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Abstract: Streptomyces fradiae sf106 is a type of actinomycete that can produce abundant secondary
metabolites, making it a natural cell factory for drug synthesis. In order to comprehensively un-
derstand the genomic profile of Streptomyces fradiae sf106 and its potential for producing secondary
metabolites, a combination of several methods was used to perform whole-genome sequencing of
sf106. The results showed that sf106 is most closely related to Streptomyces xinghaiensis S187; the
average nucleotide identity and average amino acid identity of sf106 and S187 were more than 96%.
The genome size of sf106 is approximately 7300 kb, the GC content is greater than 72%, and more
than 6700 coding sequences (CDS) were identified. Analysis of mobile genetic elements revealed
the presence of a large number of horizontally transferred genes in Streptomyces fradiae sf106, which
contribute to microbial diversity. Through antiSMASH prediction, 22 secondary metabolite gene
clusters were obtained, which had great potential to generate polyketide metabolites. By examin-
ing the data, it was found that the genes contained in cluster 9 were similar to those involved in
tylosin synthesis. Non-targeted metabolome sequencing revealed that a total of 1855 identifiable
metabolites were produced in the fermentation broth, and the majority of metabolites showed highly
significant differences in mean relative abundance between the groups. The identified metabolites
were compared against the KEGG compound database to obtain metabolite classifications, mainly
including Biological Roles, Phytochemical Compounds, Lipids, and Pesticides. One-way ANOVA
indicated that the relative concentration of tylosin differed significantly across all the growth periods,
except for the late-logarithmic and stabilization stages. This study provides important basic infor-
mation on the secondary metabolite research of sf106, which will help us to understand and apply
Streptomyces fradiae sf106 more comprehensively.

Keywords: Streptomyces; whole genome; non-targeted metabolome; secondary metabolites; tylosin

1. Introduction

Streptomyces can produce structurally diverse secondary metabolites and has been
extensively studied. More than two-thirds of known antibiotics in nature are discovered
and isolated from Streptomyces [1–3], such as erythromycin and oxytetracycline, among oth-
ers [4–7]. The natural products of Streptomyces usually exhibit good antibacterial, antiviral,
and other biological activities and have been widely used in the fields of animal husbandry,
public health, etc., playing an important role in the health of humans and animals. Re-
searchers have developed a large number of antibiotics, antitumor drugs, agricultural and
veterinary drugs, etc., using secondary metabolites produced by microorganisms [8]. Al-
though chemically modified derivatives of active natural drugs can improve their physical
and chemical properties and biological activities, the discovery of new natural products is
still an area worthy of attention.
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With the development of sequencing technology and the decrease in costs, more and
more microbiome data have been reported. The development of whole-genome sequencing
of microorganisms has allowed us to have a global understanding of the basic situation of
bacteria, which has played a significant role in the molecular genetic research of Strepto-
myces [9,10]. There is still great potential to discover new natural products from this genus.
In the long process of survival and evolution, microorganisms often take in foreign gene
fragments with specific functions and integrate them into their own genomes. These foreign
genomic fragments, such as virulence genes, drug resistance genes, and metabolic genes,
are called mobile genetic elements, and this phenomenon is called horizontal gene trans-
fer [11]. Horizontal gene transfer breaks the boundaries of kinship and increases microbial
diversity. This phenomenon is more common in Streptomyces and can help them improve
their survival rates and occupy advantageous ecological niches. Common mobile genetic
elements include genomic islands [12], prophages [13], CRISPR-Cas [14], and insertion
sequences [15]. To develop and utilize secondary metabolites to a greater extent, researchers
have explored them from multiple perspectives. For example, efforts have included using
Streptomyces as a host cell to express exogenous gene clusters, taking advantage of its
complex and rich metabolic pathways, unique post-transcriptional modification systems,
and antibiotic resistance mechanisms [16–18], which give the genus unique advantages
in heterologous expression of secondary metabolite gene clusters [19–22]. These genetic
manipulations are based on a clear understanding of the target strain’s genome and its
metabolites. Therefore, it is common to characterize and produce natural products by uti-
lizing genome editing techniques after obtaining genomic information [23–25]. In addition,
analyzing the genomic information of organisms provides information on the inducement
of the expression of silent secondary metabolite gene clusters in the chromosome, which
can lead to the discovery of natural products that are not expressed under conventional
culture conditions [26].

Several active secondary metabolites synthesized by microorganisms have been dis-
covered [27–30], and Streptomyces is considered to have great economic value and potential
applications. Non-targeted metabolomics is the study of the collection of all metabolites in a
cell at a certain point in time. Additionally, it is considered to be the closest to the phenotype
of the organism, which is widely used because of its ability to efficiently mine metabo-
lites [31–33]. To further explore the natural product synthesis ability of Streptomyces fradiae
sf106, a non-targeted metabolomics analysis was conducted on the fermentation broth of
Streptomyces fradiae sf106 at different time periods. We can preliminarily clarify the potential
of metabolite biosynthesis of the strain, as well as the relative expression of metabolites
at different periods. Tylosin, also known as Tylan (Figure 1), is a typical 16-membered
macrolide antibiotic for veterinary use. Various microorganisms have been found to pro-
duce tylosin, but Streptomyces fradiae is considered one of the most promising strains
for tylosin biosynthesis. Tylosin plays a significant role in combating Gram-positive
bacterial infections and promoting animal growth, shortening the breeding cycle of
livestock and poultry, improving feed utilization efficiency, and increasing economic
benefits. Therefore, it is widely used in the livestock and poultry farming industry.
Due to its economic value and application potential, extensive scientific research on
tylosin biosynthesis has been conducted since the 1970s [34–37]. The existing research is
mainly based on gene editing, mutagenesis, and other technologies to increase the yield
of tylosin [38–42]. In the early stages of our laboratory, a strain of Streptomyces fradiae
named sf106 was preserved (BioProject ID: PRJNA1017371). What is the potential of this
strain to produce secondary metabolites? In order to further understand its genomic
profile and explore its secondary metabolism potential, we sequenced the whole genome
and metabolome of Streptomyces fradiae sf106. Additionally, we further analyzed its
basic biological information and gained a preliminary understanding of its potential
secondary metabolism capabilities. This will be beneficial for further exploring the
application potential of this strain at a deeper level, enriching the basic research data
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of this strain and providing theoretical support for industrial genetic manipulation of
Streptomyces fradiae sf106.
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2. Materials and Methods
2.1. Strain and Culture Conditions

Streptomyces fradiae sf106 was used for this study. Single colonies taken from sf106 on
a solid medium of wl-50 were transferred to a TSB liquid medium. The wl-50 medium had
the following composition: yeast extract, 1 g/L (Oxoid Ltd., Basingstoke, Britain); soluble
starch, 5 g/L (Tianjin Bohuatong Chemical Products Sales Center, Tianjin, China); sodium
chloride, 2.5 g/L (Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China);
anhydrous magnesium sulfate, 3.6 g/L (Damao Chemical Reagent Factory, Tianjin, China);
magnesium chloride hexahydrate, 4.8 g/L (Shanghai Guangnuo Chemical Technology
Co., Ltd., Shanghai, China); L-alanine, 0.2 g/L; L-arginine, 0.2 g/L; L-asparagine, 0.5 g/L
(Beijing Solarbio Science & Technology Co., Ltd., Beijing, China); and agar, 18 g/L. The
medium was sterilized under high pressure at 115 ◦C for 30 min. Streptomyces fradiae sf106
cultures were prepared in 250 mL conical flasks containing 50 mL of the culture medium.
The medium was prepared using TSB (tryptic soy broth) with the following composition:
yeast extract, 5 g/L (Oxoid Ltd., Basingstoke, Britain); tryptone, 15 g/L (Oxoid Ltd.);
soya peptone, 5 g/L (Beijing Aoboxing Bio-Tech Co. Ltd., Beijing, China); and sodium
chloride, 5 g/L (Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China).
After preparation, the medium was sterilized under high pressure at 121 ◦C for 30 min
and used for the cultivation of sf106. The pictures of sf106 incubation on the solid medium
(wl-50) and in the liquid medium (TSB) are attached in the Supplementary File (Figure S1).

2.2. Genomic DNA Extraction

Streptomyces fradiae sf106 was streaked on a TSB liquid medium and cultured at 28 ◦C for
approximately 96 h at 150 rpm. The cell biomass was harvested after 10 min centrifugation
at 12,000 g (approximately 11,000 rpm). The genomic DNA of Streptomyces fradiae sf106 was
extracted using a bacterial DNA extraction kit (Wizard Genomic DNA Purification Kit,
Madison, WI, USA) according to the manufacturer’s protocol. Purified genomic DNA
was quantified by a TBS-380 fluorometer (Turner BioSystems Inc., Sunnyvale, CA, USA).
High-quality DNA (OD260/280 = 1.8~2.0, >1 µg) was used to conduct further research
(Table S1).

2.3. Library Construction and Genome Sequencing

The genomic DNA was sequenced using a combination of the PacBio RS II Single
Molecule Real-Time (SMRT) and Illumina sequencing platforms. The Illumina data were
used to evaluate the complexity of the genome.



Fermentation 2023, 9, 866 4 of 19

For Illumina sequencing, at least 1 µg genomic DNA was used for each strain in the
sequencing library construction. DNA samples were sheared into 400–500 bp fragments
using a Covaris M220 Focused Acoustic Shearer, and the resulting sequencing libraries
were purified according to the manufacturer’s protocol. Illumina sequencing libraries
were prepared from the sheared fragments using the NEXTflex™ Rapid DNA-Seq Kit
(Bioo Scientific, Austin, TX, USA). Briefly, the 5′ prime ends were first end-repaired and
phosphorylated. Next, the 3′ ends were A-tailed and ligated to sequencing adapters. The
third step was to enrich the adapter-ligated products using PCR. The prepared libraries
then were used for paired-end Illumina sequencing (2 × 150 bp) on an Illumina HiSeq X
Ten machine.

For Pacific Biosciences sequencing, an aliquot of 15 µg DNA was spun in a Covaris
g-TUBE (Covaris, Woburn, MA, USA) at 6000 RPM for 60 s using an Eppendorf 5424
centrifuge (Eppendorf, Hamburg, Germany). The DNA fragments were then purified, end-
repaired, and ligated with SMRT bell sequencing adapters following the manufacturer’s
recommendations (Pacific Biosciences, Menlo Park, CA, USA). The resulting sequenc-
ing libraries were purified three times using 0.45 × volumes of Agencourt AMPure XP
beads (Beckman Coulter Genomics, MA, USA) following the manufacturer’s recommenda-
tions. Next, a ~10 kb insert library was prepared and sequenced on one SMRT cell using
standard methods.

2.4. Genome Assembly and Annotation

The data generated with the PacBio and Illumina platforms were used for bioinfor-
matics analysis. All the analyses were performed using the free online platform Majorbio
Cloud Platform (http://cloud.majorbio.com (accessed on 10 January 2021)) from Shang-
hai Majorbio Bio-pharm Technology Co., Ltd. (Shanghai, China). Glimmer [43] was used
for CDS prediction, tRNA-scan-SE [44] was used for tRNA prediction, and Barrnap was
used for rRNA prediction. The predicted CDSs were annotated according to the NR,
Swiss-Prot, Pfam, GO, COG, and KEGG databases using sequence alignment tools, such
as BLAST, Diamond, and HMMER. Briefly, each set of query proteins was aligned with
the databases, and annotations of best-matched subjects (e-value < 10−5) were obtained
for gene annotation.

2.5. Metabolite Extraction

A total of 200 µL of the liquid sample was extracted using an 800 µL methanol:
acetonitrile (1:1, v/v) solution. The mixture was then sonicated at 40 kHz for 30 min at 5 ◦C.
The samples were placed at −20 ◦C for 30 min to precipitate proteins. After centrifugation
at 13,000 g (approximately 11,063 rpm) at 4 ◦C for 15 min, the supernatant was carefully
transferred to new microtubes and evaporated to dryness under a gentle stream of nitrogen.
For UHPLC–MS/MS analysis, the samples were reconstituted in 120 µL of a loading
solution of acetonitrile: water (1:1, v/v) via brief sonication in a 5 ◦C water bath. The
extracted metabolites were spun for 15 min at 13,000 g (approximately 11,000 rpm) at 4 ◦C
on a bench-top centrifuge, and the cleared supernatant was transferred to sample vials for
LC–MS/MS analysis. As a part of the system conditioning and quality control process, a
pooled quality control (QC) sample was prepared by mixing equal volumes of all samples.

2.6. (UHPLC–MS/MS) Analysis

The instrument platform for the LC–MS analysis was the UHPLC-Q Exactive HF-X
system from Thermo Fisher Scientific (Waltham, MA, USA).

Chromatographic conditions: The chromatographic column was an ACQUITY UPLC
HSS T3 (100 mm × 2.1 mm i.d., 1.8 µm, Waters, Milford, MA, USA). The mobile phases
consisted of 0.1% formic acid in water: acetonitrile (95:5, v/v) (solvent A) and 0.1% formic
acid in acetonitrile: isopropanol: water (47.5:47.5:5, v/v) (solvent B). The sample injection
volume was 3 µL, and the flow rate was set to 0.4 mL/min. The column temperature was
maintained at 40 ◦C.

http://cloud.majorbio.com
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MS conditions: The mass spectrometric data were collected using a Thermo UHPLC-
Q Exactive Mass Spectrometer equipped with an electrospray ionization (ESI) source
operating in either positive or negative ion mode. The optimal conditions were set as
follows: heater temperature, 425 ◦C; capillary temperature, 325 ◦C; sheath gas flow rate,
50 arb; aux gas flow rate, 13 arb; ion-spray voltage floating (ISVF), −3500 V in negative
mode and 3500 V in positive mode; normalized collision energy, 20–40–60 V. The full
MS resolution was 60,000, and the MS/MS resolution was 7500. Data acquisition was
performed in Data Dependent Acquisition (DDA) mode. Detection was carried out in a
mass range of 70–1050 m/z.

2.7. Data Preprocessing and Annotation

After the mass spectrometry detection was completed, the raw data of LC/MS were pre-
processed by Progenesis QI 2.4 (Waters Corporation, Milford, MA, USA) software. At the same
time, the metabolites were searched and identified, and the main databases were the Human
Metabolome Database (HMDB, http://www.hmdb.ca/ (accessed on 25 August 2022)) [45],
Metlin (https://metlin.scripps.edu/ (accessed on 25 August 2022)) [46], and the Majorbio
Database. After the database search, the data were uploaded to the Majorbio cloud platform
(https://cloud.majorbio.com (accessed on 25 August 2022)) for further analysis. At least
80% of the metabolic features detected in any set of samples were retained. After filtering,
minimum metabolite values were imputed for specific samples in which the metabolite
levels fell below the lower limit of quantitation, and each feature was normalized by
sum. In order to reduce errors caused by sample preparation and instrument instability,
the response intensity of the sample mass spectrum peaks was normalized by the sum
normalization method, and a normalized data matrix was obtained. At the same time,
variables with a relative standard deviation (RSD) greater than 30% in the QC samples
were removed, and log10 transformation was performed in order to obtain the final data
matrix for subsequent analysis.

3. Results
3.1. Systematic Evolution Analysis of Streptomyces fradiae sf106

Following the whole-genome sequencing of Streptomyces fradiae sf106, the 19 bac-
terial strains that were most closely related at the genus level were selected on the ba-
sis of their 16S rRNA sequences. The neighbor-joining (NJ) method was employed to
construct a phylogenetic tree utilizing MEGA 6.0 software (Figure 2a). The analysis re-
vealed that Streptomyces fradiae sf106 exhibited the closest phylogenetic relationship with
Streptomyces xinghaiensis. Additionally, a species-level phylogenetic tree was constructed on
the basis of the housekeeping gene sequence of Streptomyces fradiae sf106 (Figure 2b), further
corroborating its closest relationship with Streptomyces xinghaiensis. Previous studies have
identified Streptomyces fradiae sf106 to be the same strain as Streptomyces xinghaiensis [47,48].

Average nucleotide identity (ANI) is a method used to measure the similarity between
genomic sequences by comparing the average percentage identity of nucleotide sequences.
Average amino acid identity (AAI) is a method used to measure the similarity between
protein-coding sequences by comparing the average percentage identity of amino acid
sequences. It is similar to ANI but focuses on the functional similarity of proteins rather than
the overall genomic similarity. If two genomes have AAI and ANI values above 95%, they
are considered to belong to the same species. ANI/AAI analysis is mainly used to assess
the phylogenetic relationship between species at the whole-genome level. These analyses
are simple, quick, and accurate. In this study, the closely related Streptomyces xinghaiensis
S187 (GCA_000220705.2) and sf106 were selected for ANI/AAI analysis. The results
showed that the average nucleotide identity (ANI) between Streptomyces fradiae sf106 and
Streptomyces xinghaiensis S187 was 96.13% (Figure 3a), and the average amino acid identity
(AAI) was 96.34% (Figure 3b).

http://www.hmdb.ca/
https://metlin.scripps.edu/
https://cloud.majorbio.com
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Figure 2. (a) Phylogenetic tree based on 16S rRNA. (b) Phylogenetic tree based on housekeeping
genes. Through a comparison with the local database, based on 31 housekeeping genes (dnaG, frr,
infC, nusA, pgk, pyrG, rplA, rplB, rplC, rplD, rplE, rplF, rplK, rplL, rplM, rplN, rplP, rplS, rplT, rpmA,
rpoB, rpsB, rpsC, rpsE, rpsI, rpsJ, rpsK, rpsM, rpsS, smpB, tsf ), the closest 19 strains at the species level
were selected, and the NJ (neighbor-joining) method was used to construct the phylogenetic tree with
MEGA 6.0 software.
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3.2. The Genomic Overview and Annotation of Streptomyces fradiae sf106

A genomic circle map can comprehensively display the characteristics of a genome,
and integrating various information into a single genome circle map can provide us with
a more comprehensive and intuitive understanding of the characteristics of a strain’s
genome. We obtained a sample genome circle map using Circos software (http://circos.ca/
software/) [49].

The genomic features of Streptomyces fradiae sf106, including the genome size, coding
DNA sequences (CDSs, total number of genes), rRNA, tRNA, GC content (guanine and
cytosine content of the entire genome), and GC skew values (Figure 4), are comprehen-
sively and visually presented using the Circos genome circle plot. The genome size of
Streptomyces fradiae sf106 is approximately 7300 kb, with a high GC content of approxi-
mately 73% and approximately 6750 coding genes. The annotation results for these genes
across various databases were summarized at the gene level to enable multi-dimensional
data mining (Table 1).

http://circos.ca/software/
http://circos.ca/software/
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Table 1. Summary of genomic overview and gene annotation.

Sample Genome Size
(kb)

GC Content
(%)

CDS
No.

tRNA
No

rRNA
No. KEGG GO COG NR Pfam Swiss-Prot

Streptomyces
fradiae sf106 7351 73 6750 60 20 2300 3500 4950 6100 4860 3920

Note: (1) Sample Name: name of the sample; (2) genome size: size of the genome; (3) GC content (%): GC content
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different databases and reference genomes in the sample.

3.3. Analysis of Mobile Genetic Elements

Horizontal gene transfer can allow for the exchange of genetic material between dif-
ferent biological entities or within individual cellular organelles. Common mobile genetic
elements include genomic islands, CRISPR/Cas systems, and insertion sequences, among
others. Strain sf106 has a total of 12 genomic islands, 5 insertion sequences, 13 CRISPR/Cas
systems, and 1 prophage. The analysis of mobile genetic elements indicated a high degree
of horizontal gene transfer in this strain (Table 2).
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Table 2. Predicted table of mobile genetic elements.

Sample Name GI No. Is No. Prophage No. CRISPR-Cas No.

Streptomyces fradiae sf106 12 5 1 13

3.4. Prediction of Antibiotic Resistance Genes

The Comprehensive Antibiotic Resistance Database (CARD) hosts an extensive range
of reference genes associated with antibiotics across various organisms, genomes, and
plasmids. This database serves as a valuable resource for investigating antibiotic resistance
mechanisms in environmental, human, and animal microbial communities. The annotation
analysis using CARD suggested that Streptomyces fradiae sf106 harbors multiple classes
of resistance genes (Figure 5a). Specifically, the strain contains 88 macrolide, 69 tetracy-
cline, and 50 penam resistance genes, along with additional resistance genes against other
antibiotics, including 36 against fluoroquinolone, 27 against aminocoumarin, 26 against
aminoglycoside, 26 against cephalosporin, and other types of resistance genes.
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To corroborate these findings, the ResFinder database, comprising experimentally
validated antibiotic resistance genes, was employed. Utilizing ResFinder with a threshold
of identity ≥ 80% and a coverage ≥ 60%, three major classes of resistance genes were
identified: lincosamide (2), streptogramin B (2), and macrolide (3). The elucidation of these
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resistance profiles is crucial for understanding the mechanisms underlying drug-resistant
mutations and the development of new antibiotics.

3.5. Metabolic System Analysis
3.5.1. Carbohydrate-Active Enzyme Annotation

The Carbohydrate-Active Enzymes Database (CAZy, http://www.cazy.org/ (accessed
on10 January 2021)) is a specialized database for enzymes involved in the synthesis or
degradation of complex carbohydrates and glycoconjugates. These enzymes are categorized
into six major protein families according to amino acid sequence similarities in their
domains: glycoside hydrolases (GHs), glycosyl transferases (GTs), polysaccharide lyases
(PLs), carbohydrate esterases (CEs), carbohydrate-binding modules (CBMs), and auxiliary
activities (AAs). Figure 6 reveals that the strain sf106 primarily contains genes related to
the glycoside hydrolases category, followed by glycosyl transferases.
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3.5.2. Secondary Metabolite Analysis

Microorganisms synthesize secondary metabolites, compounds not essential for their
basic metabolic processes, when they reach a certain growth stage. These metabolites are
often controlled by gene clusters called secondary metabolite biosynthetic gene clusters.
The complete genome of sf106 was analyzed using the antiSMASH database (https://
antismash.secondarymetabolites.org/#!/start (accessed on 6 October 2021)) with relaxed
detection. This analysis predicted a total of 22 secondary metabolite biosynthetic gene
clusters (Table 3), encompassing a diverse range of compounds, such as terpenes, NRPS
(non-ribosomal peptide synthetase), and PKS (polyketide synthase), among others. NRPS
and PKS are two crucial biosynthetic enzymes used for the synthesis of complex natural
products. They play a key role in drug development and biotechnology.

We used the MIBiG (Minimum Information about a Biosynthetic Gene Cluster) database
(https://mibig.secondarymetabolites.org/ (accessed on 6 October 2021)) to compare each
of the predicted clusters against known biosynthetic gene clusters. The comparison analysis
was performed using the protocluster-to-region format, resulting in the identification of the
22 known compounds most similar to the predicted gene clusters (Table 3). This provided
a basis for the development of similar metabolites in Streptomyces fradiae sf106, and it is
worth noting that actinobacteria are still the major source of these metabolites. It was found
that the genes in the ninth gene cluster (Figure 7) were highly similar to the synthesis of the
antibiotic tylosin, and they were highly similar to the known compound tylactone (Table 4),
which is closest to the predicted gene cluster. This comparison identified the closest known
compounds to the predicted clusters, providing insight into the metabolic potential of sf106.
Importantly, one cluster was found to be highly similar to genes involved in the synthesis
of the antibiotic tylosin. This suggests that sf106 has the capacity for tylosin synthesis. This
has great value for the excavation and application of tylosin in Streptomyces fradiae sf106.

http://www.cazy.org/
https://antismash.secondarymetabolites.org/#!/start
https://antismash.secondarymetabolites.org/#!/start
https://mibig.secondarymetabolites.org/
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Table 3. Prediction of secondary metabolites in Streptomyces fradiae sf106.

Region Type From To Most Similar Known Cluster Similarity

Region 1 redox-cofactor 11,912 34,657

Alanylclavam/2-
hydroxymethylclavam/2-

fomyloxymethyclavam/clavam-2-
carboxylate

Other: Non-NRP
beta- lactam 12%

Region 2 T3PKS, terpene 367,053 406,828 endophenazine A/endophenazine B Other: Phenazine 38%
Region 3 NRPS 670,555 724,534 scabichelin NRP 20%

Region 4
NRPS-like, PKS-like,
betalactone, T2PKS,

RRE- containing
1,232,101 1,317,375 LL-D49194α1 (LLD) Polyketide 39%

Region 5 lanthipeptide-class-iii 1,980,221 2,002,953 SapB RiPP:
Lanthipeptide 100%

Region 6 siderophore 2,354,686 2,365,381
Region 7 ectoine 2,484,580 2,494,984 ectoine Other 100%
Region 8 T3PKS 3,482,933 3,524,030 flaviolin Other 50%
Region 9 T1PKS 3,545,272 3,626,176 carrimycin Polyketide 55%

Region 10 NRPS-like,
lassopeptide 3,657,076 3,699,170 citrulassin B RiPP 100%

Region 11 NRPS 4,128,379 4,201,561 isocomplestatin NRP 93%
Region 12 terpene 4,360,731 4,379,029
Region 13 RiPP-like, NRPS-like 4,422,841 4,466,244 nunapeptin/nunamycin NRP 14%
Region 14 lanthipeptide-class-i 4,599,449 4,622,053
Region 15 terpene 4,728,801 4,752,252 Terpene 53%
Region 16 terpene 4,832,715 4,849,274

Region 17 RRE-containing, LAP,
thiopeptide 4,936,167 4,971,075

Region 18 siderophore 5,095,314 5,106,980 desferrioxamine Other 83%
Region 19 RiPP-like 5,186,566 5,198,233
Region 20 siderophore 5,473,885 5,488,679 ficellomycin NRP 3%
Region 21 lanthipeptide- class-i 5,836,957 5,862,133 tetrocarcin A Polyketide 4%
Region 22 terpene 7,023,507 7,049,988 isorenieratene Terpene 87%
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Figure 7. Linear map of secondary metabolite biosynthetic gene cluster (cluster 9). The map shows
all genes in the predicted gene cluster, and the colors of different annotated genes are displayed
according to the color of the gene in the COG classification. The functions represented by different
colors are detailed in the COG analysis interface, and the gray represents the gene not annotated
in COG.

Table 4. Comparison of similar gene clusters from MIBiG comparison.

Reference Similarity Score Type Compound(s) Organism

Cluster1 BGC0001156.1 0.15 Terpene platencin Streptomyces platensis

Cluster2 BGC0000674.1 0.71 Terpene (-)-δ-cadinene Streptomyces clavuligerus
ATCC 27064

Cluster3 BGC0000426.1 0.42 NRP sevadicin Paenibacillus larvae
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Table 4. Cont.

Reference Similarity Score Type Compound(s) Organism

Cluster4 BGC0000248.1 1.65 Polyketide naphtocyclinone Streptomyces arenae
Cluster5 BGC0000551.1 0.47 RiPP SapB Streptomyces coelicolor A3(2)
Cluster6 BGC0001572.1 0.34 Other desferrioxamine E Pantoea agglomerans
Cluster7 BGC0000853.1 0.64 Other ectoine Streptomyces anulatus

Cluster8 BGC0001310.1 0.46 Terpene naringenin Streptomyces clavuligerus
ATCC 27064

Cluster9 BGC0000166.1 0.78 Polyketide tylactone Streptomyces fradiae

Cluster10 BGC0001552.1 1.16 RiPP citrulassin F Streptomyces avermitilis
MA-4680 = NBRC 14893

Cluster11 BGC0000326.1 0.41 NRP isocomplestatin Streptomyces lavendulae
Cluster12 BGC0001910.1 0.28 Terpene cyslabdan Streptomyces cyslabdanicus

Cluster13 BGC0000500.1 0.41 RiPP carnolysin A1,
carnolysin A2 Carnobacterium maltaromaticum

Cluster14 BGC0000544.1 0.19 RiPP planosporicin Planomonospora alba
Cluster15 BGC0000648.1 0.34 Terpene carotenoid Myxococcus xanthus
Cluster16 BGC0001910.1 0.34 Terpene cyslabdan Streptomyces cyslabdanicus
Cluster17 BGC0001146.1 1.02 RiPP cyclothiazomycin C Streptomyces sp. NRRL WC-3908
Cluster18 BGC0001478.1 0.58 Other desferrioxamine E Streptomyces sp. ID38640
Cluster19 No matches found
Cluster 20 BGC0001531.1 0.26 Other bisucaberin B Tenacibaculum mesophilum
Cluster21 BGC0001727.1 0.23 RiPP paenilan Paenibacillus polymyxa E681

Cluster22 BGC0000664.1 0.42 Terpene isorenieratene Streptomyces griseus subsp. griseus
NBRC 13350

3.6. Preprocessing of Metabolite Expression Data

The preprocessing parameters for metabolomic data include several key steps: missing
value filtering of raw data (applied when the proportion of missing values in each group
exceeds 20%), imputation of missing values using the minimum value method, recoding of
missing values through simulation, data conversion (log10 transformation was performed
to obtain the final data matrix), and data normalization for subsequent analysis, among
other steps. Data preprocessing is a commonly used method in metabolomics analysis.

Preprocessing identified a total of 1855 metabolites (Table 5). Of these, 970 metabolites
were identified in positive ion mode, and 885 metabolites were identified in negative
ion mode. Subsequent annotation was carried out using public databases, including the
Human Metabolome Database (HMDB) and Lipidmaps (https://www.lipidmaps.org/
(accessed on 25 August 2022)).

Table 5. Total ion count and identification statistics.

Ion Mode All Peaks Identified Metabolites Metabolites in Library Metabolites in KEGG

pos 6480 970 697 229
neg 8049 885 790 238

Note: (1) Ion mode: the ion mode of the substance detected by the mass spectrometer, mainly: pos (positive ion
mode) and neg (negative ion mode); (2) all peaks: the number of peaks extracted by the software; (3) identified
metabolites: the number of metabolites finally identified by the first and second levels of mass spectrometry
data, searching libraries (self-built library, Metlin, HMDB) through the primary and secondary mass spectrometry
data; (4) metabolites in library: the number of metabolites annotated to public databases, such as HMDB and
Lipidmaps; (5) metabolites in the KEGG: the number of metabolites annotated to the KEGG database.

3.7. Metabolites KEGG Compounds Classification

The classification of metabolites in strain sf106 based on the KEGG compound database
yielded the following four main categories, as shown in Figure 8. The first category was
Compounds with Biological Roles (111); this category is primarily composed of Amino
Acids, Phospholipids, Neurotransmitters, and Carboxylic Acids, among others. The second
category was Lipids (82); the dominant types of lipids are FA01 Fatty Acids and Conjugates,

https://www.lipidmaps.org/
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PR01 Isoprenoids, GP03 Glycerophosphoserines, and ST02 Steroids, among others. The
third category was Phytochemical Compounds (65); this category is primarily composed of
triterpenoids (C30), diterpenoids (C20), monolignols, and flavonoids, among others. The
fourth category was Pesticides (4), i.e., the dominant types of plant growth regulators and
insecticides, among others.
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3.8. Differential Metabolite Analysis

For the 1855 identified metabolites, a multi-group ANOVA was conducted using the
Kruskal–Wallis rank sum test (Kruskal–Wallis H test). The analysis focused on the top
20 metabolites in terms of abundance that could be matched to known names (Figure 9).
The results showed highly significant differences in mean relative abundance between the
groups (A, B, C, and D) studied for the majority of these top metabolites.
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Figure 9. Top 20 metabolites in abundance and matched to names. Y-axis indicates metabolite
name, X-axis indicates the average relative abundance of metabolites in different subgroups, and
different colored columns indicate different subgroups; p-values are on the far right: ***, p ≤ 0.001.
A is the logarithmic pre-growth phase, B is the logarithmic mid-growth phase, C is the logarithmic
late-growth phase, and D is the stationary phase.

Further analysis centered on the relative mean abundance of tylosin across the different
growth phases (Figure 10). The highest mean abundance of tylosin was observed during
the stationary phase. Interestingly, the average relative abundance of tylosin in the late
logarithmic growth phase was not significantly different from that in the stationary phase.
This suggests that the strain may reach the maximum tylosin biosynthesis toward the end
of the logarithmic growth phase and continue to accumulate it during the stationary phase.
These insights are valuable for understanding the optimal time for tylosin biosynthesis,
which has implications for industrial production.
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4. Discussion

The widespread use of antibiotics, such as tetracycline, cephalosporins, and ery-
thromycin, has revolutionized medical treatment and agricultural practices. This under-
scores the critical role of antibiotics and natural products, making the discovery of new
secondary metabolites a research priority [50–52]. Despite advances, many metabolites
remain undiscovered or underutilized. Leveraging genomic information is now a focal
point in natural product research [53,54]. Whole-genome sequencing allows the prediction
of potential secondary metabolic gene clusters, significantly aiding in the discovery of
novel natural products. [55–57]. Streptomyces spp. microorganisms have become important
sources for discovering novel lead compounds. Determining the synthesis genes (clusters)
of their secondary metabolites and discovering the metabolites of other metabolic pathways
has become a mainstream research direction. With the development of compound isolation,
structure identification, and fermentation technology, new natural products continue to
be discovered and applied. Secondary metabolites are active substances of great value
and play a significant role in regulating life activities [58,59]. In our study, the identified
bacteria belong to the Streptomyces fradiae species, sharing high nucleotide and amino acid
identity with Streptomyces xinghaiensis S187.

Horizontal gene transfer via mobile genetic elements significantly influences bacterial
survival [60]. In Streptomyces fradiae sf106, 12 genomic islands, 1 prophage, and 13 CRISPR/
Cas systems were identified. These genomic fragments break the boundaries of phylo-
genetic relationships, increasing microbial diversity and playing a vital role in bacterial
adaptation and evolution. Genomic islands are the most important form of horizontal
transfer elements that carry genes that can provide selective advantages to bacteria. They
contain genes related to various biological functions and can be classified into pathogenicity
islands, resistance islands, metabolic islands, and symbiotic islands according to the types
of genes they contain. Studying the resistance genes found in genomic islands can further
analyze the mechanisms of organism resistance and provide a basis for the development of
new antibiotics and resistance targets. Genomic islands are an important source of new
functional characteristics of strains. By studying the functional characteristics of genomic
islands and their related genes, the mechanism of bacterial pathogenicity and resistance can
be greatly promoted, providing us with new ideas for exploring metabolites. Horizontal
transfer of mobile genetic elements (MGEs) promotes the functionality and genomic diver-
sity of microbiomes. Some genes encoded by MGEs may help bacteria defend themselves



Fermentation 2023, 9, 866 16 of 19

or enhance their ability to compete for resources. These elements contribute to bacterial
adaptability and could be crucial in understanding resistance mechanisms.

Carbohydrate-active enzymes (CAZymes) are pivotal in biological functions such
as glycosidic bond formation and breakdown. Our study identified six protein families
involved in carbohydrate activities in Streptomyces fradiae sf106. Glycoside hydrolases ac-
counted for the largest proportion, followed by glycosyl transferases. Carbohydrate-active
enzymes are important enzymes involved in the degradation, modification, and generation
of glycosidic bonds. In-depth research on CAZymes is of great significance for revealing
the metabolic mechanisms of microbial carbohydrates. According to the prediction results
of secondary metabolites, Streptomyces fradiae sf106 has 22 secondary metabolite gene clus-
ters [61], indicating a great potential for producing terpenes and clustered natural products.
Moreover, the MIBiG comparison showed that Streptomyces spp. is still one of the major
sources of natural products. Exploring these secondary metabolite gene clusters can help
us identify and characterize more important natural compounds from unexplored microor-
ganisms [62], providing an important method for the targeted exploration or discovery
of novel natural products and greatly reducing the possibility of discovering duplicate
compounds. In addition, our research group has long focused on tylosin, an antibiotic used
in animal husbandry. We found multiple genes capable of producing tylosin in the ninth
gene cluster predicted in sf106, which can guide us to further determine the tylosin content
of this strain. Although there is increasing controversy regarding the use of antibiotics as
feed additives, tylosin is widely used due to its high efficiency, low residual, and specific
application to livestock and poultry. With the development of animal husbandry, there
will be broader possibilities for its use. Therefore, it is necessary to further improve the
production capacity of this strain. With the continuous maturity of gene editing technology,
targeted genetic modification of certain metabolites through genetic editing has made it
possible to discover various natural products, making it possible to explore and improve
the production of secondary metabolites and enhance the activities of active components.

Non-targeted metabolome sequencing identified a total of 1855 metabolites that could
be matched to names, of which 972 metabolites were identified in positive ion mode and
888 metabolites in negative ion mode; moreover, the large number of metabolites that were
not matched to names also indicate that this strain has the ability to produce unknown
natural products. The categorization of metabolites with consistent expression trends
will help us further search for metabolites with similar expression trends or similar func-
tions, which can greatly facilitate the discovery of unknown natural compounds and their
derivatives. In addition, differential metabolite analysis showed that the average relative
abundance of most metabolites differed significantly among groups, for example, the dif-
ferential metabolites were largest in pre-logarithmic (A) and mid-logarithmic (B) growth
and then decreased in the late stage of strain growth, which implies that the synthesis
patterns of different metabolites in different periods can be found. This further clarifies the
metabolic trends of the strains and biosynthesis patterns of the target metabolites and has a
significant influence on the further clarification of the metabolic trends of the strain and the
biosynthesis pattern of target metabolites.

The potential for tylosin production was identified in sf106, which is noteworthy given
tylosin’s widespread use in animal husbandry. The need for optimizing this strain for
higher tylosin yields is evident. Differential metabolite analysis revealed significant differ-
ences in metabolite abundance between growth phases, providing insights into metabolic
trends and biosynthesis patterns. These data contribute to uncovering the origin and
evolution of life and provide sufficient research foundations for more in-depth studies on
the biosynthesis of tylosin and other secondary metabolites in Streptomyces fradiae sf106.
These findings lay the groundwork for further genetic manipulation at the genomic level of
Streptomyces fradiae sf106.
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5. Conclusions

Whole-genome sequencing confirmed the high rates of similarity between Streptomyces
fradiae sf106 and Streptomyces xinghaiensis S187, establishing sf106 as a metabolically versatile
strain. This has positive implications for industrial production. Guided by whole-genome
and metabolome information, this confirmed the ability of the strain to produce tylosin.
Additionally, the strain harbors abundant exogenous functional genes, such as resistance
genes. Analysis of mobile genetic elements enhances our understanding of the genetic
diversity of this strain and highlights the importance of further research on them. This
study serves as a foundational step for future research aimed at enhancing natural product
yields, understanding resistance mechanisms, and exploring microbial diversity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/fermentation9100866/s1. Table S1: DNA sample detection results of
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