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Abstract: The rapid and intelligent evaluation of black tea taste quality during the fermentation
process is an unsolved problem because of the complexity and hysteretic of the current taste evaluation
method. Common infrared spectroscopy and machine vision technologies can rapidly evaluate the
taste quality of black tea, but they can not obtain comprehensive sample information. To obtain
comprehensive sample information and achieve the rapid evaluation of the taste quality of black tea,
the fusion data from hyperspectral images of fermentation samples were applied to predict the taste
quality. The successive projection algorithm (SPA) and ant colony optimization (ACO) were used
to select effective bands for spectral data. Subsequently, the color images were synthesized using
three carefully selected effective bands obtained through the SPA and ACO. The 18 image features
were extracted from each synthesized color image and fused with spectral effective bands. The
fusion data and three different algorithms, such as partial least squares regression (PLSR), support
vector machine regression (SVR), and extreme learning machine (ELM), were employed to establish
the regression model for taste quality. Specifically, the fusion-SPA-PLSR model exhibited the best
performance. This study provides a novel method for the intelligent evaluation of taste quality during
black tea fermentation and lays a theoretical foundation for the intelligent processing and control of
black tea.

Keywords: hyperspectral imaging; taste quality; data fusion; black tea; fermentation

1. Introduction

Black tea is renowned for its appealing flavor. Consumers place great importance
on the quality of black tea taste quality, as it is considered a major factor in evaluating
its overall quality. Generally, the taste quality is related to the content of some major
components of black tea, including soluble sugar, caffeine, catechins, and amino acids.
Caffeine and catechins are considered to be the main components of the bitterness [1,2].
The amino acids present the umami taste of tea leaves, especially theanine [3,4]. The
soluble sugar produces the sweet and mellow taste of the finished tea [5]. Remarkably,
the complicated manufacturing craft is a crucial factor in forming the appealing flavor of
black tea, especially in the fermentation process. From a biochemical perspective, catechins
undergo significant oxidation–reduction reactions, leading to the formation of tea pigments
and various volatile aromatic compounds. Additionally, during the fermentation process,
several crucial components relating to the taste of finished tea, including caffeine, catechins,
amino acids, and tea polyphenols, undergo significant changes [2]. Therefore, fermentation
is regarded as a crucial step in developing the appealing taste of black tea. Moreover,
the mellow taste of black tea emerges from the intricate interplay of several key chemical
components, and consumers might not be able to distinguish it in their taste evaluation.
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Consequently, during black tea fermentation, the control and assessment of taste quality
become essential tasks.

Generally, the assessment of black tea’s taste quality relies on professional tea experts [6].
In addition, this evaluation method exhibits strong subjectivity and is easily influenced by
some external factors, i.e., weather, mood, and the experience of tea experts. Consequently,
the results often lack objectivity and consistency. In contrast, many scholars accurately
obtained some major components using some sophisticated instruments, i.e., HPLC and
LC-MS [7,8]. While these methods can offer accurate detection results, they are complex
and time-consuming. Hence, a convenient, rapid, and nondestructive detection strategy
should be developed.

Some artificial intelligence methods and detection technologies were applied for
the quantitative prediction of major components [9–11]. Among these technologies, in-
frared spectroscopy was utilized for the detection of tea pigments, catechins, caffeine,
and tea polyphenols by leveraging the overtones of major functional groups [9,12,13].
Unfortunately, this technology is limited to obtaining partial sample information. In con-
trast, computer vision technology (CVS) offers a broader range of sample information
acquisition [14]. However, the CVS could only capture the appearance information of tea
samples, which display poor penetration ability. Consequently, both infrared spectroscopy
technology and CVS have their respective limitations. Hyperspectral imaging technology
allows simultaneous acquisition of both spectral and image information. Some researchers
have successfully achieved the visualization of some components based on hyperspectral
image information [2,15]. However, in most cases, only the spectral data are utilized for the
construction of models, and the full potential of hyperspectral images remains untapped.
In our previous studies, we have successfully explored the hyperspectral images of tea
samples to accurately evaluate the black tea fermentation degree [16]. While this study
successfully obtained a relatively comprehensive set of sample information, it did not
encompass the sensory information that consumers typically prioritize. Furthermore, some
sensory qualities, such as aroma quality [17], overall sensory quality [18], and bitterness
and astringency scores [19], have been successfully evaluated. Notably, only a limited
number of studies focused on evaluating the black tea taste quality during tea processing,
with particular emphasis on the fermentation process.

In this study, we aimed to acquire comprehensive sample information based on
hyperspectral imaging technology and evaluated the taste quality using effective fusion
information. The framework of this study was (1) to obtain the hyperspectral imaging
of different fermentation samples, (2) to establish a taste score model using spectral data,
(3) to select effective bands based on different feature selection algorithms, (4) to synthesize
color images based on three selected bands and establish the taste score model using color
and texture features, and (5) to establish a taste score model using fusion data, linear and
nonlinear models.

2. Materials and Methods
2.1. Samples

A total of 25 kg fresh tea leaves of the ‘Mount Wuyi population species’ variety, com-
prising one bud and two leaves, were harvested on 6 May 2022. These leaves were carefully
plucked and placed in a breathable box with ice bags for immediate transportation to
the laboratory. Then, these fresh leaves were handled based on the black tea standard
processing crafts (GB/T 35810–2018). When the rolling process was completed, these rolled
leaves were accumulated in a fermentation room. The temperature and humidity were
30 ◦C and 90%, respectively. The fermentation experiments were carried out for 7 h. The
25 parallel samples were randomly collected every hour. Furthermore, 200 g leaves were
dried every hour for a sensory evaluation experiment to acquire taste scores. The experi-
mental framework is illustrated in Figure 1.
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Figure 1. The flow diagram of black tea fermentation experiment and data analysis. For the sample
image information, the red color indicates positive correlation and the blue color shows negative
correlation. For the fusion information & decision results, the yellow color means high RPD value,
the green color means middle RPD value, the blue color means low RPD value.

2.2. Sensory Evaluation of Black Tea Taste Quality

The sensory evaluation was carried out by 5 professional tea tasters based on the
standard evaluation method (GB/T 23776–2018). Subsequently, all the taste scores from
these tea tasters were recorded and averaged to obtain the final taste scores for each
fermentation time.

2.3. Acquisition of Hyperspectral Images

To obtain more comprehensive sample information, all collected fermentation samples
were scanned for hyperspectral images. The details of the hyperspectral imaging system
can be found in the supplementary materials, and it obtained sample information in the
range of 400–1000 nm through line scanning. After our repeated experiments, the advance
speed and resolution of the conveyor system and hyperspectral images were 2.8 mm/s
and 1632 × 2562 pixels, respectively. The camera captured hyperspectral images with an
exposure time of 4.2 ms. Before collecting sample hyperspectral images at each fermentation
moment, the white reference and dark current were acquired. When these parameters were
determined, 200 g fermentation leaves were laid flat on the precision conveying device
so that they maintain consistency for obtaining hyperspectral images. Subsequently, each
collected fermentation sample was scanned with hyperspectral images. To eliminate the
influence of the dark current in the CCD camera and the spatial light intensity conversion
in the halogen lamp, these hyperspectral images needed to be calibrated, and the details of
the correction method were provided in supplementary materials. Finally, 200 calibrated
hyperspectral images were obtained.

2.4. Data Processing
2.4.1. Extraction of Spectral Data

The hyperspectral images of the samples contain a vast amount of information. How-
ever, not all this information is relevant to the taste quality. To focus on the relevant
information, a threshold segmentation method was applied to separate the calibrated
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sample hyperspectral images from the background, effectively removing background infor-
mation. Subsequently, the spectra of all pixel points within the sample area were extracted
and averaged to obtain the raw spectral information of the fermentation samples. The
obtained raw spectral data underwent standard normal variable (SNV) transformation for
preprocessing. This preprocessing step eliminated the impact of optical path scattering,
thereby improving the modeling performance.

2.4.2. Selection of Characteristic Spectral Information

Although the preprocessed spectra eliminated the impact of optical path scattering,
multi-dimensional information may still contain strong redundancy. Consequently, the
selection of effective spectral information becomes a particularly crucial step. Two effective
spectral selection methods, SPA and ACO, were employed. SPA could efficiently integrate
all sample information using only a small number of variables [20]. The ACO strategy
incorporates the concept of cooperative pheromone accumulation and effectively eliminates
irrelevant features based on the Monte Carlo method [21]. Crucially, the ACO strategy
displayed different running results due to the Monte Carlo approach. To ensure robust-
ness, the ACO strategy was repeated 100 times, recording all selected variables and their
repetition frequencies. Ultimately, the bands with repetition frequencies higher than 30
were selected.

2.4.3. Image Acquisition and Feature Extraction

As is all known, each band of hyperspectral image represents a grayscale image.
The SPA and ACO algorithms have selected effective variables. Among them, 3 selected
bands using SPA and 3 selected bands using ACO were synthesized into color images.
As for the selection of 3 synthesized bands for SPA and ACO algorithms, according to
our previous experiments, we found that when the R, G, and B channels are 658.37 nm,
553.07 nm, and 449.33 nm, respectively, the synthesized color image is considerable similar
to the raw fermentation samples [16]. Hence, 3 bands closest to the R (658.37 nm), G
(553.07 nm), and B region (449.33 nm) were selected from these effective bands selected
by SPA and ACO algorithms. For the SPA algorithm, the color image was synthesized
when R = 686.63 nm, G = 540.34 nm and B = 448.29 nm. For the ACO algorithm, when
R = 555.19 nm, G = 552.01 nm, and B = 405.30 nm, three grayscale images were synthesized
into a color image. Subsequently, all the synthesized color images were extracted from
12 color features, such as R, G, B, H, S, V, L*, a*, b*, 2G-R-B, R/G, hab*, and 6 texture
features, i.e., m, δ, r, µ, U, and e. The detailed descriptions of these image features are
presented in supplementary materials.

2.4.4. Data Fusion and Dimension Reduction

The data fusion can enhance the robustness of the prediction model by leveraging
complementary information sources, thus promoting the synergy of different technologies.
Data fusion could be classified into low, middle, and high levels [22]. These data fusion
methods were introduced in supplementary materials. The low-level fusion obtains com-
prehensive sample information, but a large amount of redundant information can affect
the computational speed of the prediction model. Compared with the low-level fusion
strategy, this strategy eliminates redundant information from fusion data and improves the
performance of the prediction model. However, the high-level fusion exhibits extremely
high requirements for the prediction results of each data. Hence, the middle-level fusion
was carried out. In this work, the effective spectral information and 18 color texture features
were combined into a new matrix. However, there is still a significant correlation between
these obtained variables, indicating that the information expressed by some variables could
be replaced by other variables. The redundant information could potentially impact the
accuracy and robustness of the established models. In general, fewer variables involved
in modeling lead to faster model execution. Additionally, the rapid discrimination and
prediction ability of equipment are vital factors for wide application in actual production.
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Therefore, to enhance modeling robustness, accuracy, and speed, a data dimensionality
reduction strategy should be applied for the fusion of different information. Principal
component analysis (PCA) is a classical method which not only reduces the dimension of
fused multidimensional data but also preserves most of the raw variable information [23].
Orthogonal transformation projects the raw variables that might be correlated onto selected
vectors to form a new set of variables (principal components, PCs), which represents most
of the effective information of raw data. In this study, the PCA was applied to compress
fused multidimensional data.

2.4.5. Regression Models

In this study, classical PLSR, SVR, and ELM methods were employed to establish
regression models for the black tea taste quality. For the PLSR model, the optimal principal
components (PCs) were selected using the smallest sum squares errors obtained through
cross-validation [10]. The SVR is a nonlinear supervised learning algorithm that only
focuses on the sample points with the smallest error margin, and these sample points are
known as support vectors. The SVR algorithm aims to create a model that minimizes the
difference between the output value and the target value. Unlike traditional methods, SVR
calculates losses only when the difference between the output and target values exceeds the
preset error. This approach allows the model to focus on accurately predicting values near
the target value [24]. The radial basis function (RBF) was applied as the kernel function. In
addition, the penalty factor c and kernel parameter g were optimized to establish a taste
quality regression model of black tea. The ELM is a strategy that is used to train a single
hidden layer feedforward neural network. The ELM algorithm could use random input
layer weights and deviations rather than backward propagation methods and retain good
generalization ability [25]. The evaluation factors and statistical analysis software were
introduced in supplementary materials.

3. Results
3.1. Taste Evaluation Results

In this work, the taste quality of tea samples was evaluated by five professional tea
tasters, and these obtained taste scores were shown in supplementary materials. At the ini-
tial stage of fermentation, the taste quality displayed relatively low scores because obvious
astringency remained in the tea infusion, and the sweet flavor was not fully presented. The
strong astringency observed in the tea samples at the beginning of fermentation might be
attributed to the high concentration of epigallocatechin gallate (EGCG) [19]. Subsequently,
the astringency of tea samples decreased, and the sweet flavor was completely presented.
Therefore, during the moderate fermentation stage, the taste quality of the tea samples
obtained a satisfactory score, which is a common occurrence. However, with prolonged
fermentation, the taste scores decreased, mainly due to the gradual increase in sour flavor.
This sourness could be attributed to the accumulation of organic acids resulting from
the oxidation and polymerization of polyphenols [26]. Hence, these taste scores can be
interpreted with confidence. As can be seen in Figure 2, the Pearson correlation analysis
was carried out by five professional tea tasters. It is evident that all the correlation coeffi-
cients for taste scores exceeded 0.77, and these taste scores were significantly correlated
(p < 0.01). This indicates that the evaluations provided by the tea tasters are highly con-
sistent in assessing taste quality. Thus, these obtained taste score by five professional tea
tasters is reliable and could represent the taste quality of fermentation samples.
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3.2. Response Spectra of Fermentation Samples

The raw two-dimensional response spectra of tea samples are depicted in Figures 1 and 3a.
As shown in Figure 1, the reflectance intensity of the absorption peak in the visible region
decreases over time. This may result from the enzymatic oxidation reaction, as this reaction
results in the reduction of chlorophyll and the formation of tea pigments, i.e., theaflavins (TFs)
and thearubigins (TRs) [16,27]. Moreover, the same is true in the near-infrared region, which
might be related to the overtone of X-H groups [2]. To mitigate the impact of optical path
scattering, all raw spectra underwent SNV, and the preprocessed spectra are presented in
Figure 3b,c. It is evident from Figure 3c that the spectral trends are more clearly described. In
the range of 600–700 nm and 880–1000 nm, the reflectance intensity increases over fermentation
time. However, the opposite trend is presented in the range of 720–880 nm. This spectral
information exhibits a regular trend within a specific range.

Fermentation 2023, 9, x FOR PEER REVIEW 6 of 15 
 

 

by five professional tea tasters is reliable and could represent the taste quality of 
fermentation samples. 

 
Figure 2. The Pearson correlation analysis of taste scores from 5 professional tea tasters. The “*” 
means that the compared results are significantly correlated. The red color indicates positive 
correlation and the blue color shows negative correlation. The red color font means the correlation 
coefficient. 

3.2. Response Spectra of Fermentation Samples 
The raw two-dimensional response spectra of tea samples are depicted in Figures 1 

and 3a. As shown in Figure 1, the reflectance intensity of the absorption peak in the visible 
region decreases over time. This may result from the enzymatic oxidation reaction, as this 
reaction results in the reduction of chlorophyll and the formation of tea pigments, i.e., 
theaflavins (TFs) and thearubigins (TRs) [16,27]. Moreover, the same is true in the near-
infrared region, which might be related to the overtone of X-H groups [2]. To mitigate the 
impact of optical path scattering, all raw spectra underwent SNV, and the preprocessed 
spectra are presented in Figure 3b,c. It is evident from Figure 3c that the spectral trends 
are more clearly described. In the range of 600–700 nm and 880–1000 nm, the reflectance 
intensity increases over fermentation time. However, the opposite trend is presented in 
the range of 720–880 nm. This spectral information exhibits a regular trend within a 
specific range. 

 
Figure 3. The spectral curves of all fermentation samples obtained using (a) raw data, (b) SNV 
preprocessed data, and (c) averaged data of tea samples at different fermentation times. The 
different color lines mean different spectra of fermentation samples in Figure 3a,b. 

3.3. Hierarchical Clustering Analysis (HCA) of Sample Spectra 
All the sample spectra were subject to PCA, and then the first 14 PCs were carried 

out HCA. Notably, the first 14 principal components (PCs) were selected as they 
collectively captured 99.9% of the information contained in the preprocessed sample 
spectra. In this study, all the sample spectra were categorized into five groups. The result 
of HCA with different taste quality is displayed in Figure 4. Unfortunately, the results of 
HCA for sample spectral information are not satisfactory. The spectral information from 

Figure 3. The spectral curves of all fermentation samples obtained using (a) raw data, (b) SNV
preprocessed data, and (c) averaged data of tea samples at different fermentation times. The different
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3.3. Hierarchical Clustering Analysis (HCA) of Sample Spectra

All the sample spectra were subject to PCA, and then the first 14 PCs were carried out
HCA. Notably, the first 14 principal components (PCs) were selected as they collectively
captured 99.9% of the information contained in the preprocessed sample spectra. In this
study, all the sample spectra were categorized into five groups. The result of HCA with
different taste quality is displayed in Figure 4. Unfortunately, the results of HCA for
sample spectral information are not satisfactory. The spectral information from adjacent
fermentation time points was divided into the same category rather than based on the
taste quality scores, indicating that the spectral information at different fermentation
times had poor recognition ability for the taste quality of black tea. In addition, the
HCA is an unsupervised class analysis strategy, which could not effectively evaluate
unknown samples, and the new HCA map containing this new sample information should



Fermentation 2023, 9, 896 7 of 15

be recreated [28]. Therefore, some effective supervised quantitative regression algorithms,
such as PLSR, SVR, and ELM, were further developed and applied.
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3.4. Quantitative Prediction Models with Single Data
3.4.1. Regression Model Based on Full Bands

To rapidly and accurately evaluate the taste quality during black tea fermentation,
the sample spectra with full bands were applied to establish a taste quality score regres-
sion model. Before modeling, all the spectral data were divided into a calibration set
(133 samples) and a prediction set (67 samples) with the radio of 2:1. Subsequently, the
PLSR model of raw and preprocessed spectral data with full bands was established, and the
results are presented in Table 1. The Rp and RMSEP values for the raw and preprocessed
spectra were 0.763, 0.897, and 0.827, 0.778, respectively. Obviously, the established linear
regression model using preprocessed spectra exhibited better prediction performance due
to the high Rp values and low RMSEP values, demonstrating that the raw spectra contained
some interferences, which might be caused by optical path scattering. Hence, appropriate
preprocessing methods play a crucial role in establishing supervised regression models.
Although the preprocessed spectral data improved the model accuracy, the performance of
the taste quality model was still poor because of the existence of some redundant informa-
tion. Therefore, some effective variables should be selected to establish a more accurate
taste quality evaluation model.

Table 1. PLSR models for taste score of fermentation leaves based on individual data.

Data Method
No.of Variables

Parameter Calibration Set Prediction Set

LVs Rc RMSEC Rp RMSEP

Spectra none 557 5 0.788 0.868 0.763 0.897
Spectra SNV 557 5 0.854 0.731 0.827 0.778
Spectra SNV + SPA 38 5 0.909 0.585 0.927 0.553
Spectra SNV + ACO (30) 11 4 0.903 0.602 0.923 0.543
Spectra SNV + ACO (all) 411 5 0.857 0.723 0.833 0.767
Image SPA 18 10 0.643 1.055 0.452 1.279
Image ACO 18 14 0.698 0.993 0.554 1.101

3.4.2. Regression Model Based on Effective Bands

In this work, the SPA and ACO methods were applied for the selection of effective
bands to establish the taste quality model during black tea fermentation. The model perfor-
mance and the selected effective bands are presented in Table 1 and Figure 5, respectively.
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For the SPA methods, 38 effective bands were selected to establish the PLSR model.
After the SPA processing, the performance of the established model showed a significant
improvement compared to the SNV model, as indicated by the higher correlation coeffi-
cients. The Rc, RMSEC, Rp, and RMSEP for the established PLSR model were 0.909, 0.585,
0.927 and 0.553, respectively.

In the ACO selection strategy, the total number of ants, the number of generations,
and the maximum number of factors were 20, 50, and 4, respectively. However, different
effective bands would be selected when the ACO algorithm was repeatedly executed,
which might be related to the applied random selection strategy to avoid stagnation. Hence,
the ACO algorithm was carried out 100 times, and all the selected effective bands and
selection frequencies were recorded. During 100 runs of the ACO algorithm, a total of
411 variables were selected. However, the selected frequencies of each variable exhibited
certain differences. To obtain more representative variables, the cutoff line was set to
30, and 11 effective variables were selected. The performance of the taste quality model
for 11 and 411 bands using the ACO algorithm is displayed in Table 1. The Rc, RMSEC,
Rp, and RMSEP for the established PLSR model using 411 bands were 0.857, 0.723, 0.833,
and 0.767, respectively. The Rc, RMSEC, Rp, and RMSEP for the established PLSR model
using 11 bands were 0.903, 0.602, 0.923, and 0.543, respectively. Obviously, the PLSR
model using 11 bands showed better performance because of high Rc and Rp values,
showing that selected high-frequency variables improved the precision and robustness
of the prediction model, and a large number of redundant information was eliminated.
Remarkably, the performance of the spectral regression model using SPA and ACO (cutoff
line = 30) algorithms was similar. In addition, the model performance is worth further
improvement because the Rp values were less than 0.95. Hence, the taste quality prediction
model during black tea fermentation should be further developed.

3.4.3. Regression Models Based on Image Features

To further explore the methods for the improvement of the taste quality model per-
formance, the image information of tea samples was applied. Among these selected
bands using SPA and ACO (cutoff line = 30), after repeated experiments, some grayscale
images of effective variables were selected to synthesize color images of tea samples be-
cause the synthesized color images were most similar to the raw sample. For the SPA
method, when R = 686.63 nm, G = 540.34 nm, and B = 448.29 nm, the color images
were acquired. For the ACO (cutoff line = 30), the color images were synthesized when
R = 555.19 nm, G = 552.01 nm and B = 405.30 nm. Subsequently, 18 image features of each
obtained color image were extracted. The results of established PLSR models of taste
scores using image information from SPA and ACO methods are displayed in Table 1.
Obviously, the performance of established PLSR models using image information was
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poor because the Rp values were less than 0.6 and the RMSEP values were higher than
1.0, indicating that 18 image features of tea samples could not represent complete taste
quality information and accurately evaluate the taste quality during black fermentation. In
addition, the Pearson correlation analysis between these features and the taste scores is pre-
sented in Figure 1. Most color features were found to be strongly related to the taste scores,
indicating their potential significance for taste quality evaluation. In contrast to the color
features, few texture features displayed weak correlations with the taste scores. Moreover,
significant correlations were exhibited between different color and texture features. Hence,
the poor model performance using image information might be caused by the interference
of irrelevant variables and incomplete sample information.

3.5. Regression Models with Fusion Data

To acquire a more robust and accurate taste quality evaluation model, data fusion was
applied to obtain comprehensive sample information, and the PCA method was used to
reduce the dimensions of fusion data and retain the most effective sample information.
Therefore, the black tea taste quality was evaluated based on fusion information and
different regression algorithms. In this study, the selected effective bands using SPA and
ACO (cutoff line = 30) algorithms and the extracted 18 features based on synthesized
color images using three selected bands from SPA and ACO (cutoff line = 30) strategies
were directly connected. Subsequently, the PCA algorithm was carried out to reduce the
dimensions of fusion data. The compression rates with the SPA and ACO (cutoff line = 30)
methods for the fused information were 90.26% and 94.96%, respectively. Notably, when
the maximum PCs for the fusion data from SPA and ACO (cutoff line = 30) were set to 22
and 15, respectively, these selected PCs could effectively represent 99.99% of the raw fusion
data information. Finally, some classic regression algorithms, including PLSR, SVR, and
ELM, were applied for the evaluation of taste quality. In Table 2, for the PLSR model, the
values of Rp for the fusion data using SPA and ACO (cutoff line = 30) strategies were 0.978
and 0.910, respectively. For the SVR algorithm, the model achieved the optimal level when
both the c and g parameters were 256. The values of Rp for the fusion-SPA and fusion-ACO
(cutoff line = 30) strategies were 0.969 and 0.930, respectively. For the ELM algorithm, the
number of neurons was optimized to obtain the best model. When the neurons were 75
and 35 for the fusion-SPA and fusion-ACO (cutoff line = 30), the models displayed the best
predictive ability. The values of Rp for the black tea taste quality prediction models were
0.969 and 0.928, respectively. In addition, all the RPD values were higher than 2.20, and
RMSEP values were less than 0.60, indicating that all established prediction models could
accurately evaluate the black tea taste quality.

Table 2. Classical linear and nonlinear models for taste score of fermentation leaves based on
fusion data.

Model Methods
No. of Variables

Parameter Calibration Set Prediction Set

Rc RMSEC Rp RMSEP RPD

PLSR
Fusion (SPA) 56 LV = 18 0.986 0.239 0.978 0.282 4.118
Fusion (ACO) 29 LV = 15 0.947 0.448 0.910 0.538 2.267

SVR
Fusion (SPA) 56 LV = 13, c = 256, g = 256 0.993 0.174 0.969 0.324 3.748
Fusion (ACO) 29 LV = 9, c = 256, g = 256 0.944 0.450 0.930 0.487 2.422

ELM
Fusion (SPA) 56 LV = 20, n = 75 0.992 0.174 0.969 0.317 3.748
Fusion (ACO) 29 LV = 11, n = 35 0.949 0.441 0.928 0.481 2.547

4. Discussion

Some classical regression models using individual data and fused information were
developed. A performance comparison of these models is demonstrated in Figure 6. Each
dot represents one model, the Rp, and the RPD values provide the coordinates of the dot
center, and the radius corresponds to the RMSEP values of the prediction set. If the dot is
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far from the origin and the radius of the dot is smaller, the corresponding model would
exhibit better prediction performance. As can be seen in Tables 1 and 2 and Figure 6, the
conclusions and main reasons can be summarized as follows. The established taste quality
prediction model using single spectral features showed better predictive ability than the
single image model. This phenomenon occurs because spectral data contain more informa-
tion than 18 image features. Additionally, the image features exhibited weak correlations
with the black tea taste quality. On the contrary, the most effective bands were selected
by artificial intelligence algorithms, including SPA and ACO strategies, and they might
be related to some key components, which corresponded to changes in black tea taste
quality. For instance, some effective bands were selected by the SPA algorithm, which were
located at 780–1000 nm. Furthermore, these selected effective bands were attributable to
the third and fourth overtone of group C-H [29]. However, black tea fermentation involves
changes in some major components, such as catechins, soluble sugar, caffeine, and amino
acids, corresponding to the black tea taste quality. The taste quality of tea infusion is the
result of the interaction of some major components. Hence, more comprehensive informa-
tion should be applied to establish a taste quality evaluation model. Interestingly, certain
common bands were selected by both SPA and ACO algorithms, and they were situated
in the visible region. They are associated with the significant color changes observed in
fermentation samples, indicating that color features play a crucial role in evaluating the
taste quality during black tea fermentation. In addition, the correlation analysis of image
features also demonstrated similar results. Therefore, most established fusion models
of taste quality achieved better prediction performance than single information models.
To identify the optimal prediction model for taste quality during black tea fermentation,
particular attention should be directed towards Table 2 and Figure 6. Obviously, the estab-
lished PLSR model using the fusion-SPA strategy was far from the origin, and the radius
of the dot was smaller because this model exhibited the highest Rp (0.978), RPD (4.118),
and the lowest RMSEP (0.282) values. Although the calibration model did not display
the highest Rc (0.986), it was able to demonstrate better predictive ability for unknown
samples. Hence, the fusion-SPA-PLSR model was considered the best prediction model.
This result might be caused by the following reasons. Fermentation follows changes in
some major components, such as catechin (C), catechin gallate (CG), epicatechin (EC),
epigallocatechin (EGC), epicatechin gallate (ECG), epigallocatechin gallate (EGCG), soluble
sugar and gallic acid, corresponding to the taste quality of finished tea. The mellow taste of
black tea is attributed to the interaction of these components. These components exhibited
a linear changing trend with the increasing fermentation time [30]. Hence, the classic linear
PLSR model could display better performance. Compared with the ACO algorithm, some
selected effective bands using the SPA algorithm were located in the near-infrared region,
and they were related to the stretching and vibration of group X-H, which can better explain
the linear trend of these major components. In addition, three selected effective bands
using the SPA algorithm, which was applied to synthesize color images, were closer target
bands (R = 658.37 nm, G = 553.07 nm, and B = 449.33 nm) compared with three selected
bands using the ACO algorithm. The synthesized color images using SPA-selected bands
were more similar to the raw fermentation samples and contained more effective informa-
tion than the synthesized color images using the ACO (cutoff line = 30) selected bands.
Based on the combined effects of the above factors, the fusion-SPA-PLSR model exhibited
the best performance.
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The unique taste of black tea is caused by various bioactive compounds. For instance,
the ester-type catechins are related to the astringency of black tea, especially for EGCG [19].
The soluble sugar and caffeine are the main contributors to the sweetness and bitterness,
respectively [2]. A large amount of TFs is beneficial for the formation of a mellow taste [30].
The effects of different fermentation times on the content of soluble sugar, catechin, caffeine,
and theaflavins (TFs) in black tea are displayed in Figure S1. The catechins gradually decreased
over fermentation time. TFs showed a trend of first increasing and then decreasing over time.
During short fermentation time, the catechins were less oxidized, which was not conducive
to the formation of TFs and TRs. When the moderate fermentation stage was reached, the
catechins exhibited moderate oxidative polymerization and isomerization. A large number
of TFs and TRs were formed to improve the mellow taste of black tea. Subsequently, the
TFs and TRs were further oxidative polymerized, and a large number of TBs were formed,
resulting in tasteless black tea liquors. The soluble sugar displayed a trend of decreasing first,
subsequently increasing, and then decreasing over fermentation time. The polysaccharides
could be hydrolyzed into monosaccharides, leading to the increase in soluble sugar. At the
same time, the monosaccharides were applied for the respiration of fermentation leaves,
resulting in the decrease in soluble sugar. Hence, the content of soluble sugar would be
decreased when fermentation time was prolonged. However, the caffeine did not change
obviously, which was related to its stable chemical properties. The trends of these components
could be contacted with the taste scores of fermentation samples. Before fermentation for
3 h, the taste scores of fermentation samples were poor, corresponding to the insufficient
conversion of catechins, leading to high TFs and catechins. The taste score reached the highest
value at fermentation 3 h. Obviously, the content of soluble sugar and TFs also reached a
relatively high value at fermentation 3 h. These phenomena indicated that taste scores were
the result of the combined action of multiple components. Hence, the evaluation of one
component, such as caffeine, cannot provide guidance for actual fermentation production.
After preliminary investigation, we have learned that most consumers are more concerned
about the taste of tea. Furthermore, to some extent, the taste scores could reflect the content of
major components and the optimal fermentation time [30]. Therefore, the rapid and intelligent
evaluation of the taste quality of black tea using non-destructive detection technology can
provide guidance for actual fermentation production.

In Table S2, some nondestructive detection technologies were applied to evaluate the
tea quality. Ren et al. [31] applied the e-tongue to obtain characteristic potential signals of
black tea samples and converted them into relative characteristic taste values. Finally, the
grades of black tea were accurately discriminated using five taste features and the LS-SVM
model. However, modern consumers are more concerned about the authentic taste quality
of tea rather than labeled tea grade. Hence, to quantify the taste quality of tea leaves is a very
important assignment. Dong et al. [18] and Wang et al. [19] used computer visions (CVS)
and NIR technology to successfully evaluate the appearance sensory scores and bitterness
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and astringency scores, respectively. In addition, Chen et al. [5] established the quantitative
prediction model of taste scores and eight major components for black tea. In the process
of black tea fermentation, most studies focus on the evaluation of major components. Few
research has been reported to evaluate sensory quality during black tea fermentation. Dong
et al. [14] applied CVS technology to accurately predict tea pigments and sensory scores in
the process of black tea fermentation. Although these studies successfully evaluated tea
taste quality, which consumers were more concerned about, some issues still existed. For
instance, the taste quality is the result of the interaction of some major components, and the
tea leaves also underwent considerable changes (appearance and components) during the
process of the formation for the unique tea quality. Hence, the single sensor could not obtain
comprehensive sample information. Ren et al. [32] established an accurate discriminative
model for black tea grade using the fusion information of NIRS and E-Tongue, showing
that the proposed data fusion strategy contained more comprehensive sample information
and exhibited better discriminative performance. As can be seen in Table S2, our study was
compared with other previous studies. Compared with these quantitative analysis studies,
the established model using our proposed method showed better predictive performance
due to a large taste score gradient. Because these researches focused on finished tea, there
was little difference in taste scores between different samples. In contrast to the finished tea,
tea samples with different fermentation times could exhibit a larger taste score gradient. In
Table S2, most of the above studies mainly focused on the finished tea and overlooked the
complicated manufacture crafts of black tea, especially the fermentation process. Especially
compared with Dong’s research [14], our strategy could achieve better results in the process
of black tea fermentation because our strategy could obtain more comprehensive digital
information. It was noted that the sensory score contained appearance score, liquor color
score, aroma score, taste score, and infused leaf score. Although sensory scores were
different from taste scores, to a certain extent, it could display the trend of taste scores.
However, the study corresponding to the taste score during black fermentation has not
been reported. In this work, the taste quality during black tea fermentation was evaluated
based on the fusion data of spectral and image information. To the best of our knowledge,
this is the first study to use the fusion information from sample HIS data to evaluate the
taste quality during black tea fermentation.

Although our study exhibited a satisfactory result, some shortcomings also need to
be improved. For instance, our study only proved the feasibility of the fusion data using
spectral and image information from sample hyperspectral images, but the predictive
potential of different varieties needed to be further explored. It is worth noting that
some previous studies have demonstrated that infrared spectra, hyperspectral imaging,
and machine vision technology can accurately predict major components corresponding
to the taste quality and sensory scores based on different tea varieties [2,5,14]. These
references demonstrated the feasibility of the above non-destructive detection technology in
evaluating the quality of different tea varieties. During black tea fermentation, these major
components and sensory scores displayed similar trends with different tea varieties [30].
Our proposed strategy also had similar digital information and evaluation indicators
and contained more comprehensive information features. These phenomena provide a
theoretical basis for the application to other tea varieties. However, both single variety and
full-variety models require a large amount of data accumulation. Hence, more fermentation
experiments based on different tea varieties should be conducted, which will be the focus
of our next work. In addition, it is important to explore further the methodology of sensory
analysis. Traditional sensory evaluation experiments require professional tea reviewers
to evaluate the appearance score, liquor color score, aroma score, taste score, and infused
leaf score [30]. The comprehensive effect of these factors determines the sensory quality of
tea samples. Therefore, these indicators information should be comprehensively obtained
and evaluated. Furthermore, this method is hysteresis and subjective. Compared with
traditional sensory evaluation, the non-destructive detection technology could rapidly and
objectively evaluate the sample sensory quality [5,14,19]. Importantly, different sensors
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should be applied to acquire the appearance, liquor color, aroma, taste, and infused leaf
information. Subsequently, the experiences of professional tea reviewers are learned by
artificial intelligence models to evaluate the appearance score, liquor color score, aroma
score, taste score, and infused leaf score. Hence, some sensors with integrated functions for
obtaining the appearance, liquor color, aroma, taste, and infused leaf information should be
developed. The collected information will be combined with artificial intelligence models
with professional tea reviewers’ experience to achieve the rapid and objective analysis of
sample sensory quality.

5. Conclusions

In this study, using the fusion information based on spectral and image data, which
were from sample hyperspectral images, for evaluating the taste quality during black tea
fermentation was demonstrated to be feasible. Some conclusions are as follows:

Three selected bands using the SPA and ACO algorithms were determined to synthe-
size color images. For the SPA algorithm, 686.63 nm (R), 540.34 nm (G), and 448.29 nm (B)
were selected. For the ACO algorithm, 555.19 nm (R), 552.01 nm (G), and 405.30 nm (B)
were obtained.

For the single data source, the Spectra-SNV-SPA showed the best modeling performance.
The Rc, RMSEC, Rp, and RMSEP values were 0.909, 0.585, 0.927 and 0.553, respectively.

The data fusion strategy significantly improves the prediction precision of models.
Specifically, the fusion-SPA-PLSR model presented the best prediction performance, with
Rc, RMSEC, Rp, RMSEP, and RPD being 0.986, 0.239, 0.978, 0.282, and 4.118, respectively.
Compared with the Spectra-SNV-SPA model, The Rc and Rp values increased 0.077 and
0.051, respectively.

In the future, hyperspectral imaging equipment with data fusion and quantitative
evaluation of the taste quality of black tea should be developed.
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