health Effects Specific Effects References

Kefir and kefir grains

Antihypertensive

ACE inhibitory activity
Blood pressure ↓ [34]

Mean arterial pressure ↓
Cardiac hypertrophy ↓
TNF-α/IL-10 ↓
ACE activity ↓

[64]

Anticancer

TGF-α downregulation and TGF-β1 mRNA
expression upregulation has antiproliferative effects
Dose-dependent effects:
Transcriptional levels of TGF-α ↓
Transcriptional levels of TGF-β1 ↑
Apoptotic cells ↑

[35]

Expression of TGF-α ↓ TGF-β1 ↓
p53-independent p21 expression ↑
Upregulation in Bax/Bcl-2 ratio
Kefir may induce apoptosis and inhibit proliferation

[65]

Tumor growth 64.8% ↓ [66]

The size and the amount of tumor ↓
In colon tissue:
The mRNA expression levels of mRNA of TNF-α, IL-6,
and IL-17a ↓
TNF-α, IL-6, and IL-17a ↓
Proliferating cell indicators (Ki67, NF-κB, β-Catenin) ↓
Claudin 1, ZO-1 mRNA, and protein levels ↑
Serum LPS ↓
In feces:
Butyric acid, acetic acid, and propionic acid ↑
Ascomycota/Basidiomycota ratio and
Firmicutes/Bacteroidetes ratio ↓
Lactobacillus and Bifidobacterium ↑
The relative abundance of probiotics ↑
The pathogenic bacteria (Aspergillus, Clostridium sensu
stricto, and Talaromyces) ↓

[67]

Antioxidant

TAS ↑ [36]

Serum levels of ·O2
−, H2O2, and ONOO−/OH− ↓

NO levels ↑
Protein oxidation ↓
p53 expression↑
DNA fragmentation ↓
Apoptosis ↓

[37]

MDA↓, CAT ↑, SOD ↑, GPx ↑ [68]

DNA damage ↓
Antioxidant capacity of kefir according to milk ↑ [69]

Anti-inflammatory
TNF-α, IL12p70, and IL-8 ↓
IL-8/IL-10 and IL-12/IL-10 ↓ [37]

TNF-α, IFN-γ ↓ [38]



Fermentation 2023, 9, 923 5 of 50

Table 1. Cont.

Bioactive Components Health Effects Specific Effects References

Kefir and kefir grains

Microbiota modulation

Bifidobacterium bifidum PRL2010 ↑ [48]

Lactobacillus quantity of treatment group for
Crohn’s disease ↑
Lactobacillus quantity of treatment group for
ulcerative colitis ↑

[70]

Relative abundance of Actinobacteria ↑ [38]

Firmicutes/Bacteroidetes ratio,
Ascomycota/Basidiomycota ratio ↓
Lactobacillus and Bifidobacterium ↑
Probiotics’ relative abundance ↑
The pathogenic bacterium (Clostridium sensu stricto,
Aspergillus, and Talaromyces) ↓
Clostridium_sensu_stricto_1, Bacteroides,
Lachnospiraceae_NK4A136_group,
Oscillospiraceae, Desulfovibrio ↓
Muribaculaceae and Alloprevotella ↑

[67]

Milk kefir had a free radical scavenging activity of
76.640.42%
In the colon: SOD and CAT ↑
Brain butyrate and propionate ↑
Fecal butyrate ↑
Lachnospiraceae and Lachnoclostridium ↑
Relative abundance of Firmicutes ↑
Proteobacteria and Epsilonbacteraeota ↓

[71]

Bone health

Prevented estrogen-deficiency-induced bone loss
Bone volume/total volume ↑
Bone mineral density ↑
Trabecular thickness ↑
Trabecular number↑
Average cortical elastic moduli, hardness ↑
Trabecular separation ↓
Type I collagen levels ↓

[40]

Antidiabetic

Insulin ↓, HOMA-IR ↓ [38]

Serum glucose ↓
HbA1c ↓ [72]

Cognitive function Improvement in performance in the MMSE
Improvement in the memory test [37]

Hypocholesterolemic
Serum LDL-C ↓
LDL-C/HDL-C ratio ↓
Serum HDL-C ↑

[39]

Lactic acid bacteria
Immunomodulatory Mucins (MUC-1 and MUC-2) and IgA

gene expression ↑ [39]

Antioxidant Lactiplantibacillus plantarum MA2 had
antioxidant potential [47]

Organic acids Antimicrobial

Milk fermentation with kefir grains antagonizes
Bacillus cereus through the organic acids (lactic acid
and acetic acid) produced during fermentation

[73]

Escherichia coli, Salmonella, and Bacillus Cereus
pathogenic strains’ growths were inhibited
This related to the concentration of lactic acid

[74]
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Table 1. Cont.

Bioactive Components Health Effects Specific Effects References

Bioactive peptides

Antihypertensive

ACE activity inhibition [75]

Peptides defined in kefir have previously shown an
ACE inhibiting effect [76]

ACE inhibitory activity [77]

Antifibrosis

Kidney cells
Relative expression of α-SMA) ↓
Relative expression of ET-1 ↓
Relative expression of MMCP-1) ↓
Kidney tissues
Protein expression of ET-1 ↓
Protein expression of α-SMA ↓

[78]

Anti-inflammatory

Pro-inflammatory cytokines ↓ [34]

NF-kB protein expression ↓
TGF-β protein expression ↓
NLPR3 protein expression

[78]

Antioxidant

Total antioxidant capacity of the FRAP ↑ [41]

ABTS and DPPH radical scavenging activity [79]

ROS production ↓
Lipid peroxidation ↓ [34]

Renal effects:
SOD activity ↑
ROS activity ↓

[78]

Antimicrobial

Escherichia coli ATCC 25922, Pseudomonas aeruginosa
ATCC 27853, Klebsiella pneumoniae ATCC 29665,
Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 33019,
and Staphylococcus aureus ATCC 6538 growths
were inhibited

[79]

Increasing the outer and inner membrane permeability
of Escherichia coli, causing damage to the cell
membrane, and promoting intracellular
material leakage

[80]

Neuromodulation
Neurodegeneration index ↓
Acetylcholinesterase activity ↓
Lower amyloid content

[41]

Bone health

Preventing menopausal osteoporosis
Trabecular number ↑
Trabecular bone volume ↑
Trabecular thickness ↑
Average cortical elastic moduli, hardness ↑
Bone mineral density ↑
Trabecular separation ↓

[81]

Microbiota modulation
Restored the abundances of Alloprevotella,
Parasutterella, Anaerostipes, Ruminococcus_1, Romboutsia,
and Streptococcus genera

[81]

Polysaccharide
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Table 1. Cont.

Bioactive Components Health Effects Specific Effects References

Kefiran

Anticancer

MCF7 cancer cells ↓, PBMC ↑ [49]

Anti-proliferative effect on HeLa and HepG2
Cell viability of HeLa and HepG2 ↓ [50]

Anti-inflammatory and
immunomodulatory roles

Proinflammatory cytokines (NF-kB, IL-1β, TNF-α) ↓
Overexpression of TLR4 ↓ [51]

BALB/c mice
Small intestine:
IgA, IL-10, IL-6, IL-12 ↑
Serum:
IL-4, IL-6, IL-10 ↑
Intestinal fluid:
IL-4, IL-12 ↑
Large intestine:
IgA, IgG, IL-6, IL-10, IL-4, IFN, TNF ↑

[52]

Inhibition percentage of nitric oxide radical
production [53]

Antioxidant

Scavenging of superoxide and hydroxyl radicals [53]

DPPH free radicals scavenging activity ↑ [54]

Lipid peroxide of βVLDL ↓ [55]

Microbiota modulation
Intestinal Bifidobacteria ↑ [42]

Bifidobacterium bifidum PRL2010 ↑ [48]

Exopolysaccharide

Anticancer

Antitumor activity against colon cancer HT-29 cells
Upregulate the expression of Cyto-c, BAD, BAX,
caspase3, caspase8, and caspase9
Downregulate BCl-2

[56]

Anti-inflammatory and
immunomodulatory roles

Cell viability of the RAW264.7 cells ↑
NO concentration ↑
TNF-α, IL-1β concentration ↑
iNOS concentration ↑
Proliferation and phagocytosis are increased to
combat infection and inflammation

[57]

Dose-dependent effects:
Cell viability of the RAW264.7 cells ↑
NO concentration ↑
TNF-α, IL-1β concentration ↑
Enhanced the proliferation, phagocytosis

[58]

Dose-dependent effects:
NO concentration ↑
TNF-α, IL-6, IL-1β, IL-10 concentration ↑
Increasing the activity of acid phosphatase
Enhancing macrophages’ phagocytosis
Viability of macrophages

[59]

Antioxidant

GPx 21.55%, SOD 33.14%, CAT 61.09%
Total antioxidant capacity 38.18%
MDA ↓

[61]

Certain scavenging activities:

â DPPH free radical scavenging activity
â ABTS free radical scavenging activity
â Hydroxyl free radical scavenging activity

[60]
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Table 1. Cont.

Bioactive Components Health Effects Specific Effects References

Microbiota modulation

The abundance of Flexispira ↓
The abundances of Blautia and Butyricicoccus ↑
Content of SCFA ↑
Content of NO ↓

[61]

Total SCFA ↑
Propionic acid and Butyric acid ↑
Proportion of the genera Victivallis, Acidaminococcus,
and Comamonas ↑
Proportion of Enterobacteria ↓

[62]

The abundance of the phyla Bacteroidetes,
Verrucomicrobia, and Proteobacteria ↑
The abundance of the Firmicutes and Actinobacteria ↓
The enhanced abundance of Akkermansia spp. in feces

[63]

Anti-obesity

Lower intracellular lipid accumulation
Epididymal adipose tissue weight 19% ↓
Body weight gain ↓
VLDL-C 36% ↓

[63]

↑: increased, ↓: decreased, ACE: angiotensin-converting enzyme, TNF-α: tumor necrosis factor alpha,
IL: interleukin, TGF-α: transforming growth factor alpha, TGF-β1: transforming growth factor beta, TAS: total
antioxidant status, LPS: lipopolysaccharide, CAT: catalase, MDA: malondialdehyde, SOD: superoxide dismu-
tase, GPx: glutathione peroxidase, α-SMA: α-smooth muscle actin, ET-1: endothelial-1, MCP-1: monocyte
chemoattractant protein-1, HOMA-IR: homeostasis model assessment of insulin resistance, ABTS: 2,2′-azino-bis(3-
ehtylbenzothiazoline-6-sulfonate), DPPH: 2,2-diphenyl-1-picrylhydrazyl, iNOS: inducible nitric oxide synthase,
NO: nitric oxide, SCFA: short-chain fatty acid, LDL-C: low-density lipoprotein cholesterol, HDL-C: high-density
lipoprotein cholesterol, VLDL-C: very-low-density lipoprotein cholesterol, TLR-4: Toll-like receptor 4, Ig: im-
munoglobulin, IFN: interferon, DNA: deoxyribonucleic acid, MMSE: mini-mental state examination, HbA1C: gly-
cated hemoglobin, NF-Kb: nuclear factor kappa B, PBMC: peripheral blood mononuclear cells, NLPR3: nucleotide-
binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3, HeLa: human cervical
cancer cells, HepG2: human liver hepatocarcinoma cells.

2.2. Yogurt

One of the products of the lactic acid fermentation of milk is yogurt. The lactose
in its content is converted into lactic acid by bacteria. In this way, it can be tolerated in
the case of lactose intolerance. It also has benefits for health due to its protein content,
vitamins such as riboflavin, minerals such as calcium, and metabolites that result from
fermentation [82]. One of the components in yogurt that may have a positive effect on
health is the CLA content. As a result of the increase in fermentation time, the CLA level in
yogurt may increase [83]. The CLA contents of natural yogurt, probiotic yogurt, and Greek
yogurt obtained from goat milk were found to be 3.28 ± 0.10 mg/g fat, 4.07 ± 0.08 mg/g
fat, and 4.19 ± 0.14 mg/g fat, respectively [84]. The CLA contents of cow, sheep, and goat
milk yogurts were found to be 0.128–1.501, 0.405–1.250, and 0.433–0.976 g CLA/100 g fat,
respectively [85]. In another study, 0.24–0.45 g/100 g fat was found in cow yogurt, and
0.47–0.76 g/100 g fat was found in sheep yogurt. When the effect of storage time on the CLA
level was evaluated, the CLA level increased significantly in yogurt obtained from sheep
milk after 14 days of storage, while it decreased in yogurt obtained from cow milk [86].
When yogurts from Polish markets were evaluated, the highest CLA content was found
in bio yogurt. Probiotics and natural yogurt did not differ in the CLA content [87]. CLA
has positive effects on obesity, cancer, cardiovascular diseases, bone health, and immune
response [88].

Studies on the consumption of conventional/probiotic yogurt have evaluated its
microbiota modulation [89], hypocholesterolemic [90], antidiabetic, antioxidant [91], and
anti-obesity effects [92]. It was found that visceral fat decreased, and the abundances of
Streptococcus thermophilus and Bifidobacterium animalis subsp. Lactis species increased in indi-
viduals who consumed yogurt. A correlation was observed between Bifidobacterium animalis
subsp. Lactis and increased fecal 3-hydroxyoctanoic acid contents [89]. Yogurt supplementa-
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tion (220 g/day) decreased fasting insulin, insulin resistance, intrahepatic lipid, hepatic fat
fraction, serum lipopolysaccharide (LPS), fibroblast growth factor 21, triglycerides, TNF-α,
total cholesterol, glutathione peroxidase (GPH-Px), and superoxide dismutase (SOD). In
addition, it regulated the microbiota composition [91]. Hasegawa et al. [92] reported that
yogurt supplementation in obese mice resulted in decreased the levels of Homeostasis
Model Assessment of Insulin Resistance (HOMA-IR), serum TNF-α, plasma LPS binding
protein, and colonic LPS expression, and altered the diversity of cecal microbiota. In addi-
tion, body weight gain was reduced in obese mice [92]. Compared to no snack consumption,
yogurt consumption reduced afternoon hunger and delayed the desire to start the next
meal. Although this effect was observed for all yogurts, the highest and most significant
effect was observed in yogurt containing 24 g of protein [93].

When the effects of probiotic and conventional yogurts were evaluated, the total
cholesterol and total cholesterol/high-density lipoprotein cholesterol (HDL-C) ratio de-
creased as a result of consuming both yogurts. Both yogurts showed hypocholesterolemic
effects [90]. In the study by Rezazadeh et al. [94], probiotic yogurt decreased blood glucose,
insulin, HOMA-IR, Quantitative Insulin Sensitivity Calculation Index (QUICKI), vascu-
lar cell adhesion molecule cell (VCAM)-1, and plasminogen activator inhibitor (PAI)-1
values [94]. Various Lactobacillus and Bifidobacterium species in probiotic yogurts have
been shown to lower cholesterol; regulate plasma glucose levels; have antioxidant, anti-
inflammatory, and microbiota modulation effects; and have positive effects on cancer
and ulcerative colitis [95–100]. El-Dein et al. [101] compared fermented yogurt with Lac-
tiplantibacillus plantarum KU985438 or Lacticaseibacillus rhamnosus KU985439 and found
that Lacticaseibacillus rhamnosus KU985439 provided a greater reduction in blood glucose,
triglycerides, total lipids, total cholesterol, triglycerides, NF-κB expression, and lipid perox-
idation [101]. Similarly, Gu et al. [15] found that probiotic yogurt (S. thermophilus ST447,
Lactobacillus acidophilus NCFM, Lacticaseibacillus rhamnosus GG, and B. lactis HN019) de-
creased blood glucose, glycated hemoglobin (HbA1C), HOMA-IR, insulin, low-density
lipoprotein cholesterol (LDL-C), and LPS levels, and increased PYY in mice. Yogurt in-
creased the levels of butyric and acetic acids and Lactobacillus and Streptococcus bacterial
species [15]. In addition, probiotic yogurts have been shown to have a positive effect on
diarrhea in adults and children [102,103]. There are also studies showing that probiotics
and conventional yogurt are not effective in glucose control in cardiovascular risk factors,
diabetes, and obesity [104,105]. The effect of storage time on bacterial counts in probi-
otic yogurts was also evaluated. Lacticaseibacillus casei, which has probiotic properties in
yogurt, remained at more than 108 CFU/g at the end of the 21 days of storage [106]. In
another study, the Lactobacillus bulgaricus content was found to be 8.13 log cfu/g on
the 1st day of storage and 7.51 log cfu/g on the 28th day [107]. In the study by Mari
lopez et al. [108], the number of S. thermophilus decreased between 1.8 and 3.5 log during
storage. Although the probiotic bacteria content decreased, they maintained a content of
≥107 cfu/mL at the end of 3 weeks. The vitality of probiotic bacteria in yogurts varied;
Lactobacillus acidophilus ≥ 107 cfu/mL was maintained for 35 days, Lacticaseibacillus casei
was maintained for 7 days, and Limosilactobacillus reuteri was maintained for 14 days [108].

Bioactive peptides, which are one of the components formed by the fermentation pro-
cess in yogurts, can show antioxidant, antibacterial, angiotensin-converting enzyme (ACE)
inhibitor, opioid antagonist, antihypertensive, and immunomodulatory effects [109–111].
When three groups of yogurts were used as starter cultures, Lactobacillus acidophilus 20552
ATCC and Lactobacillus helveticus CH5 were evaluated; Lactobacillus acidophilus 20552 ATCC
and Lactobacillus helveticus CH5 had variable proteolytic activity. However, the peptides
obtained from yogurt containing Lactobacillus helveticus CH5 showed the highest antioxi-
dant and antimicrobial effects. All yogurts showed antimicrobial activity against Escherichia
coli [109]. In another study, the addition of Lactobacillus helveticus CH 5 to yogurt increased
the ACE inhibitory effect compared to normal yogurt. In particular, it supported the forma-
tion of bioactive αS1-casein (CN) f(24–32) and β-CN f(193–209) peptides [112]. The β-CN
(94–123) peptide fraction in yogurt may provide intestinal homeostasis by increasing the
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expression of intestinal mucin (Muc2 and Muc4) and antibacterial factors (lysozyme and
rDefa5) depending on the dose [113].

Storage time is one of the factors affecting the level of bioactive peptides in yogurt. The
proteolytic activity of yogurt increased significantly after 14 days of storage and showed
ACE-1 activity, antithrombotic activity, cholesterol-lowering activity, and antioxidant ac-
tivity. All of these activities were found to be the highest in yogurt that was stored in a
cold environment for 14 days with skim milk powder and trypsin added [114]. Heydari
et al. [115] showed that proteolysis, antimutagenic, and 2,2-diphenyl-1-picrylhydrazyl
(DPPH) antioxidant activity were found to be the highest at the end of the 28th day in yo-
gurt that was obtained using Saccharomyces thermophilus + Lactobacillus bulgaricus + Iranian
strain of Bifidobacterium lactis species [115]. The enrichment of yogurt with whey proteins,
the proteinase and peptidase activities of the added coculture (probiotic bacteria), and the
addition of trypsin were effective in the formation and increase in the amount of peptides
with antihypertensive, antioxidant, antimicrobial, hypocholesterolemic, antimutagenic,
and cholesterol-lowering effects [114,115]. Macro- and micronutrients, bioactive peptides,
and probiotic bacteria species all have roles in the health benefits of yogurt.

2.3. Cheese

Cheese has been produced and consumed for many years. There are 1500 cheese vari-
eties defined in the world. The microorganism content of cheese varies based on the milk
used, cheese type, and production [116]. The pH changes that occur during the production
and ripening of cheese are heavily influenced by both lactic acid bacteria and yeasts [117].
A meta-analysis study evaluating cheese consumption and its health effects found that
cheese consumption (especially 40 g/day) had neutral to moderate benefits for human
health, and was moderately inversely connected with all-cause mortality, cardiovascular
disease, coronary heart disease, and stroke incidence. It also showed a negative association
with the risks of type 2 diabetes and dementia. It is emphasized that these effects are due
to the nutrients and bioactive components in cheese [118]. Hu et al. [119] also found that
cheese consumption was connected with a reduced risk of type 2 diabetes, coronary artery
disease, ischemic stroke, heart failure, and hypertension [119]. There were also inconclusive
results showing no connection between cheese consumption and cardiovascular disease
risk, and unclear results suggesting that it may be associated with increased and decreased
risks. It was suggested that the potential effect of cheese on cardiovascular disease may
be due to its calcium content, high protein content, fermentation, and fatty acid content
(CLA) [120].

One of the components of cheese that have positive effects on health is bioactive
peptides. The type of milk used during cheese ripening, starter culture, and native milk
microbiota affect the bioactive peptides formed. Bioactive peptides are composed of certain
protein fragments and offer various advantages for regulating bodily processes [121–123].

Bioactive peptides in different types of cheese have been shown to have antioxidant,
antihypertensive (ACE inhibitory), antimicrobial, and dipeptidyl-peptidase-IV (DPP-IV)
inhibitory activity effects [123–127]. In one study, Lactobacillus helveticus A1, which releases
the peptide as a key factor in ACE inhibition, was the strain with the strongest ACE in-
hibitory activity [128]. The number of peptides with angiotensin-converting enzyme (ACE),
dipeptidyl peptidase-IV (DPP-IV), and antioxidant activity increased with ripening [129].
The proteolysis of cheese for more than 90 days resulted in increased antioxidant activity.
Bioactive peptides derived from αs1-casein and β-CN were detected in cheese. The radical
scavenging activity, reducing power, chelate capacity, and ACE inhibition effects of cheese
extract derived from these peptides were revealed [124]. In another study on bioactive
peptides obtained from whey, peptides were found to have antioxidant and ACEI inhibitory
effects [125]. The use of ultrasonic, high-pressure, and microwave pretreatments to the milk
used in cheese making affected proteolysis both during cheese making and ripening. These
treatments increased the ACE inhibitory activity and antioxidant (total flavonoids, total phe-
nolics, total antioxidants, and DPPH radical scavenging activity) activity of the cheese [130].
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The consumption of 30 g/day of Grana Padano cheese reduced blood pressure (systolic and
diastolic pressure) in people with hypertension after two months [131]. Helal et al. [123]
used six cheese varieties and found that Gouda cheese showed the highest antioxidant,
ACE-inhibitory and DPP-IV-inhibitory activity. The findings suggested that 10–20 g of
Gouda cheese, 50–100 g of Domiati, and 100 g of Edam cheese might be sufficient to exhibit
an antihypertensive effect [123]. The salt content, packaging type, and storage time of the
cheeses can also affect ACE inhibitor and antioxidant activities. The highest antioxidant
activity was found on the first day of vacuum packaging, at a 1% NaCl concentration, and
decreased with the increasing storage time. The highest ACE inhibitor activity and peptide
concentration were also found on the seventh day of vacuum packaging with no added salt
or 1% NaCl [132]. In another study in which the effect of storage time on bioactive peptides
in cheeses was evaluated, an increase in the amount of some bioactive peptides in cheeses
occurred in long storage times. At 90 days of storage, αS1-CN f(24–32) peptides increased
in vacuum packaging and αS1-CN f(1–16–32) and αS1-CN f(17–22) peptides increased in
modified atmosphere packaging [133].

The other compound of cheese associated with health is conjugated linoleic acid.
The CLA content in cheeses was found to be 0.44 to 1.04 g/100 g of fat in the study by
Donmez et al. [134], and 7.5 to 7.9 mg/g of fat in the study by Luna et al. [134]. It was shown
that there is an increase in the CLA levels during cheese ripening, but increased storage time
decreases the concentration [135]. CLA may have antidiabetic, anticancer, anticarcinogenic,
anti-atherosclerotic, antihypertensive, and endothelial function effects [136–138].

The development of biogenic amines may occur in cheese as a result of the bioactivities
of some microorganisms. Histamine, cadaverine, putrescine, spermine, spermidine, and
tyramine biogenic amines have been detected in different cheese types. High levels of
biogenic amine consumption have some drawbacks. For example, histamine has effects
such as nausea, vomiting, diarrhea, and stomach upset, while tyramine may cause hyper-
tensive effects and may have a negative relationship with monoamine oxidase inhibitors
(MAOIs) [139]. It was emphasized that Lacticaseibasillus casei 4a and 5b isolated from cheese
reduced tyramine and histamine accumulation, and therefore may be suitable to be used as
co-cultures in order to lessen the amount of biogenic amines [140]. In addition, some Lacto-
bacillus species isolated from cheese may have probiotic, antimicrobial, and antioxidant
effects [141–143].

It is emphasized that the potential health effects of cheese are due to bioactive peptides,
conjugated linoleic acid, calcium, bacteria with probiotic properties, and some prebiotic
effects. Due to these components, it is stated that it may be effective in conditions such as
blood pressure, diabetes, cardiovascular diseases, and diabetes [144].

3. Fermented Meats

Red meat is any unprocessed mammalian muscle flesh, including frozen or minced
meat (such as cattle, veal, pork, or lamb). Meat that has undergone salting, fermenting,
smoking, curing, or other methods so as to improve preservation or flavor is well known
as processed meat. Pork or beef are typically found as processed meats [145]. The majority
of the time, it is agreed that meat and its products provide excellent and high biologic
values of proteins, B group vitamins, minerals, trace elements, and some other bioactive
components [146].

The process of fermentation is passed down from generation to generation [4]. Differ-
ent substances are produced by the fermentation technique, which is also preferred in meat
products. Carboxylic acids, lactic acid, aldehydes, pyruvic acid, alcohols, and ketones are
just a few of the substances that are created during this transition [147]. The fermentation
of meat products involves the use of starting cultures and live organisms. These organisms
are responsible for carrying out fermentation, reducing pathogenic bacteria, and ensuring
the development of appropriate organoleptic qualities in the manufacturing of fermented
meat products [148–150]. The fermentation process makes use of many types of bacteria
and yeast [151]. Listeria monocytogenes levels are reduced, and the food safety and shelf life
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of fermented meat products are improved as a consequence of the bacteria of lactic acid
in meats [152]. Nham is a fermented sausage that is only found in Thailand. The bacteria
of lactic acid are utilized in this sausage type. Foods have antibacterial properties thanks
to the bacteriocins and organic acids produced during fermentation [153]. Gram-positive
cocci (Staphylococcus carnosus and Staphylococcus xylosus), yeast (Debaryomyces hansenii and
Candida famata), and mold (Penicillium nalgiovense and Penicillium camambertii) are also uti-
lized in fermentation in addition to lactic acid bacteria [147]. Latilactobacillus sakei, Weissella,
Staphylococcus equorum, Debaryomyces hansenii, Kurtzmaniella zeylanoides, Wickerhamomyces
subpelliculosus, and Zygosaccharomyces rouxii are the predominant bacteria found in Por-
tuguese fermented sausages. Nitrogen compounds, acids, alcohols, aliphatic hydrocarbons,
aldehydes, lactones, pyrans, ketones, terpenoids, esters, sulfur compounds, aromatic hy-
drocarbons, phenols, and furans are formed as volatile organic compounds as a result
of microbiological reactions in these fermented sausages [154]. The most often isolated
bacterial species in salami are Lactobacillus and Staphylococcus, but the Gammaproteobacteria
phylum, Moraxellaceae family, Acinetobacter, Pseudomonas, Carnobacterium, and Enterococcus
are also present [155].

The enzymatic hydrolysis and fermentation of starting cultures produce bioactive peptides.
Both meat products and the gastrointestinal system after intake contain these peptides [156]. In
microbial activities that take place in fermented meat products, biogenic amines are produced
that are important for food safety and quality. The biogenic amines putrescine, histamine,
cadaverine, and tyramine, as well as tryptamine and bphenylethylamine, were found in a
study on fermented sausages [157,158]. Although the Bifidobacterium longum species, which
participates in the fermentation process and has probiotic properties as well [159], inhibits the
creation of cadaverine from biogenic amines, and an increase in these amine species also leads
to toxicity and the formation of N-nitrosa compounds [160,161]. When nitrites are present,
biogenic amines can be transformed into nitrosamines. Secondary amines and NO can combine
to generate far more durable carcinogenic nitrosamines than primary amines. Salami samples
contain N-Nitrosodimethylamine, N-Nitrosopyrrolidine, N-Nitrosodipropylamine, and N-
Nitrosomethylethylamine kinds [162]. N-nitrosoethylmethylamine, N-nitrosodimethylamine,
N-nitrosopiperidine, N-nitrosopyrrolidine, N-nitrosodiethylamine, N-nitrosodi-n-propylamine,
and N-nitrosomorpholine are the principal nitrosamines found within the majority of products
of fermented meat [161,163]. Figure 1 shows the changes throughout the meat fermentation.

In the ripening of fermented sausages, Lactobacillus rhamnosus CTC1679 predominates,
and it briefly colonizes the gastrointestinal system [164]. The lactic acid bacteria Pediococcus
pentosaceus KL14, KL10, KL11, and KL14 that are isolated from fermented pork flesh have
high radical scavenging abilities. The ouperoxide dismutase activity is also strong in
some lactic acid species [165]. Strong proteolysis that occurs during fermentation may
eventuate in the occurrence of peptides that have ACE inhibitor and antioxidant properties.
Belgian samples have stronger radical scavenging activity and a ferric reducing impression,
while Belgian and Spanish dry fermented sausages exhibit an ACE inhibitory effect [166].
Carcinogenic, teratogenic, and mutagenic effects can be caused by N-nitrosamines that
are produced during the fermentation of meat products [167]. Table 2 lists the effects of
fermented meat and certain bioactive compounds on health.

As for fermented fish products, there are more studies examining the health effects
of fish rather than fermented fish. However, studies examining the effects of fermented
fish products on health are not sufficient. In a study conducted this year (2023), it was
suggested that novel dipeptidyl peptidase-IV inhibitory peptides (D4IPs) discovered in
fermented mandarin fish may alleviate the active amino acid sequences of type 2 diabetes
mellitus [168]. And it is stated that Lactiplantibacillus plantarum, Pediococcus pentosaceus,
Pediococcus acidilactici, Pediococcus lolii, Enterococcus hirae, and Enterococcus lactis among the
lactic acid bacteria isolated from Shindal, a traditional fermented fish food, have probiotic
properties [169].
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Table 2. Effects of fermented meat and certain bioactive compounds on health.

Fermented Foods Certain Bioactive
Compounds Effects on Health References

Intestine

Fermented mutton
jerky

x3-2b Lactiplantibacillus
plantarum and
composite bacteria

Purine content of fermented mutton
jerky by x3-2b Lactobacillus plantarum
and composite bacteria ↓
In vitro digestion, decreasing purine
content by 37x-3
Pediococcus pentosaceus ↑

[170]

Cured beef -

Gastric protein carbonylation ↑
Colonic Ruminococcaceae ↑
Cecal propionate ↑
TBARs and diacetyl in feces ↑
Levels of cecal butyrate, fecal phenol,
dimethyl disulfide ↓
Level of fecal carbon disulfide ↑
Colonic Ruminococcaceae ↑

[171]



Fermentation 2023, 9, 923 14 of 50

Table 2. Cont.

Fermented Foods Certain Bioactive
Compounds Effects on Health References

Fermented sausage Enterococcus faecium
CRL 183

Lactobacillus spp. in ascending colon,
transverse colon, and
descending colon ↓
Bacteroides spp. in descending colon ↓
Enterobacteriaceae in transverse colon
and descending colon ↓
Colonic ammonium ions ↑
Butyric acid concentration in
transverse colon, ascending colon, and
descending colon ↑
Concentration of propionic acids in
ascending colon and
transverse colon ↑
Concentration of acetic acid in
ascending colon, transverse colon, and
descending colon ↓

[172]

Fermented sausage -

Release of free iron in
digestive system ↑
Concentration of gastric
N-nitrosamine ↑

[173]

Fermented sausage Enterococcus faecium S27

Transfer of tetracycline resistance
determinant (tet(M)) to E. faecium and
Enterococcus faecalis ↑
Transfer of Enterococcus faecium’s
streptomycin resistance ↑

[174]

Fermented sausage
Bologna sausage (a)
Dry fermented
sausage (b)

Calcium transporter in Caco-2 cells: in
(a) ↑, in (b) ↓ [175]

Fermented salami Plant extracts

Phenol and p-cresol in colon ↓
Acetate, propionate, butyrate
in colon ↑
Enterobacteriaceae ↓
Bifidobacteriaceae ↑

[176]

Fermented fish Staphylococcus sp.
DBOCP6

Non-hemolytic and non-pathogenic
effects against broad and narrow
spectrum antibiotics
Ability to adhere to the intestinal wall

[177]

Cardiovascular diseases and ACE-I inhibitory effects

- -
Cardiovascular disease risk,
stroke risk ↑
Total mortality risk ↑

[178]

Salami
Sausage Cardiovascular disease risk ↑ [179]

- Cardiovascular disease risk ↑ [180]

-

Total stroke incidence ↑
No association between ischemic
stroke and coronary heart
disease mortality

[181]

Bacon
Sausage - Cardiovascular death risk ↑

Ischemic heart disease risk ↑ [182]

Dry-cured pork ham - Levels of total cholesterol, LDL,
basal glucose ↓ [183]
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Table 2. Cont.

Fermented Foods Certain Bioactive
Compounds Effects on Health References

Semi-dry fermented
camel sausage

Lactiplantibacillus
plantarum KX881772

Inhibition of ACE ↑
Cytotoxicity activity towards Caco-2
cell line ↑
α-amylase inhibition ↑
α-glucosidase inhibition ↑

[184]

Fermented pork
sausage

Staphylococcus simulans
NJ201
Lactiplantibacillus
plantarum CD101

ACE inhibition ↑
Superoxide
anion scavenging activities ↑
Ferric-reducing antioxidant activity ↑

[185]

Dry fermented camel
sausage

Staphylococcus xylosus
and Lactiplantibacillus
plantarum
Staphylococcus caarnosus
and Latilactobacillus
sakei
Staphylococcus xylosus
and Lactobacillus
pentosus

Antioxidant capacity
by <3 kDa peptides ↑
Maximum ACE inhibition
by <3 kDa peptides
Maximum ACE inhibition in sausages
with S. xylosus and L. plantarum

[186]

Dry-cured ham -
ACE inhibition ↑
Radical scavenging activity ↑
PAF-AH inhibitory effect ↑

[187]

Fermented meat - Antioxidant activity against
OH-radical by GlnTyr-Pro ↑ [188]

Dry-fermented
sausage

Starter culture
(P200S34) and protease
(EPg222)

ACE inhibition ↑
Antioxidant activity ↑ [189]

-
Risk of cardiovascular mortality,
stroke, myocardial infarction via
reduction in processed meat ↓

[190]

-
Risk of all-mortality cause and
cardiometabolic disease via
lower consumption ↓

[191]

- Risk of heart failure ↑ [192]

Cancer

-
Risk of colon cancer, rectal cancer,
breast cancer, lung cancer, and
colorectal cancer ↑

[193]

Ham
Sausage
Bacon

- Breast cancer risk ↑ [194]

- Weak positive association with
breast cancer [195]

- Breast cancer risk with diet rich in
processed meat ↑ [196]

Ham
Sausage
Bacon

- Gastric cancer risk ↑ [197]

Ham
Sausage
Bacon

- Colorectal cancer risk ↑ [198]
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Table 2. Cont.

Fermented Foods Certain Bioactive
Compounds Effects on Health References

- Colorectal cancer risk with
lower consumption ↓ [199]

- Colorectal cancer risk with lower
consumption ↓ [200]

- Colorectal cancer risk ↑ [201]

Ham
Sausage
Bacon

- Colorectal cancer risk ↑ [202]

Ham
Sausage
Bacon

- Colorectal cancer risk ↑ [203]

- Colorectal adenoma risk ↑ [204]

Ham - Risk of renal cell carcinoma ↑
Risk of bladder cancer ↑ [205]

Ham
Sausage
Bacon

- Bladder cancer risk ↑ [206]

Ham
Sausage
Bacon

- Minimal connection to kidney
cancer risk [207]

Ham
Salami
Sausage
Bacon

- No association with gliomas [208]

Risk of hepatocellular carcinoma ↑ [209]

Other diseases

- Risk of type 2 diabetes ↑ [210]

Bacon
Salami
Sausages

- Risk of diabetes as well as stroke and
coronary heart disease ↑ [211]

- Risk of type 2 diabetes ↑ [212]

- Type 2 diabetes risk ↑ [213]

- Gestational diabetes mellitus risk ↑ [214]

- No change in Crohn’s disease flares [215]

- Risk of mortality via increase
in consumption ↑ [216]

-
Mortality risk of all causes (except
cancer) and
cardiovascular-caused mortality ↑

[217]

- Depression risk ↑ [218]

N-
Nitrosodimethylamine No change in glioma [219]

Diethylnitrosamine Probability of hepatocarcinogenesis [220]

↑: increased, ↓: decreased, LDL: low-density lipoprotein, ACE: angiotensin-converting enzyme, kDa: kilodalton,
PAF-AH: platelet-activating factor acetulhydrolase, Gln Tyr-Pro: Glycine Tyrosine-Proline.
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4. Fermented Vegetables and Fruits

Fruits and vegetables have important health effects due to their contents of fiber,
vitamins, minerals, phenolic compounds (flavonoids, sulfur compounds, phytoestrogens,
and monoterpenes), and bioactive peptides [221]. Their consumption can contribute to
the prevention of many chronic diseases such as diabetes, cardiovascular diseases, and
cancer [222,223]. It has been reported that the daily consumption of five servings of
vegetables and fruits can reduce mortality in diseases [224]. Another way of consuming
vegetables and fruits is in their fermented form. Resulting from the lactic acid fermentation
of vegetables such as cucumbers, cabbages, capers, carrots, and tomatoes, different products
such as kimchi, pickles, turnips, Pak-Gard-Dong, and Dhamuoi are obtained [31,225]. In
addition, fermentation has recently been emphasized for the utilization of waste and
by-products of vegetables and fruits (pineapple peel, orange peel, mango seed, etc.) [226].

As a result of fermentation, the riddance of anti-nutritional factors; the formation of
metabolites with positive effects (bioactive peptides and exopolysaccharides); the improve-
ment in bioavailability through the hydrolysis of polymers (esters of phenolic compounds);
increased vitamins, minerals, and phenolic compounds; and the presence of bacteria with
probiotic properties and prebiotic effects lead to positive effects on health [221].

4.1. Fermented Vegetables

Vegetables are a significant part of a healthy diet. Low vegetable consumption leads
to negative health effects [227]. One of the ways vegetables are consumed is in their
fermented form. Mostly lactic acid and alkaline fermentation occurs when vegetables are
fermented [228]. Lactic acid fermentation can occur in vegetables when conditions are
suitable (anaerobic conditions, suitable temperature, and humidity and salt concentrations).
The products created as a result of vegetable fermentation vary between nations. For
example, in Europe, sauerkraut is formed based on fermentation of cabbage, while in
Korea, kimchi is formed as a result of fermentation of cabbage, green onions, etc. [229]. This
section focuses on kimchi and sauerkraut, which have more scientific data on bioactive
components and health effects.

A traditional Korean vegetable dish, kimchi (kimchi cabbage), is produced through the
fermentation of radish, cucumber, and other vegetables by lactic acid bacteria [230]. Kimchi
contains fiber, vitamins (ascorbic acid, etc.), minerals, 3-(4′-Hydroxyl-3′,5′-dimethoxyphenyl)
propionic acid (HDMPPA), capsaicin, allyl compounds, isothiocyanate, indole compounds,
and thiocyanate [231,232]. In another study using kimchi methanol extract (HDMPPA,
quercetin, ascorbic acid, and capsaicin) and kimchi bioactive components, antioxidative
(nuclear factor (erythroid-derived 2)-like 2 (Nrf2), SOD1, and GPx increased) and anti-
inflammatory (NF-κB, inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2)
decreased) activities were found to improve cognitive function in mice with amyloid beta
(Aβ)25-35-induced Alzheimer’s [233]. The active ingredient of kimchi, HDMPPA, has shown
antioxidant, anti-inflammatory, and anti-atherosclerotic effects by lowering cholesterol; re-
ducing cyclooxygenase-2 and ROS levels, lipid peroxidation, and lipid accumulation; and
suppressing NF-κB, mitogen-activated protein kinase (MAPK), and phosphatidylinositol
3-kinase/protein kinase B (PI3K/Akt) signaling pathways and oxidative stress [234–237].

Bacteria isolated from kimchi have probiotic, anti-inflammatory, antioxidant, anti-
obesity, antidiabetic, antimicrobial, and immune system effects [238–246] (Table 3). Not
only the bacteria and metabolites derived from kimchi, but also the dietary consumption
of kimchi have been shown to have positive effects [247]. Dietary kimchi consumption
had a positive effect on C26 adenocarcinoma-induced cancer cachexia by inhibiting IL-6,
inhibiting lipolysis, and increasing lipogenesis. It has also been shown to improve cachexia-
induced muscle atrophy and reduce NF-κB, extracellular signal-regulated kinase 1

2 (ERK 1
2 )

activation, AKT, mammalian target of rapamycin (mTOR), and PI3K catabolism levels. It
also decreased tumor size and tumor mass [247].
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Table 3. Possible health effects of microorganisms isolated from some fermented vegetables.

Fermented Vegetables Microorganism Health Effects Specific Effects References

Kimchi

Weissella cibaria JW15 Anti-inflammatory

Proinflammatory cytokines (IL-1β,
IL-6, TNF-α) ↓
Nitric oxide, prostaglandin E2,
COX-2 ↓
IκB-α degradation and MAPKs,
NF-κB activation ↓

[239]

Lactiplantibacillus
plantarum LB5
(LPLB5)

Antioxidant
Anti-inflammatory
Antibacterial

Proinflammatory cytokines (IL-1β,
IL-6, TNF-α) ↓
Anti-inflammatory cytokines (IL-4,
IL-10, IFN-γ) ↑
Escherichia coli O157:H7 Pseudomonas
aeruginosa, Listeria monocytogenes,
and Staphylococcus aureus ↓
ABTS radical scavenging activity ↑

[240]

Lactiplantibacillus
plantarum LRCC5314

Anti-inflammatory
Anti-stress

TNF-α, IL-1β, IFN-γ, NO ↓
Cortisol concentration ↓
Adipocytes:
TG concentration ↓
Adipogenesis-related genes,
adiponectin, FAS, PPAR/γ, and
C/EBPα, TNF-α, IL-6↓

[241]

Lactiplantibacillus
plantarum 200655 Neuroprotective

BDNF expression
and concentration ↑
BDNF and tyrosine hydroxylase
mRNA expression ↑
Apoptosis-related Bax/Bcl-2 ratio ↓
Caspase-3 activity ↓

[242]

Lactobacillus sakei Anti-obesity
Body fat mass ↓
Abdominal visceral fat↓
Waist circumference ↓

[243]

Levilactobacillus brevis
KU15153

Antioxidant
Antimicrobial

Escherichia coli ATCC 25922, L.
monocytogenes ATCC 15313, S.
Typhimurium P99, and S. aureus
KCCM 11335 ↓
DPPH radical scavenging activity ↑

[244]

Levilactobacillus brevis
KU15147

Antioxidant
Immune enhancing

NO production, iNOS, TNF-α ↓
Radical scavenging activity of
DPPH 38.56%
Radical scavenging activity of
ABTS 22.30%
β-carotene bleaching inhibitory
activity 23.82%

[245]

Lactiplantibacillus
plantarum LRCC5310
Lactiplantibacillus
plantarum
LRCC5314

Antidiabetic
Anti-inflammatory

Serum insulin ↑
Fasting blood glucose ↓
Upregulating expression of GLUT 4
and adiponectin
TNF-α, IL-6 ↓
Downregulation of Ccl2 and
leptin expression
Serum corticosterone ↓
mRNA levels of stress-related genes
(Npy, Y2r) ↓

[246]
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Table 3. Cont.

Fermented Vegetables Microorganism Health Effects Specific Effects References

Sauerkraut

Exopolysaccharides
from Lacticaseibacillus
paracasei

Antioxidant

Total antioxidant capacity 76.34%
Hydrogen peroxide scavenging
activity 68.65%
DPPH free radical scavenging
activity 60.31%

[248]

Exopolysaccharides
from Lacticaseibacillus
Casei

Antioxidant
Immunomodulatory

Showed dose-dependent effects:
Hydrogen peroxide scavenging
activity, DPPH free radical
scavenging activity, superoxide
radicals scavenging activity
In macrophages:
TNF-α, ROS production ↑
NF-κB p65 expression ↑
Expression of the c-jun protein ↑

[249]

Lacticaseibacillus casei
NA-2 Antibacterial

Inhibit the growth of Bacillus cereus,
Staphylococcus aureus, Escherichia coli
O157:H7, and
Salmonella typhimurium

[250]

Lactiplantibacillus
plantarum Antimicrobial Escherichia coli O157 and Shigella

flexneri CMCC(B) ↓ [251]

↑: increased, ↓: decreased, IL: interleukin, COX-2: cyclooxygenase 2, IFN: interferon, TNF-α: tumor necrosis
factor alpha, MAPK: mitogen-activated protein kinases, ABTS: 2,2′-azino-bis(3-ehtylbenzothiazoline-6-sulfonate),
NO: nitric oxide, NF-kB-: nuclear factor kappa B, IκB-α: IkappaB-alpha, iNOS: inducible nitric oxide synthase,
BDNF: brain-derived neurotrophic factor, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ROS: reactive oxygen species,
GLUT-4: glucose transporter-4, PPAR/γ: peroxisome proliferator-activated receptor gamma, FAS: fatty acid
synthase (lipogenic marker), NPY: neuropeptide Y, Y2R: neuropeptide Y receptor 2, CCL-2: C-C motif chemokine
ligand 2, C/EBPα: CCAAT/enhancer binding protein alpha.

Kim et al. [252] showed that by altering the gut–brain axis, kimchi lowered obesity-
related neuroinflammation. Kimchi reduced adipose tissue gain, serum free fatty acids,
monocyte chemoattractant protein-1 (MCP-1), and TNF-α levels. It also reduced hypothala-
mic neuroinflammation and hypothalamic apoptotic protein expression. It was effective
in the improvement of gout dysbiosis. Claudin-5, occludin, total short-chain fatty acids,
acetate levels, and Akkermansia muciniphila colonization increased [252]. There are stud-
ies suggesting that kimchi may have a positive effect on colon adenoma, irritable bowel
syndrome (IBS), and obesity through its effect on the microbiota composition [253–255]. In
the case of IBS, kimchi consumption was reported to improve IBS symptoms by increas-
ing fiber intake, controlling immunity, and inhibiting harmful intestinal enzyme activity
(β-glucosidase and β-glucuronidase) [253]. Kimchi consumption may also affect diabetes
by reducing insulin resistance and HbA1c; increasing insulin sensitivity, QUICKI, and
β-cell function; and improving glucose tolerance [256,257]. According to all of this research,
kimchi may benefit health due to its bioactive ingredients and probiotic microorganisms.

Sauerkraut is another fermented vegetable product that has been studied. Similar
to kimchi, the bacteria isolated from sauerkraut, exopolysaccharides, and the bioactive
compounds formed as a result of fermentation have shown antioxidant, antibacterial,
and immunomodulatory effects [248]. It was also revealed that the Lactiplantibacillus
plantarum strain isolated from sauerkraut may have a probiotic effect. Lactiplantibacillus
plantarum S4-1 decreased the total cholesterol, triglyceride, and LDL-C contents [251]. The
fermentation of sauerkraut resulted in the formation of ascorbigen, indole-3-carbinol, and
the degradation of glucosinolates [258]. Ascorbigen may show antioxidant properties [259],
while indole-3-carbinol can show antioxidant, anti-inflammatory, anti-obesity, antidiabetic,
anti-atherosclerotic, anticancer, antihypertensive, and neuroprotective effects [260].
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In adolescents and adults, high servings of raw/cooked cabbage/sauerkraut (>3 serv-
ings/week) were associated with a lower risk of breast cancer than low servings (≤1.5 servings
per week) [261]. The consumption of pasteurized and unpasteurized sauerkraut improved
the irritable bowel syndrome symptom severity score in individuals with irritable bowel
syndrome, and the consumption of unfermented sauerkraut increased sauerkraut-associated
LAB (Lactiplantibacillus plantarum and Levilactobacillus brevis) in feces [262].

Similar studies were carried out in fermented cucumber products with kimchi and
sauerkraut. It was revealed that the bioactive peptides formed in lactic acid-fermented cucum-
ber showed an ACE inhibitory effect [263]. When the change in the free amino acid profile of
cucumbers as a result of fermentation was analyzed, the highest amino acids in fresh cucum-
bers were glutamine, GABA, arginine, citrulline, and asparagine. As a result of fermentation,
the concentrations of leucine, isoleucine, methionine, lysine, phenylalanine, histidine, tyrosine,
proline, and ornithine amino acids increased, while the glutamine, GABA, and aminoadipic
acid concentrations decreased. Increasing the salt concentration (6%) increased the arginine
concentration [264].

Plant-based foods contain micronutrients, macronutrients, and bioactive components as
well as anti-nutrient components. These alleged anti-nutrients, which also include tannins,
phytoestrogens, lectins, oxalates, and phytates, are thought to limit the absorption of important
nutrients. However, it has also been suggested that it may have health-promoting effects [265].
It has been shown that lectin, phytate, tannin, and oxalate levels decrease as a result of
fermentation compared to fresh produce [266–268]. As a result of lactic acid fermentation in
the African nightshade plant, the tannin level decreased by 76.27–92.88%, and the oxalate
level decreased by 77.33–90% [267]. Similarly, as a result of the lactic acid fermentation of
white cabbage sprouts, the amounts of phytate, tannin, and oxalate decreased by 42, 66, and
53%, respectively [269].

4.2. Fermented Fruits

Fruits show positive effects on health due to their fiber, low energy density, vita-
min/mineral (potassium, vitamin C, etc.), and phytochemical (polyphenols and carotenoids)
contents [270]. There are studies evaluating the health effects of the fermentation of many
fruits. Studies on fermentation in fruits such as apples, mangoes, papayas, lemons, and
citrus have been carried out [271–275]. Fermented fruits can be made from fruits mainly
based on lactic acid and acetic acid fermentation [276,277]. The use of lemon-fermented
products resulting from the fermentation of lemon with Lactobacillus OPC1 decreased the
total triglycerides and total cholesterol in the liver and regulated the lipid metabolism
and gut microbiota in rats [275]. It was revealed that fermented papaya products may
exhibit immunomodulatory, antioxidant, anticancer, anti-inflammatory, antidiabetic, and
antidyslipidemic properties. Fermented papaya decreased pro-inflammatory cytokines
and pro-oxidant components [271]. Lactobacillus acidophilus (BCRC14079)-fermented mango
peel decreased Aβ accumulation, a neuronal protective product, by inhibiting oxidative
stress and increasing BDNF expression in neural cells [273].

The fermentation of fruits using selected probiotic strains resulted in beneficial sensory
and health effects. Yang et al. [276] found that the fermentation of apple juice with Lacto-
bacillus acidophilus, Lacticaseibacillus casei, and Lactiplantibacillus plantarum bacteria increased
the antioxidant and antibacterial capacities of apple juice. The total amino acid content and
lactic acid content increased, while the total phenolic acid content decreased. The gallic
acid, protocatechuic acid, and catechin concentrations increased with fermentation, but
the total phenolic acid content decreased with the effect of storage [276]. As a result of the
fermentation of cherry juice using nine Lactobacillus strains, Lactobacillus acidophilus 150
and Limosilactobacillus fermentum DT41 fermentations increased the polyphenol contents
compared to the baseline [278]. Dragon fruit fermentation (Lactiplantibacillus plantarum
FBS05) increased antibacterial and antioxidant activities [279]. Cirlini et al. [280] evalu-
ated the organic acid content in elderberry fruit and found lactic acid as the main organic
acid. Malic acid found in the fruit before fermentation decreased with fermentation, the
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amount of citric acid varied according to the bacteria, and tartaric acid was also found
in fermented juices [280]. Kiwifruit juice fermentation (Lactobacillus acidophilus 85 (La85),
Lactobacillus helveticus 76 (Lh76), and Lactiplantibacillus plantarum 90 (Lp90)) resulted in the
formation of protocatechuic acid and catechins. Protocatechuic acid was the highest in Lh76
fermentation. These compounds have antioxidant effects. Caffeic acid was not detected as a
result of fermentation [281]. Wu et al. [282] showed that the fermentation of blueberry and
blackberry juices with Lactiplantibacillus plantarum, Bifidobacterium bifidum, and Streptococcus
thermophilus resulted in a decrease in the anthocyanin levels. Lactiplantibacillus plantarum
has a higher capacity to metabolize phenolic acids and organic acids. The highest lactic
acid, syringic acid, and antioxidant capacity were exhibited as a result of fermentation with
this microorganism [282]. The pH, acidity, total and reducing sugars, organic acid, and total
phenolic contents of blueberry juice were significantly altered via probiotic fermentation,
which had an effect on the juice’s physicochemical, anti-inflammatory, antibacterial, and
antidiabetic qualities [283].

Fruit vinegars are among other fermented products obtained from fruits. Two different
fermentations can occur in vinegar: alcoholic and acetic acid fermentation. The microbiota
leading to vinegar production varies. Acetic acid can be produced in large quantities by the
Acetobacter and Komagataeibacter species [277]. Vinegar is obtained from many fruits such as
grapes, apples, pomegranates, and blueberries. Polyphenols and organic acids, especially
acetic acid, can show beneficial effects in fruit vinegar [284]. Bioactive components such
as catechins, p-hydroxybenzoic acid, gallic acid, syringic acid, caffeic acid, p-coumaric
acid, and chlorogenic acid have been provided in different kinds of vinegar [285,286].
Apple cider vinegar has been found to have hypocholesterolemic, antidiabetic [287–289],
antioxidant [288,290], antimicrobial, anti-inflammatory [291], and anti-obesity effects [290]
and improve cognitive function [292] reproductive function, and liver function [293]. Apple
cider vinegar may exert antidiabetic effects by decreasing HOMA-IR, fasting blood glucose,
HOMAβ, and OUICKI levels [287–289,293]. It may be effective in hypercholesterolemia
by improving the total cholesterol, triglyceride, LDL cholesterol, total cholesterol/HDL-C,
and LDL-C/HDL-C levels [287,289,290,293], and in non-alcoholic fatty liver disease by
improving hepatic enzymes and reducing steatosis and inflammation in the liver [289,293].
It also has effects on neurodegeneration, ovulation, and obesity. The impact of apple
cider vinegar on neurodegeneration was studied by Tripathi et al. [292]. As a result of
vinegar consumption in mice, a decrease in the Morris water maze escape time, an increase
in the time spent in the target quadrant, a decrease in acetylcholinesterase (AChE) and
Malondialdehyde (MDA) levels, and an increase in glutathione (GSH) and SOD levels were
found. Thanks to these effects, it was emphasized that it may be effective in dementia and
Alzheimer’s, and that this effect in apple cider vinegar would be related to its polyphenol,
flavonoid, and organic acid contents [292]. Shams et al. [293] found that apple cider vinegar
increases estradiol levels and may have a positive effect on ovarian reserve by increasing the
number of primordial and primary follicles [293]. Vinegar may work in obesity by reducing
body weight and food intake and delaying gastric emptying [290,294]. Intervention with
different vinegars (pomegranate, prickly pear, or apple) decreased body weight; body
weight gain; total visceral adipose tissue; mesenteric, epididymal, and perirenal fat; total
cholesterol; plasma cardiac biomarkers (creatine kinase-MB isoenzyme (CK-MB), lactate
dehydrogenase (LDH), alanine aminotransferase (ALT), and aspartate aminotransferase
(AST)); plasma inflammatory markers (CRP, homocysteine, and fibrinogen); plasma and
visceral adipose tissue leptin; and TNF-α levels and increased adiponectin levels in obese
rats. All of these results suggest that obesity may affect cardiometabolic symptoms [295].

Another fermented fruit product is wine. The fermentation of grape in wine is a
process that involves yeast and LAB acting together. Two common fermentation pro-
cesses are emphasized: Alcoholic fermentation with yeasts, and malolactic fermentation
occurs as a result of bacteria [296]. In the analysis of wine, catechins, p-coumaric acid,
resveratrol, rutin, quercetin, myricetin, anthocyanin, tannins, flavan-3-ol, and phenolic
acids (caffeic acid, ellagic acid, syringic acids, 2.5-dihydroxybenzoic acid, vanillic acid,
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and ferulic acid) are found [297–299]. There is a significant relationship between the
polyphenol content and antioxidant activity in wines [297]. Other compounds formed as a
result of fermentation in red wine are melatonin [300,301] and hydroxytyrosol [297,302].
Red wine polyphenols have antioxidant [303–305], antibacterial [306], anti-inflammation,
anticancer [307–313], antidiabetic [308], antithrombotic, antidepressant [314,315], and neu-
roprotective effects [309]; are involved in the regulation of bone mineral density [316],
microbiota modulation [305,310,317], and micro RNA regulation [308]; effect adipose tis-
sue, hypocholesterolemia [318], and the regulation of endothelial function [319]; and have
anti-obesity effects [320–322] (Figure 2). In addition, polyphenols have also shown positive
effects on ulcerative colitis through microbiota modulation (Akkermansia increase), anti-
inflammatory effects, the inhibition of the PI3K/Akt pathway and the hypoxia-inducible
factor-1 (HIF-1α)- T helper 17 (Th17) pathway, and the reduction in vascular endothelial
growth factor A (VEGFA) [323–325].

Melatonin, one of the other molecules in red wine, has anti-inflammatory, anti-
inflammation, immunomodulatory, antioxidant, antiapoptotic, maternal/fetal health, car-
diovascular, neuroinflammation, and respiratory health effects [326–329]. Hydroxytyrosol
may be effective in cardiovascular disease (CVD), Parkinson’s disease, Alzheimer’s dis-
ease, diabetes, metabolic syndrome, cancer, and osteoporosis with the enhancement of
AMP-activated protein kinase (AMPK), Sirtuin 1 (SIRT-1) signaling pathways, antioxidant
and anti-inflammatory effects, decreased mitochondrial dysfunction, increased epigenetic
regulation, and anticancer and anti-hypocholesterolemic effects [330–333].
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5. Fermented Legumes

Plants of the Leguminosae family make up legumes. Peas, chickpeas, lentils, soybeans,
and peas are examples of edible legumes [334]. Because of the important and nourishing
bioactive compounds that legumes contain, they are essential for human nutrition [335].
They are all rich in protein, fat, carbohydrate, and minerals [334,336]. Additionally, they
have a lot of fiber, vitamins from the B group, and useful phytochemicals with biological
effects [335]. Galactooligosaccharides, lectins, saponins, and tannins are examples of readily
accessible non-nutrient molecules that are common sources of protease inhibitors [337].
They are significant sources of isoflavones with estrogen-like properties and effects on
calcium [338].

Due to the inclusion of non-nutrient components, legumes have a limited potential
to be digested and bioavailable. It is suggested to use soaking, boiling, or fermentation to
improve digestion and bioavailability. Thus, especially with fermentation, non-nutritious
foods are changed into substances with nutritional value [339]. Antioxidant chemicals pro-
duced by the fermentation of soybeans include furanones, peptides, 3-hydroxyanthranilic
acid, and melanoidins. Additionally, bioactive substances with anti-inflammatory effects
include isoflavone, butyric acid, 2S albumin, α-linolenic acid, soy sauce polysaccharides,
and glycones [340]. The fermentation process uses microorganisms to catalyze metabolic
reactions and produce bioactive chemicals [341]. A traditional Korean dish, cheonggukjang,
is produced in the wake of the fermentation of soybeans. Bioactive compounds not found in
raw soybeans are produced during fermentation as a result of isoflavones such as phenolic
acids, genistein, phytic acids, saponins, daidzein, and trypsin inhibitors [342,343].

Legumes are fermented using starter cultures composed of lactic acid bacteria. Ex-
amples of lactic acid bacteria include Lactiplantibacillus plantarum subsp. Plantarum, Strep-
tococcus thermophilus, Leuconostoc mesenteroides Lactobacillus acidophilus, and Lactobacillus
delbrueckii ssp. bulgaricus Lacticaseibacillus casei. In fermented legumes, these bacteria both
perform fermentation and provide a source of probiotics [344]. The most significant fer-
mented legumes employed in soy products are the bacteria of lactic acid, which are the
starting bacteria used for the occurrence of soy milk and tofu [345]. Fermented soybeans
contain Bacillus species as well the bacteria of lactic acid, and Bacillus genome sequences
have been discovered in these foods [346].

There are many products made from fermented legumes. Natto, fermented soy milk,
and tempeh have been a part of traditional Asian meals for generations, but they are
now available for consumption all over the world [347]. Miso, a Japanese fermented deli-
cacy made from the Aspergillus oryza mold of soybeans, is one of these fermented legume
foods [348]. Another fermented soy substance called jang is a common Korean food. Numer-
ous common yeast species, including Debaryomyces hansenii, Hyphopichia burtonii, and Jang
Saccharomycopsis fibuligera, are abundant there [349]. Bacillus spp. species are discovered.
The following kinds of bacteria are involved in the fermentation process: Bacillus fusiformis
Bacillus sphaericus, Bacillus amyloliquefaciens, Bacillus megaterium, Bacillus licheniformis Bacillus
cereus, Bacillus badius, and Bacillus pumilus [350]. Ugba, a traditional food made at home in
Africa, can be counted among the fermented legumes [351]. Pediococcus pentosaceus and
Pichia kudriavzevii TY1322 are isolated in Swedish fermented legume beverages. While the
TY1322 of these species is effective in reducing phytates, it is predicted that it can be put to
use as a starter culture in various legume fermentations [352].

Fermentation improves digestibility and produces new bioactive chemicals that are
helpful to health. It has links to cancer, diabetes, inflammation, antioxidants, and dia-
betes [353]. The health-protective molecule, GABA, which rises with fermentation, is a
substance [354]. It has an impact on enhancing cell viability and preventing oxidative
damage [355]. One of the legumes that receives a lot of attention globally is soybean, which,
along with its fermentation, has a regulating effect on the stool microbiota [356]. Increases
in the catalase, superoxide dismutase, and glutathione peroxidase levels, along with a
decrease in reactive oxygen species and pro-inflammatory cytokines (NF-κB, IL-β, COX-2,
and TNF-α), give fermented soy products anti-inflammatory effects [357]. Additionally,
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it affects vital enzymes that are part of the hypoglycemic processes, including α-amylase
and α-glucosidase [358]. The primary bioactive ingredient in fermented soybeans, daizein,
has been linked to diseases such insulin resistance, obesity, and dyslipidemia [359]. Table 4
provides an overview of the health benefits of fermented legumes.

Table 4. Effects of fermented legumes and certain bioactive compounds on health.

Fermented Foods Specific Foods Certain Bioactive
Compounds Effects of Health References

Kidney beans White and dark
kidney beans -

Cecal short-chain fatty acid levels
(acetate, butyrate, and propionate),
colon crypt height, and MUC1 and
Relmβ mRNA expression ↑
Genes of TLR4, MUC1-3, Relmβ ↑
Expressions of IL-6, IFNγ, IL-1β,
MCP-1, and TNFα ↓
Levels of serum for IL-17A, TNFα,
IL-6, IL-1β, and IFNγ ↓

[360]

Kidney bean
fermented broth -

With this diet, level of blood lipids
(ALT, AST, TG) in hyperlipidemia ↓
With this diet, serum HDL in
hyperlipidemia ↑
Firmicutes/Bacterioidetes ratio and
pathogenic bacteria ↓
Beneficial bacteria ↑

[361]

Soybean Fermented soybean
dried extracts Isoflavin β

12-O-tetradecanoylphorbol-13-acetate
(TPA-)-induced biochemical
alterations in skin ↓
GSH depletion ↓

[362]

Fermented soybean
paste

Histamine
Tyramine

Increased hepatic expression of IL-1β
and PARP-1 ↓
Elevated blood plasma levels of
MAO-A, AST/ALT, and CRP ↓

[363]

Fermented soybean
products - IgE immunoreactivity ↓ [364]

Fermented mung bean
Fermented soybean -

Having cytotoxicity activities opposite
to breast cancer MCF-7 cells by
arresting the G0/G1 phase, followed
by apoptosis
Vaibility and the proliferation
of splenocyte ↑
Levels of serum for IL-2 and IFN-γ ↑

[365]

Fermented soybean Aqueous extract
of Hawaijar

Glucose uptake, G6P production, and
expressions of pPI3K, pAKT, pAMPK,
and GLUT4 ↑

[366]

Fermented soybean
Isoflavone
(genistein and
daidzein)

Level of progesterone ↑ [367]

Alcohol-fermented
soybean - p38, iNOS mRNA, JNK, and TNF-α in

mouse peritoneal macrophages ↑ [368]
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Table 4. Cont.

Fermented Foods Specific Foods Certain Bioactive
Compounds Effects of Health References

Soybean fermented by
Lacticaseibacillus
paracasei TK1501

Lipoteichoic acid
(LTA)
Peptidoglycan (PGN)

Via lipoteichoic acid (LTA):
Serum IL-4 and colonic TGF-β1
expression ↑, serum IL-1β and colonic
IFN-γ expression ↓, intestinal
inflammation ↓, mRNA levels
of MUC2 ↑
Via peptidoglycan (PGN):
Serum TNF-α and colonic IFN-γ ↓,
colonic TGF-β1 expression ↑, mRNA
levels of MUC2 ↑

[369]

Soybean fermented by
Bacillus subtilis

Menaquinone-7,
daidzin, genistein,
glycitin, and
nattokinase

AChE activity within hippocampus ↑
Protein carbonyl contents
in hippocampus ↓
Activity of reduced glutathione,
catalase, superoxide dismutase
in hippocampus ↑

[370]

Black soybean
fermented by Bacillus
subtilis

-

Expression of aging biomarkers
(hepatic p16INK4A and GLB1) ↓
Hepatic 8-hydoxy-2′-deoxyguanosine
(8-oxodG) ↓
Hepatic levels of IL-6, MCP-1, and
IL-10 levels in elder mice ↓
Beneficial microbiomes (Alistipes,
Anaeroplasma, Coriobacteriaceae
UCG002, and Parvibacter spp.) ↑

[371]

Black soybean and
fermented black
soybean broth

-
Antioxidative effect by inhibiting
power and ferrous ion chelating ↑
Detroit 551 cell viability ↑

[372]

Fermented soy
permeate

Isoflavones and α-
galactooligosaccharides Muscle glycogen content ↑ [373]

Chungkookjang Genistin
Daidzein

DNA fragmentation ↓
Viability of splenocytes
and thymocytes ↑
Apoptosis of splenocytes
and thymocytes ↓

[374]

Cheonggukjang

Intact isoflavones
(genistein, daidzein,
and glycitein)
Equol 7-glucuronide
Genistein,
3-hydroxygenistein,
and 4′-sulfate

Intact isoflavones (genistein, daidzein,
glycitein), 3-hydroxygenistein,
genistein 4′-sulfate, and equol
7-glucuronide promote
osteoblastogenesis via increased
ALP activity,
3-hydroxygenistein inhibits osteoclast
formation via decreased bone
resorption activity

[375]

Cheonggukjang -

NF-kB and MAPK activation, IL-4
mRNA expression, IgE expression,
and IL-31 mRNA expression in
atopic dermatitis ↓

[376]

Doenjang
Cheonggukjang - Activation of redox-sensitive NF-kB ↓

iNOs levels, COX-2 ↓ [377]
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Table 4. Cont.

Fermented Foods Specific Foods Certain Bioactive
Compounds Effects of Health References

Doenjang
Cheonggukjang -

Th1-mediated immune responses ↑
Level of IFN-γ ↑
Level of IL-4 ↓
Resistance to
Listeria monocytogenes infection ↑

[378]

Doenjang -

Fecal lipopolysaccharide levels ↓
The amount of Ruminococcaceae,
Bifidobacteria, Lachnospiraceae,
and Firmicutes ↓
The amount of Odoribacter_f
and Bacterioidetes ↑
β-glucuronidase and NF-kB activity ↓
TNF- α expression ↓
IL-10 expression ↑
Occludin ↑

[379]

Cheonggukjang (natto) Nattokinase
Digestion of fibrin ↑
Digestion of plasmin substrate
(H-D-Val-Leu-Lys-Pna (s-2251)) ↑

[380]

Natto

Natto extract
(Heated-natto extract
or
Unheated-natto
extract)

Heated-natto extract,
degradation of Glycoprotein D
of BHV-1
Degradation of SARS-CoV-2
receptor-binding domain
Unheated-natto extract,
inhibition of anti-BHV-1 activity by
serine protease inhibitor

[381]

Natto Vitamin K
Phytoestrogens

Vitamin K, bone health ↑
Phytoestrogens, menopausal disorder,
osteoporosis, breast cancer risk ↓

[382]

Natto Vitamin K2 Maintaining bone stiffness [383]

Natto - In women aged under 60 years,
dementia risk ↓ [384]

Miso
Lipopolysaccharide-
neutralizing
protein

PGD2 production via
macrophage cells ↓ [385]

Fermented soybeans
C-miso (a)
S10-miso (b)
S9O1-miso (c)

Antioxidant effects:
For unheated forms: a > b > c
For heated forms: a > b > c
Antimutagenicity effects:
For unheated forms: a = b > c
For heated forms: a > b > c

[386]

Miso soup, fermented
soybeans, houba-miso Isoflavone Hot flush severity↓ [387]

Miso soup, natto,
and soybeans - Attenuated arterial stiffness via

brachial–ankle pulse wave velocity ↓ [388]

Miso and natto Isoflavones Blood pressure ↓ [389]

Low-salt O-miso -
Serum cholesterol ↓
Serum and liver TBARS value ↓
Serum GSH-Px and hepatic catalase ↑

[390]
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Table 4. Cont.

Fermented Foods Specific Foods Certain Bioactive
Compounds Effects of Health References

Soybean koji -

Increase in mRNA expression incident
to lipogenic genes and weightiness of
white adipose tissue ↓
Serum levels of triglyceride,
low-density lipoprotein cholesterol,
and total cholesterol ↓
Serum levels of high-density
lipoprotein cholesterol ↑
Lipid accumulation in the white
adipose tissue and liver ↓

[391]

Soy Meju Tetragenococcus
halophilus EFEL7002

May adhere to Caco-2 cells
Protective effect against
H2O2-induced epithelial damage
Antioxidant activity in
human intestine
Anti-inflammatory effects by
inhibiting NO synthase within RAW
264.7 cells
mRNA expressions of IL-6, IL-10,
and IL-1β ↑

[392]

Thua-Nao Daidzein
Genistein

MCF-7 and HEK293 cancer
cell growth ↓
Amount of viable HepG2 cells ↓

[393]

Fermented soy
beverage - Levels of LDL cholesterol and

total cholesterol ↓ [394]

Soy milk Soy milk powder Isoflavones
3-HAA

TG accumulation and total cholesterol
within liver under oxidative stress ↓ [395]

Fermented soy milk via
Enterococcus faecalis
VB43

Reduction in
conglycinin (7S) and
glycinin (11S)

Enterococcus faecalis VB43-fermented
soy milk may cause less severe allergy
reactions in susceptible people

[396]

Red bean

Tempeh
(fermented red bean via
Rhizopus and
Lactobacillus)

Anthocyanin and
GABA

ROS, pCREB, and iNOS expressions ↓
BDNF expression ↑ [397]

↑: increased, ↓: decreased, MUC1: colonic mucin 1, MUC2: colonic mucin 2, CREB: cAMP response ele-
ment binding protein, MUC3: colonic mucin 3, Relmβ: resistin-like molecule beta, TLR4: Toll-like receptor
4, IFN-γ: interferon-γ, AST: aspartate aminotransferase, TG: triglyceride, NF- kB: nuclear factor kB, HDL: high-
density lipoprotein, GSH: glutathione, PARP-1: poly (ADP-ribose) polymerase 1, MAO-A: monoamine oxidase A,
CRP: C-reactive protein, IL-: interleukin-, TGF-β1: transforming growth factor beta 1, AChE: acetylcholinesterase,
SOD: superoxide dismutase, GLB1: galactosidase beta-1, ALP: alkaline phosphatase, MAPK: mitogen-activated
protein kinase, MCP-1: monocyte chemoattractant protein-1, Th1: T helper type 1, iNOS: inducible nitric oxide
synthase, PGD2: prostaglandin D2, TBARS: thiobarbituric acid reactive substances, H2O2: hydrogen peroxide,
LDL: low-density lipoprotein, ROS: reactive oxygen species, NO: nitric oxide, cAMP: cyclic adenosine monophos-
phate, BDNF: brain-derived neurotrophic factor, 3-HAA: 3-hydroxyanthranilic acid, JNK: c-Jun N-terminal kinase,
TNF-α: tumor necrosis factor-α, ALT: alanine aminotransferase.

6. Fermented Cereals

Cereals are edible grains or seeds from the Gramineae family. The group of grains
includes rye, oats, barley, maize, triticale, millet, and sorghum. The two most significant
cereal crops worldwide are wheat and rice [398]. Many people consume rice as a funda-
mental food, especially in portions of Asia, Latin America, and Africa [399]. Rice is one
of the most widely consumed grains. With regard to minerals, dietary fiber, zinc, protein,
lipids, complex vitamins of vitamin B, and vitamin E, cereals play significant roles in our
nutrition. However, beneficial phytochemicals such phytic acid, phenolic compounds, and
gamma-oryzanol have significant roles [400].
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Cereals are also best processed through fermentation, a time-honored technique [401].
The fermenting method is becoming more and more popular due to the growing interest in
dietary consumption and nutrition [402]. In Africa, foods made from fermented grains are
used as staple foods [403]. Among the most common grains utilized in fermentation are
wheat, corn, teff, sorghum, and millet [404]. It is possible to give examples of regionally
fermented grain-based dishes like Mawè and Ogi [405]. Utilizing Streptococcus thermophilus
during fermentation enhances texture and flavor while also increasing volatile chemicals
(diacetyl and acetoin) [406]. The fermentation process decreases the moisture and carbo-
hydrate contents while increasing the total protein and ash contents in corn beverages
fermented with Lactobacillus bulgaricus and Streptococcus thermophilus [407]. The traditional
Peruvian drink, “Chicha de siete semillas”, is fermented using Streptococcus macedonicus
and Leuconoctoc lactis. This fermented cuisine contains a lot of GABAs and is made from
grains, pseudograins, and legumes. Streptococcus macedonicus is typically chosen for maize
preparation if corn is to be used as a grain source [408]. Amahewu is another type of fer-
mented grain. Amahewu is a fermented oatmeal or beverage made from corn that is mostly
enjoyed in South Africa. Depending on the graft type, the type of maize, and the present
fermentation circumstances, Amahewu’s nutritional and sensory qualities may change [409].
Bacillus, Arthrobacter, Lactobacillus, Ilyobacter, Clostridium, and Lactococcus are only a few
of the numerous and distinct microbial species that are abundant in the fermented rice-
based beverage, Chokot, made in India [410]. A popular fermented beverage made from
grains called boza is enjoyed in many Balkan nations. Boza is rich in lactic acid bacteria,
including Pediococcus parvulus, Lactobacillus parabuchneri, Limosilolactobacillus fermentum,
Lactobacillus coryniformis, and Lactobacillus buchneri. Other types of microbiota found in boza,
however, include yeasts such Pichia fermentans, Pichia norvegensis, Pichia guilliermondii, and
Torulaspora spp. [411]. Boza, a grain-based food, is likewise high in putrescine, spermidine,
and tyramine [412]. It has health impacts in addition to enhancing the functional and
nutritive value of fermented grain products and satisfying the demands of contemporary
consumers for health-promoting products [413]. Table 5 contains a list of the consequences
of fermented cereals on health.

Table 5. Effects of fermented cereals and certain bioactive compounds on health.

Fermented Foods Certain Bioactive Compounds Effects of Health References

Jalebi

Lapidilactobacillus bayanensis
Bacillota
Candida glabrata
Lapidilactobacillus dextrinicus
Pichia kudriavzevii
Pediococcus stilesii
Wickerhamomyces anomalus
Gluconobacter japonicus

Probiotic functions [414]

Ogi Combination with tigernuts and
sesame seeds

Antioxidant activity ↑
α-glucosidase enzyme inhibitory activity ↑ [415]

Borde

Lactic acid bacteria strains (WS07,
AM15, and AM20)
Yeast strains (WS15, AA19, AM18,
and AM23)

Cholesterol lowering ability ↑ [416]

Kunu-zaki
Limosilactobacillus fermentum
Leuconostoc citreum
Weissella confusa

Anti-fungal activity [417]

Kounou Flavonoids
Polyphenols Antioxidant activity [418]
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Table 5. Cont.

Fermented Foods Certain Bioactive Compounds Effects of Health References

Bozai (Boza) Bacteriocin LF-BZ532 Antimicrobial spectrum opposite to both
Gram-positive and Gram-negative bacteria [419]

Fermented cereal pastes Lactobacillus

Serum and hepatic cholesterol levels ↓
Ratio of LDL-C to HDL-C ↓
Hepatic LDL receptor and CYP7A1
gene expressions ↑
Activity of superoxide dismutase ↑
Count of coliform and Clostridium perfringens
in feces ↓

[420]

Kunu-zaki
Ogi

Lactiplantibacillus plantarum
ULAG11
Lactiplantibacillus plantarum
ULAG24

Exclusion of Salmonella enterica LT2 via
adherence of L. plantarum ULAG24 to HT29
cell line ↑
Stimulation of IFNγ and IL-10 via
L. plantarum ULAG24 ↑
Expression of amylase via
L. plantarum ULAG11 ↑

[421]

Fermented quinoa and wheat Bifidobacterium breve
Bifidobacterium longum

ACE-inhibition activities ↑
Antioxidant activities ↑
Cytotoxicity activities against Caco-2
cell line ↑

[422]

Fermented barley Lactobacillus

Hepatic superoxide dismutase activity ↑
Improvement in intestinal
microbiota dysbiosis ↑
Bacteroidetes ↑
Firmicutes/Bacteroidetes ratio ↓

[423]

Fermented quinoa flour Pleurotus ostreatus ACE-I inhibitory ↑ [424]

Togwa Lactic acid Campylobacter spp., Salmonella spp., ETEC
and Shigella spp. ↓ [425]

Fermented rye -
Romboutsia↑
Bilophila↓
Fecal acetic acid ↑

[426]

Fermented Tartary buckwheat Monascus purpureus
Liver glycogen content ↑
SOD activity ↑
CAT activity ↑

[427]

Fermented pearl millet flour Aspergillus sojae Antioxidant activity ↑
DNA damage protection activity ↑ [428]

Fermented sorghum Pediococcus acidilactici OHFR1
Muribaculum, Parabacteroides, and
Phocaeicola ↑
Oscillibcater, Acetatifactor, and Acetivibrio↓

[429]

Bhaati Jaanr -

Proliferation of colon adenocarcinoma cell
lines (HT29 and SW480) ↓
Expression of IL-1β, COX-2, IL-6,
and TNF-α ↓

[13]

↑: increased, ↓: decreased, LDL-C: low-density lipoprotein cholesterol, HDL-C: high-density lipoprotein
cholesterol, CYP7A1: cholesterol-7α-hydroxylase, IL-: interleukin-, ACE: angiotensin-converting enzyme,
ETEC: enterotoxigenic Esherichia coli, SOD: superoxide dismutase, CAT: catalase, DNA: deoxyribose nucleic acid,
IFN-γ: interferon-γ, TNF-α: tumor necrosis factor-α.

7. The Other Side of Fermented Foods

Dairy products, vegetables and fruits, legumes, meats, and grains are among the
fermentable food groups. Microorganisms that play roles in fermentation and the bioactive
compounds released during fermentation have antioxidant, anti-fungal, and antidiabetes
effects; are involved in the protection of cognitive function and the regulation of intestinal
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microbiota; and have anti-inflammatory, antihypertension, anticancer, and anti-obesity
effects (Figure 3).

Although fermentation has positive impacts on health, another aspect of it needs
to be examined. One of the aspects that should be emphasized is the biogenic amines
contained in some fermented products. Biogenic amines are compounds that exist espe-
cially in fermented meat products and increase with fermentation [430]. Biogenic amines
such as spermidine and cadaverine cause an increase in N-nitrosodimethylamine and
N-nitrosopiperidine levels [431]. The nitrosamines belong to the carcinogen group. While
the most prevalent forms of nitrosamines in meat are N-nitrosodimethylamine and N-
nitrosopiperidine [432], the International Agency for Research on Cancer categorizes
N-nitrosopiperidine as group 2B, while N-nitrosodimethylamine is classified as group
2A [433].
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Another component found in fermented foods that has been linked to health is biogenic
amines. Histamine, tyramine, putrescine, and cadaverine are the biogenic amines that
are most frequently observed [434]. The bacterial decarboxylation of the appropriate
amino acids using substrate-specific decarboxylase enzymes is the primary method used
to create biogenic amines in food. For example, histamine is formed from the amino acid
histidine via histidine decarboxylase, while cadaverine is formed from lysine [435]. They
can occur in many fermented foods such as cheese, sauerkraut and another vegetables,
soybean, meat, fish, beer, wine, etc. [434,435]. Biogenic amines have many roles in the
body such as protein, hormone, and nucleic acid syntheses, blood pressure control, and
the promotion of cell growth. However, excessive intake may have toxic effects. Many
symptoms such as food poisoning, headache, and sweating can be seen [436]. Biogenic
amine formation and an increase in the amount can be prevented by paying attention to the
storage temperature of foods, packaging processes, natural components, and appropriate
starter culture selection [437]. There are studies on starter cultures, especially in fermented
foods. The use of Bacillus polymyxa as a starter culture during salted fish fermentation
and Lactobacillus plantarum as a starter culture during miso fermentation reduced biogenic
amines [438,439].
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Another unhealthy compound that can be found in some fermented foods is salt.
High salt consumption has negative health effects. It is therefore important to reduce salt
consumption. However, reducing salt in fermented foods may pose a problem with regard
to food safety, texture, and flavor [440]. While ensuring that this reduces salt intake, it may
cause the development of pathogenic microorganisms. Reducing the salts used may result
in increased yeast, Enterobacteriaceae, and microbial growths [441]. Microbial growth can
occur due to the decrease in water activity. As a result of the increase in some microor-
ganisms, the formation of biogenic amines and nitrosamines may increase [430,442–446].
In addition, there is an increase, especially in the NDMA type, due to the replacement of
sodium salt with potassium salt [447]. There are different practices for reducing sodium
salt in some traditional fermented foods to change the diffusion and dissolution state by
improving the physical form of the sodium salt used. Vacuum curing technology, ultra-
sound technology, high pressure technology, and microwave technology are used to obtain
low-sodium products [440].

The future growth of the fermented food sector is made possible by the lowering
of sodium and nitrosamines in traditional fermented foods. Studies on fermented foods
show heterogeneous characteristics. This makes it difficult to compile the studies on a
fermented food and to make a general evaluation of the positive and negative properties of
that fermented food. In addition, studies on the amounts of fermented foods consumed
by people need to be increased. In this way, responses to the effects of the amounts of
fermented foods consumed on humans can be evaluated.

The regulatory effects of many fermented foods on health are explained in this article.
These foods have a large place in our daily diets. However, their “consumption amount” is
not determined by legal regulations. However, the lack of production standards (industrial
type, homemade type, etc.) of fermented foods will cause both difficulty and inability
in achieving homogenization, especially in surveillance and determining microorganism
species differences and by-products due to such microorganisms.

8. Conclusions

The earliest food processing technique to have developed alongside human civiliza-
tion is fermentation. The foods not only stayed fresh for a very long time, but they also
developed new sensory qualities like flavors and smells. With the development of the food
sector, fermented goods are becoming more and more popular. Fermented foods fall into
significant food groups in human nutrition. Food groups that can be fermented include
dairy products, cereals, legumes, fruits and vegetables, meats, and grains. In addition to
internationally popular fermented foods like kefir, yogurt, cheese, fruit vinegar, and wine,
traditional fermented pickles like kimchi and sauerkraut are also referred to as “pickles”.
In addition, there are more regionally specific traditional fermented foods that can be
pointed out including the following: meats such as nham; cereals such as mawè, jalebi, borde,
kunu-zaki, kounou, togwa, bhaati jaanr, ogi, chicha de siete semillas, amahewu, chokot, and boza;
and legumes such as cheonggukjang, natto, miso, jang, ugba, doenjang, koji, and meju. In the fer-
mentation of foods, two significant components can be identified: (i) bioactive substances
generated during fermentation and (ii) microorganisms involved during fermentation.
Among the bioactive substances are organic acids, bioactive peptides, exopolysaccharides,
conjugated linoleic acid, biogenic amines, isoflavones, phytoestrogens, nattokinase, and
N-nitrosamines. Microorganisms, which are another factor in the realization of fermen-
tation, come to the fore in different ways in different foods. Microorganisms such as
Lactobacillus, Bifidobacterium, Streptococcus, and Bacillus species are regarded as probiotics in
the fermentation process. Microorganisms that are efficient in the fermentation process and
the bioactive substances they produce have impacts on health. Antidiabetes, anticancer,
antioxidant, anti-inflammatory, antihypertension, and anti-fungal effects; the regulation of
intestinal microbiota; the protection of cognitive function; and anti-obesity activities are
just a few of fermented foods’ effects. Along with the positive effects of microorganisms
and bioactive compounds in fermented foods on health, studies should be increased to
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elucidate the mechanisms for the effects of these foods on health. Studies have generally
been carried out on isolated bioactive compounds and/or microorganisms. However, it is
substantial to increase studies that evaluate the intake of fermented foods as a complex,
rather than as a single component in human nutrition, and their interactions with each
other. In future studies, the amount and duration of fermented foods in human nutrition
should be evaluated.
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