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Abstract: Blue biotechnology can greatly help solve some of the most serious social problems due to
its wide biodiversity, which includes marine environments. Microalgae are important resources for
human needs as an alternative to terrestrial plants because of their rich biodiversity, rapid growth,
and product contributions in many fields. The production scheme for microalgae biomass mainly
consists of two processes: (I) the Build-Up process and (II) the Pull-Down process. The Build-Up
process consists of (1) the super strain concept and (2) cultivation aspects. The Pull-Down process
includes (1) harvesting and (2) drying algal biomass. In some cases, such as the manufacture of
algal products, the (3) extraction of bioactive compounds is included. Microalgae have a wide range
of commercial applications, such as in aquaculture, biofertilizer, bioenergy, pharmaceuticals, and
functional foods, which have several industrial and academic applications around the world. The
efficiency and success of biomedical products derived from microalgal biomass or its metabolites
mainly depend on the technologies used in the cultivation, harvesting, drying, and extraction of
microalgae bioactive molecules. The current review focuses on recent advanced technologies that
enhance microalgae biomass within microalgae production schemes. Moreover, the current work
highlights marine drugs and human health products derived from microalgae that can improve
human immunity and reduce viral activities, especially COVID-19.

Keywords: build-up; pull-down; cultivation; harvesting; drying; extraction; antioxidants; anti-
inflammatory; cytokine storm; anti-TNF-α therapy; immunity; lung damage; COVID-19

1. Introduction

Recently, aquatic industries have been developed successfully [1,2], as well as aquatic
products (aquatic plants and aquatic animals), which have great benefits for human health,
immunity, and nutrition [3,4]. Aquatic plants (microalgae and seaweed) are photosynthetic
organisms that consume carbon, nutrients, and solar energy and convert them into organic
compounds, such as proteins, lipids, carbohydrates, and pigments [5], which may be
transformed into several bioproducts. The production of aquatic plant biomass is an
important branch of aquaculture activities.

Aquatic plant biomass has a wide range of organic materials of commercial interest,
such as antioxidants, biopolymers, pigments, polysaccharides, and biopeptides [6]. Aquatic
plant biomass has received attention at the commercial and academic levels due to its multi-
ple applications in several fields, including food supplements [4,7,8], pharmaceuticals [3,9],
cosmetics [7,10,11], aquaculture [2,12–17], biofuel [2,18,19], and biofertilizers [20–24]. More-
over, algae biomass can produce many bioenergy sources, such as biomethane, bioethanol,
biodiesel, biohydrogen, and bio-oil [25–30]. However, concerning the environmental appli-
cations of algae biomass, a wide range of polluted wastewater types, including sewage,
industrial, agriculture, and aquaculture effluents, can also be treated through the phytore-
mediation mechanism [31–38]. Furthermore, algae biomass can effectively reduce highly
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toxic compounds to less biologically toxic compounds, producing a variety of high-value
products [35–37,39,40].

According to the statistics report of the Food and Agriculture Organization (FAO) [41],
in 2003, the biomass of Arthrospira (Spirulina) produced in China only was 16,483 tons
(Ts). The global biomass production of microalgae was 93,756 Ts in 2010 and 87,000 Ts
in 2018. In 2019, the total global production of microalgae biomass was 56,465 Ts, which
was produced by the top ten producers in the world (China 97.16%, Chile 1.6%, France
0.37%, Greece 0.25%, Tunisia 0.25%, Burkina Faso 0.25%, Central African Republic 0.09%,
Chad 0.04%, Bulgaria 0.005%, and Spain 0.003%). FAO statistics reported that because of
their commercial attitude, they do not capture the true production of microalgae in some
countries, including the United States of America, Australia, Czechia, Iceland, India, Italy,
Japan, Malaysia, and Myanmar [42]. In 2019, FAO statistics also reported that commercial
microalgae biomass contributes less than 0.2% of the global production of aquatic biomass
(microalgae and seaweed). Arthrospira (Spirulina) comprises 96.56% of global microalgae
biomass production, while the remaining (0.44%) comes from four species of green microal-
gae: Haematococcus pluvialis (242 Ts, 0.429%), Chlorella vulgaris (4.77 Ts, 0.008%), Tetraselmis
sp. (1.45 Ts, 0.003%), and Dunaliella salina (0.22 Ts, 0.0004%) [41].

From laboratory scale to commercial production, biomass from Arthrospira, Chlorella,
Haematococcus, and Nannochloropsis has been produced globally in many countries to serve
several industries, including biofertilizers, animal feeds, aqua-feed, and human food
supplements [43]. In terms of algae biomass volume, Arthrospira, followed by Chlorella, is
the most productive species [44]. These two species are the most promising microalgae
for energy production, including biogas, bioethanol, and biodiesel. Some species, such
as Tetraselmis sp., Isochrysis sp., Dunaliella sp., Phaeodactylum sp., and Scenedesmus sp., also
have high industrial importance, while some species, such as Chaetoceros sp., Thalassiosira
sp., and Acutodesmus sp., are of low industrial importance [45,46].

The main advantages of marine microalgae are greater than the advantages of fresh-
water microalgae or terrestrial plants. There is no competition between marine microalgae
and freshwater microalgae or terrestrial plants in the utilization of freshwater sources or
arable land. However, freshwater, and marine microalgae are more efficient in carbon
sequestration and growth rates than terrestrial plants [47,48].

Microalgae biomass production technologies have unique characteristics that make
them more suitable for the production of certain species and for commercial purposes. Their
land requirements, construction, operational expenses, technical development, and envi-
ronmental parameter management vary according to the technological method used [49].
Although microalgae biomass has shown environmental benefits, it also has serious conse-
quences related to rising energy, water supply, wastewater management, land use, and the
risk of microbial contamination [50–52]. Microalgae biomass production techniques that
are cost-effective, environmentally friendly, and practical are urgently needed on a large
scale [53]. Despite the widespread applications of microalgae, there are many obstacles to
the development and promotion of biomass production technologies [54]. The microalgae
biomass production scheme mainly consists of two processes: (I) the Build-Up process
and (II) the Pull-Down process. Generally, the Build-Up process consists of (1) the super
strain concept and (2) cultivation, while the Pull-Down process consists of (1) harvesting,
(2) drying, and (3) extraction [55].

Microalgae biomass production technologies have huge potential for innovation,
by using low-cost techniques that expand and revolutionize algae industries, especially
for human health products. Currently, the coronavirus epidemic (COVID-19) remains
the most significant health concern in the world, and it is critical to discover effective
drugs to stop this epidemic from killing hundreds of thousands of people [56]. To combat
COVID-19, scientists, professionals, and global health organizations have been working
together to develop and implement quick diagnoses, reliable vaccinations, and treatment
approaches [57]. Some microalgae-derived bioactive compounds and metabolites can
successfully treat many diseases, while others can improve human immunity and decrease
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viral activities, especially COVID-19 [57–59]. The effectiveness of these suggested bioactive
molecules obtained from microalgae biomass in combating viral diseases varies depending
on the technology used for biomass production, which mainly consists of two stages: (I)
the Build-Up process and (II) the Pull-Down process.

Here, the current review aimed to provide an overview of the recent advanced tech-
nologies that enhance the microalgae biomass within the microalgal biomass production
scheme, starting with strain selection, genetic optimization, culture systems, growth condi-
tions, nutrient limitations, and harvesting, drying, and extraction techniques. Moreover,
the current work focuses on marine drugs and human health products from microalgae
that can improve human immunity and reduce viral activities, including COVID-19.

2. Build-Up Process
2.1. Super-Strain Concept

The greatest challenge in the algae biomass industry is finding suitable strains for
industrial applications. To achieve the “super strain concept”, several steps should be
performed, such as algal strain selection, morphological and molecular identification,
optimum growth condition determination, growth curve determination, and high biomass
yield production under different culture conditions [60].

2.1.1. Strain Selection

According to algaebase.org [61], there are more than 150,000 species of microalgae
around the world; however, only a few species have been studied in terms of their beneficial
applications [55,60,62]. There are more than 37 microalgae culture collections (collections,
centers, and seeds banks) around the world, mostly in the USA and the EU. Microalgae
species differ in their biochemical compositions; therefore, algae collections isolate and
identify several strains for their purposes. To reduce the culture period of microalgae,
cultured strains should be robust and resistant to unsuitable stress conditions (abiotic
conditions), such as light, temperature, and salinity, as well as resistant to biotic stress
conditions, such as herbivores and pathogens [63]. To select the best-performing microalgae
strains, some standard criteria are required, including (1) high biomass production rates, (2)
pathogen resistance, (3) optimization to growth media, (4) a high rate of CO2 capture and
exchange, (5) adaptation to several environmental culture conditions, and (6) enhancing
performance characteristics through the applications of genetic engineering, breeding,
and genome editing [60]. Recently, many studies have attempted to enhance the biomass
yield of the required molecules, mainly lipids, carbohydrates, proteins, and other valuable
bioactive compounds, under various stressful conditions at laboratory levels. However,
it is important to develop a microalgae culture of effluent wastewater to produce high
value-added products at mass production levels [55].

2.1.2. Strain Transformation

Microalgae are a viable option for genetic engineering because they are unicellular
and have a simple genetic structure with quick reproduction capabilities [55]. Microalgae’s
bioactive compounds and metabolites can be enhanced by genetic engineering techniques
to produce them more reliably, as well as by increasing their volume and concentration.
These techniques are applied to increase bioactive compound and metabolite production
for the transformation of the substrate into the target product, especially in the field of
human health products [64].

Recently, genetic modification techniques have been successfully used in the mi-
croalgae industry due to their potential to improve microalgae biomass production [65].
Important results have been reported in microalgae genomics, including the development
of efficient gene-transformation systems, engineering, and biomass optimization [60]. The
microalgae cell wall is the key step in achieving the transformation process. As a result,
protoplast or enzyme-treated cells are used in microalgae transformation methods [7]. In
general, these techniques include biotic and abiotic stresses (Figure 1), such as transferring
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genes isolated from one species to another to produce breeding strains with desirable
commercial characteristics, such as excessive tolerance to light and heat stress, resistance to
herbivores and pathogens, and the ability to compete against opportunistic organisms or
express biosynthetic pathways toward more profitable strains [66].
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Figure 1. Schematic diagram illustrating the desired implementation of genetic modification traits
toward higher production of microalgae biomass.

Chlamydomonas reinhardtii, a plant model organism, is the most extensively studied
microalgae strain for genetic modification [67]. This species has been successfully utilized as
a source of enzymes and feed additives [68,69], nutrient supplements, such as selenium [70],
gut-active biologics [71], antibodies and immunotoxins [72], and vaccine subunits [73].
However, this species is not used in aquaculture. A. platensis, C. calcitrans, C. vulgaris, and
Nannochloropsis sp. are the major microalgae species that have been extensively studied
to produce genetically modified species as aquaculture feed, improving their nutritional
value and increasing the market value of their products [74–78].

Prasad et al. [79] demonstrated stable Agrobacterium-mediated DNA transfer in the
nuclear genomes of two strains of haptophytes (I. galbana and Isochrysis sp.). First, Isochrysis
sp. and I. galbana were co-cultivated with the A. tumefaciens strain LBA 4404 carrying
pCAMBIA 1380-pds-L504R to evaluate their resistance to the herbicide norflurazon and the
antibiotic hygromycin. This work shows that, in the case of 200 M acetosyringone, Isochrysis
sp. co-cultivated with Agrobacterium resulted in a huge number of norflurazon-resistant
cells, whereas I. galbana did the same in the case of 100 M acetosyringone. Despite the
lack of pre-treatment before co-cultivation with Agrobacterium, the vector could still enter
Isochrysis and penetrate the cell membrane’s calcium-rich barrier. Prasad [80] confirmed
that the metabolic engineering of Pavlova lutheri was successively performed using the
Agrobacterium-mediated nuclear transformation protocol.

Genetically modified microalgae can be used to produce other recombinant proteins.
Kim et al. [81] reported that Flounder fry that fed on transformed Chlorella ellipsoidea had a
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25% increase in growth after 30 days of feeding, demonstrating that the recombinant protein
can be transferred up the food chain while maintaining function. Successful transgenic
studies have been conducted in Dunalella salina and Haematococcus pluvialis to enhance
carotenoid accumulation. Vaccines against white spot disease that affect a variety of
crustaceans have been effectively developed by Dunaliella salina [73,82]. Fayyaz et al. [65]
confirmed that microalgal pigment production is increased by transformed cartenogenic
genes, such as bkt, psy, chyB, and pds, while microalgae lipid content may also increase by
the overexpression of enzymes, such as LPAT, DGAT2, GPAT, and MAT.

Way-Rong et al. [83] demonstrated that in Chlorella sorokiniana and Chlorella vulgaris,
the overexpression of the enzyme carbonic anhydrase is a potential method for effectively
capturing excess CO2. Transgenic microalgae species of Chlorella sorokiniana and Chlorella
vulgaris with an exogenous MlCA gene showed an increased biomass, protein percentage,
and lipid accumulation. The same findings were reported by Wei et al. [84], who concluded
that the biomass productivity of Nannochloropsis oceanica was improved by the overex-
pression of a nuclear-encoded, cbbX-homologous, candidate RuBisCO activase (g1915 or
‘nNoRca-like’) that is transcriptionally stimulated at air-level CO2. However, the microalgal
transformation of either nuclear or chloroplast genomes is achievable (Figure 2) using
several methods, including Agrobacterium-mediated methods, electroporation, enzyme-
mediated methods, silicon carbide whiskers, glass beads, and microprojectile bombard-
ment [55]. Table 1 details the history of the most commercially important microalgae strains
that have been genetically transformed using the respective strategies.

Fermentation 2022, 8, 466 5 of 29 
 

 

enter Isochrysis and penetrate the cell membrane’s calcium-rich barrier. Prasad [80] con-

firmed that the metabolic engineering of Pavlova lutheri was successively performed using 

the Agrobacterium-mediated nuclear transformation protocol. 

Genetically modified microalgae can be used to produce other recombinant proteins. 

Kim et al.   [81] reported that Flounder fry that fed on transformed Chlorella ellipsoidea had 

a 25% increase in growth after 30 days of feeding, demonstrating that the recombinant 

protein can be transferred up the food chain while maintaining function. Successful trans-

genic studies have been conducted in Dunalella salina and Haematococcus pluvialis to en-

hance carotenoid accumulation. Vaccines against white spot disease that affect a variety 

of crustaceans have been effectively developed by Dunaliella salina [73,82]. Fayyaz et al. 

[65] confirmed that microalgal pigment production is increased by transformed carten-

ogenic genes, such as bkt, psy, chyB, and pds, while microalgae lipid content may also in-

crease by the overexpression of enzymes, such as LPAT, DGAT2, GPAT, and MAT. 

Way-Rong et al. [83] demonstrated that in Chlorella sorokiniana and Chlorella vulgaris, 

the overexpression of the enzyme carbonic anhydrase is a potential method for effectively 

capturing excess CO2. Transgenic microalgae species of Chlorella sorokiniana and Chlorella 

vulgaris with an exogenous MlCA gene showed an increased biomass, protein percentage, 

and lipid accumulation. The same findings were reported by Wei et al. [84], who con-

cluded that the biomass productivity of Nannochloropsis oceanica was improved by the 

overexpression of a nuclear-encoded, cbbX-homologous, candidate RuBisCO activase 

(g1915 or ‘nNoRca-like’) that is transcriptionally stimulated at air-level CO2. However, the 

microalgal transformation of either nuclear or chloroplast genomes is achievable (Figure 

2) using several methods, including Agrobacterium-mediated methods, electroporation, 

enzyme-mediated methods, silicon carbide whiskers, glass beads, and microprojectile 

bombardment [55]. Table 1 details the history of the most commercially important micro-

algae strains that have been genetically transformed using the respective strategies. 

 

Figure 2. Scheme of the natural processes in microalgae genetic modifications.



Fermentation 2022, 8, 466 6 of 30

Table 1. Transformations of some microalgae species.

Transformation Methods Microalgae Species Refs.

PEG mediated
Pleurochrysis carterae [85]

Dunaliella salina [86]

Enzyme-Mediated Chlorella vulgaris [87]

Silicon carbide fibers
Amphidinium sp. [88]

Chlamydomonas reinhardtii [89]

Electroporation
Chlamydomonas reinhardtii [90]

Chlorella sp. [75]
Nannochloropsis oculata [78]

Glass beads
Dunaliella salina [73]

Chlamydomonas reinhardtii [91]
Platymonas subcordiformis [92]

Agrobacterium-mediated
Chlorella vulgaris [76]

Haematococcus pluvialis [93]
Nannochloropsis sp. [74]

Microprojectile bombardment
Chlorella zofingiensis [77]

Phaeodactylum tricornutum [94]
Chaetoceros sp. [95]

2.2. Cultivation Aspects

Microalgae biomass is an attractive, renewable, and sustainable source for many bio-
products, such as drugs, pharmaceuticals, and food supplements [96]. The biochemical
composition and biomass productivity of microalgae vary depending on many factors,
including cultivation systems, environmental growth conditions, nutrient availability and
limitations, the interaction of microalgae and bacteria, and the type of cultured species [97].
Any changes in cultivation aspects lead to a change in the biochemical composition of mi-
croalgae, which may significantly affect the productivity of microalgae biomass. Advances
in the development of microalgae biomass require appropriate conditions. However, the
percentages of microalgae biochemical compositions are positively or negatively affected
by these parameters [98]. Carbohydrates contribute 15–40% of the biomass of microalgae,
which is a direct result of CO2 capture via the Calvin cycle. Carbohydrates exist in several
forms, such as polysaccharides (found in cell walls), starch (found in plastids), glycogen,
cellulose, and other similar substances [99]. Microalgae are a rich source of protein and
contribute 30–70% of the algal biomass, having nutritional benefits higher than traditional
protein sources, such as eggs, meat, milk, legumes, and soybeans [53]. During the expo-
nential growth phase, microalgae tend to accumulate a lot of protein [100]. Lipids are the
most important components of microalgae, providing about 5–65% of the algal biomass,
and they have higher nutritional benefits than other traditional sources [55,60].

2.2.1. Cultivation Systems

The cultivation system is the most significant key that controls microalgae biomass
productivity. Globally, two microalgae culture systems have been implemented: an open
pond (OP) raceway and a closed pond (photobioreactors, PBR). These types are effective in
producing high-value biomass from microalgae, and they also help reduce environmental
stress by sequestering CO2 [101].

Based on the literature, it is difficult to evaluate the performance of different outdoor
systems due to their different locations and operating systems [102]. In the open pond
culture system, microalgae utilize atmospheric CO2 and sunlight. Circular ponds, inclined
systems, and raceway ponds are the most popular open pond forms for microalgae cultiva-
tion [103]. Photobioreactors operate under controlled conditions. In terms of pH, medium
agitation, and light intensity, the regulated growth environment of the PBR ensures consis-
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tency. After a complicated chemical process, H2O and CO2 are converted into algal biomass
rich in oil content in the PBR system [104].

However, some authors have indicated that the hybrid system is a third culture system
that uses both OP and PPR [105,106]. In general, a PBR system is more cost-effective than
an OP system in terms of its operation, maintenance, and energy consumption. However,
in terms of pH, medium agitation, and light intensity, the PBR has a greater control over
biomass production than the open pond method. As a result, the microalgae biomass
productivity of PBR is much higher [105].

Carotenoids have increased demands and a variety of commercial applications, espe-
cially in pharmaceuticals, with great potential as antioxidants. Prieto et al. [107] studied
the effect of the culture system (tubular PBR or OP) and feeding regime (batch and semi-
continuous regime) on carotenoid productivity and β-carotene abundance of Dunaliella
salina. The highest carotenoid productivity (10% DW) and β-carotene abundance (90% of
the total carotenoids) were obtained using a PBR culture system, rather than OP. Because
of its potential application in pharmaceuticals, drugs, and human nutrition sectors, astax-
anthin has a high antiviral and antioxidant capacity that is widely employed in several
industries. Table 2 shows a comparison between the two types of microalgae cultivation
systems.

Table 2. Comparison of the two types of microalgae cultivation systems [108].

Properties Open Pond Cultivation Closed Pond Cultivation

Required space High Low

Water loss Very high Low

Biomass quality Variable Variable and able to increase

Biomass concentration (g L−1) Low (0.1 and 0.5) High (0.5 and 8)

Efficiency of light utilization Low Excellent

Temperature Variable Controlled

CO2 loss High (depend on pond depth) Low (controlled)

Contamination High Low

Cleaning None Required

Process control Limited Possible

Weather dependence High Low

Start-up 1.5–2 Months 0.5–1 Month

Capital expenses High higher

Operating costs Low High

Efficiency of harvesting Low High

According to Li et al. [109], natural astaxanthin may be less expensive than synthetic
astaxanthin, using recently developed low-cost PBR and OP methodologies. According
to a comprehensive financial analysis, Haematococcus biomass and astaxanthin production
have lower costs than USD 18 and 718 kg−1, respectively. Regarding the economic and
environmental aspects, the use of wastewater effluent as an alternative culture medium
provides the nutrients needed for microalgae production, in addition to an increase in
biomass and astaxanthin production [110,111].

2.2.2. Stress via Environmental Growth Conditions

Temperature is one of the main factors controlling microalgae biomass. If the tempera-
ture changes outside of the optimal range, it may cause the overgrowth, inhibition, or death
of microalgae cells [105]. In many cases, higher temperatures enhance biomass production,
especially carbohydrates, which may be related to the participation of the thermophilic
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enzyme system in sucrose generation [112], while lower temperatures generally reduce
carboxylase activities [113]. Most microalgae species can survive at an ideal temperature of
20–30 ◦C.

Covarrubias et al. [114] reported that thermophilic algae, such as Anacystis nidulans and
Chaetoceros, can survive at temperatures of up to 40 ◦C [114]. In the culture of microalgae
under uncontrolled conditions, such as their cultivation in an open pond, the surface
temperature may be higher than 40 ◦C, and a loss of culture water will be obtained. This
significant problem can be dealt with when using controlled culture conditions, such as
indoor cultivation or PBR. If indoor cultivation and/or PBR are conducted in hot areas, an
additional cooling unit must be provided. Therefore, it makes the culture expensive. As a
result, the development of biomass production is limited [105].

Ferro et al. [115] observed that microalgae biomass tends to be higher in summer than
winter, while the cold-stress tolerance of Desmodesmus sp. and Scenedesmus sp. was higher
when grown in Nordic culture conditions [115]. Temperature has been used as a stress
therapy to stimulate the production of beneficial metabolites. C. vulgaris cultivation at
25 ◦C produced higher carbohydrate and lipid levels than cultivation at 30 ◦C [116]. Most
studies have focused on lipid accumulation under high temperatures, and there are few
studies on the effect of temperature on carbohydrate and protein accumulation; thus, more
studies on this topic are still needed [55].

Another important factor controlling microalgae biomass production is radiation,
which is a primary energy source for photosynthesis and has a direct impact on the growth
rate, cell composition, and CO2 fixation rate [7]. Muhammad et al. [55] demonstrated
a well-documented linear relationship between biomass productivity and carbohydrate
content with increasing radiation intensity, although the effect of light intensity varies by
species. Increasing radiation above the optimal level may affect photosynthesis, while
biomass saturation reduces light penetration due to self-shading. Gifuni et al. [117] re-
ported that a lower light intensity (less than 275 µmol m2 s−1) may result in decreased
carbohydrate production over time. The key enzyme for carbohydrate production (called
phosphoglucomutase) may be regulated by radiation.

De Farias Silva et. al. [118] found that under high light intensity (252–364 µmol m−2

s−1) and high temperature (28 ◦C), the biomass of Pseudoneochloris marina (260 mg L−1

day−1) improved. However, these conditions did not appear optimal for protein, lipids,
and pigment production. In contrast, under low light intensity (140 µmol m−2 s−1) and
low temperature (20 ◦C), the maximum protein content (236 mg g−1) was observed. To
protect cells from stress, as well as in response to high light intensity, microalgae tend to
synthesize high-energy compounds, such as carbohydrates and lipids [55].

Both the quality and quantity of radiation are important keys affecting the performance
of the photosynthetic process [119]. García-Cubero et al. [120] demonstrated that, in the
upper layer of a dense culture, while photoinhibition increased, cells in the lower layers
may already be light-deprived when light penetrates the culture, resulting in a decreased
biomass production. In the case of dense cultures, while photoinhibition may occur in the
upper layer, cells in the lower layers may be light-deprived due to light attenuation as they
penetrate the culture, resulting in a reduced biomass production [120]. As reported by
El-Khouly et al. [121], LED light is an emerging and cost-effective technology in microalgae
production due to its lower power consumption, longer life, lower heat dissipation, smaller
mass and size, less heat generation when supplying light, longer life span, especially
in comparison to fluorescent lamps, and higher conversion efficiency. Mohsenpour and
Willoughby [122] observed that red light enhanced the biomass production of both C.
vulgaris and G. membranacea (0.135 g L−1 day−1 and 0.184 g L−1 day−1, respectively). An
enhanced growth rate was observed in N. salina cultured in PBR using a white LED (400 to
780 nm) by achieving a maximum growth rate of 150 µmol photons m−2 s−1 at 0.521 day−1.
Using blue light, Nannochloropsis sp. had the highest specific growth rate, at 0.64 day−1 [123].
The effects of radiation on microalgae biomass productivity and carbohydrate content, as
the most affected compound, have been extensively studied, as presented in Table 3.
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Table 3. Effects of different radiations on microalgae biomass and carbohydrate production, with
metabolite improvement percentages.

Irradiance Stress
(µmol m−2 s−1) Microalgal Strain

Biomass
Production
(mg L−1)

Carbohydrate
Productivity

(mg L−1 Day−1)

Metabolite
Improvement (%) Refs.

890 S. obtusiusculus 978 280 31 [124]

300 C. sorokiniana 2800 170 - [125]

650 Tetradesmus obliquus 1700 800 30 [126]

310 Desmodesmus sp. 2380 - 13.4 [127]

2000 B. braunii 1300 900 - [128]

2.2.3. Stress via Nutrient Availability and/or Limitations

Nitrogen, potassium, and phosphorus (macronutrients) have a primary effect on the
growth of microalgae; however, nutrient limitation or availability (starvation) is an applied
strategy to enhance the metabolite composition and biomass production of microalgae [55].
During the Calvin cycle, nitrogen and phosphorus limitations can convert fixed carbon,
directing it toward the production of non-nitrogenous compounds, such as lipids and
carbohydrates, especially polysaccharides, starch, and glycogen. When Chlorella was grown
under nitrogen conversion from sufficient conditions to nitrogen-starved conditions, carbo-
hydrate content increased from 12 to 54%, while proteins decreased to 20% from 60% [129].
Similarly, when Chlorella sp. was cultured under phosphorus limitation conditions, the
carbohydrate content increased from 10 to 60%, while the protein content decreased from
57% to 7% [130].

Microalgae culture medium should be cost-effective, develop and meet the require-
ments of microalgae cells, and be simple to produce. In marine hatcheries, the production
cost of microalgae as livefeeds is about 30% of the total cost of larval production, which is
a constraint to marine hatchery development. Therefore, forms of agricultural fertilizers
should be used in medium preparation rather than laboratory-grade products. However,
nutrient ratios (N/P ratios) are an important key that enhances the biochemical composition
and biomass production of microalgae [131–133].

Ashour and Kamel [133] reported that the cost of cultured media prepared from agri-
cultural fertilizers (commercial grade of nitric acid and/or ammonium sulfate with the
same N/P ratio and concentration of F/2 standard medium) was about 1/37:1/39 times
lower than F/2 culture medium, respectively, enhancing the lipid content and biomass
productivity of Nannochloropsis oceanica. Another interesting point to discuss is the source
and form of carbon. Carbon is important for maintaining the culture of microalgae. Su-
crose (as a carbon source) is required for cell function, growth, and development, energy
storage, and stress absorption. HCO3

− and CO2, inorganic carbon forms, are important
for photosynthesis, CO2 capture, and bioproduct accumulation [55]. Table 4 shows the ef-
fects of nutrient limitations (macro and micronutrients) on microalgae biomass production
(mg L−1), carbohydrate production (mg L−1), and metabolite improvement (%) because of
the application of a nutrient limitation strategy.
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Table 4. Effect of nutrient limitations on microalgae biomass productivity and metabolite improve-
ment.

Nutrient
Limitation/Starvation Microalgal Strain

Carbohydrate
Productions

(mg L−1)

Metabolite
Improvements

(%)

Biomass Productions
(mg L−1) Refs.

Nitrogen A. platensis 4.3 9.36 192 [134]

Nitrogen M. aeruginosa - 20 2.25 × 107 cell mL−1 [135]

Phosphorus A. platensis 6.31 59.7 195 [134]

Sulfur C. reinhardtii 5070 51 - [136]

vitamins, N, P, and metal Tetraselmis sp. 420 mg g−1 130 5720 [137]

Calcium and magnesium C. sorokiniana 450 50 - [135]

Multiple nutrients Desmodesmus sp. 400 mg g−1 64 1950 [138]

The most popular carbon source is sodium bicarbonate, which increases the medium
pH, improves the availability of dissolved inorganic carbon, and stimulates cell growth
and the generation of energy-rich molecules. However, some algae are vulnerable to high
shifts in pH, which negatively affect biomass productivity [139,140]. Table 5 shows the
effect of different carbon sources on the biomass productivity of microalgae, as well as on
the improvement of protein and carbohydrate percentages.

Table 5. Effect of different carbon sources on the biomass production and metabolite content of
microalgae.

Stress Conditions Microalgal
Strain

Biomass
Production

(mg L−1)

Stress on Carbohydrate
Content (%)

Stress on Protein
Content (%) Refs.

Before After Before After

0.9 g L−1 NaHCO3 Scenedesmus sp. 28.32 18.5 31 47 49.5 [140]

5% Pentose C. minutissima 60 32.5 58.5 15.5 14 [129]

5% CO2 A. quadricellulare 900 mg L−1 31 71 20 14 [141]

5% CO2 C. sorokiniana 960 mg L−1 30.2 53 24 10 [141]

The application of microalgae in aquaculture wastewater treatment is valuable because
this process is very cost-effective and enables nitrogen and phosphorus to be recycled and
to produce biomass or utilize it as fertilizer. In addition, in many cases, it is not important
to provide an external source of carbon to remove these elements [142]. Integrating aqua-
culture wastewater treatment with microalgae production in the recirculation aquaculture
system (RAS) not only develops the environment but also increases economic benefits [143].
Microalgae biomass generated through this technology can be used in cosmetics, phar-
maceuticals, animal feeds, and biofuels, including those derived from lipids collected
throughout the process [144]. Under most conditions, the supernatant of aquaculture
wastewater has a lower nutrient content than sludge from the bottom of the aquaculture
system [145]. Table 6 shows the nutrient content of aquaculture wastewater produced from
different cultured animals.
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Table 6. Nutrient content of several aquaculture wastewaters *.

Animal Type TN
(mg L−1)

NH3-N
(mg L−1)

TP
(mg L−1)

COD
(mg L−1)

TS
(g L−1) Refs.

Shrimp 361 90 NA 1321 NA [146]

Shrimp >365 84 NA 1593 NA [147]

Shrimp >395 102 NA 1201 13 [148]

Rainbow trout 1.2 0.27 0.2 17.6 0.01 [149]

Crucian carp 6 1 >0.7 NA NA [150]

nd 111 0.07 NA 20 NA [151]

nd 778 50 384 349 20 [150]
* TN: total nitrogen, NH3-N: ammonia-nitrogen; TP: total phosphorus, COD: chemical oxygen demand, and TS:
total solids. NA: not detected.

Environmentally, microalgae cells, especially those of Scenedesmus abundans and Chlorella
minutissima [152], are a sustainable and environmentally friendly resource that can treat
several types of industrial wastewater [145]. The aquaculture effluent contains many
pollutants that may harm the environment. However, algal cells can utilize these chemicals
and convert them into valuable biomass. Only 20–30% of the nitrogen in fish food is
absorbed or consumed by fish, while the rest is returned to the water [153]. As a result, in
addition to suspended particles, wastewater contains a considerable quantity of nitrogen
and phosphorus, which can harm the ecosystem [154]. According to the literature, Table 7
shows the biomass productivity of several microalgal species cultured in wastewater.

Table 7. Biomass productivity of microalgal species cultured in wastewater.

Microalgae Species Wastewater Type
Biomass

Productivity
(mg dw L−1 d−1)

Refs.

B. braunii Municipal wastewater 345.6 [155,156]

S. obliquus Municipal wastewater 26 [155,156]

P. carterae Industrial wastewater 33 [155,156]

B. braunii Industrial wastewater 34 [155,156]

C. pyrenoidosa Industrial wastewater 8.114 [155,156]

C. saccharophila Industrial wastewater 23 [155,156]

D. tertiolecta Industrial wastewater 28 [155,156]

Chlorella sp. Industrial wastewater 0.00005 [157]

C. vulgaris Industrial wastewater 0.0019 [158]

Chlorella sp. Agricultural wastewater 81.4 [155,156]

Neochloris sp. Industrial wastewater 0.109 [159]

C. minutus Synthetic wastewater 2.04 [160]

G. pleurocapsoides Synthetic wastewater 3.34 [160]

2.2.4. Microalgae–Bacteria Interaction

Recently, controlling the interactions between microalgae and bacteria has received
global attention, which may improve the efficiency of biomass production from microalgae
and their related bioactive compounds. However, studies of the interaction between
microalgae and bacteria have shown a significant influence of parasitic relationships on
algal growth [161]. The evaluation of the effect of bacteria on algae biomass cannot be fully
understood if taken individually. Traditionally, in algal cultures, bacteria are known to be
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pollutants. Therefore, the development of the axenic biomass production of microalgae has
always been a priority [1].

Interactions between microalgae and bacteria have the potential to increase algal
biomass production with biomolecules relevant to commercial aquaculture interests, such
as lipids and carbohydrates. In this context, all typical bacterial properties (motility, chemo-
taxis, type IV secretion systems, quorum sensing systems, and the production of growth pro-
moters) may be relevant in interactions with microalgae and may affect their biomass [162].

Interactions between bacteria and microalgae are very complicated. Currently, there is
little information about the chemical nature of a handful of common mediator molecules,
such as nutrients, that control the relationship between microalgae and bacteria [163]. The
main mediator molecules regulating the interaction between microalgae and bacteria were
identified as amino acids and vitamins. Effective control of these chemical reactions has
been recommended as a useful strategy to increase biomass yield and reduce microalgae
production costs. Despite this, only a limited amount of information is provided at the
molecular level [164].

With a better understanding of the molecular control of microalgae–bacteria inter-
actions with sequenced organisms, particular algal–bacterial systems may be driven to
achieve the desired results [1]. Table 8 shows examples of microalgae–bacteria interactions
that promote algal growth and biomass production, reduce production costs, and improve
the accumulation of valuable bioactive compounds, such as fatty acids, lipids, starch, and
carbohydrates. These examples show bacteria’s importance in improving carbon storage in
microalgae, which is especially beneficial in algal biomass production [164].

Table 8. Microalgae enhancements as a result of co-cultivation with bacteria.

Microalgal Strain Bacterium Strain Interactions
(Microalgae Enhancement) Refs.

C. sorokiniana brasilense 11% increase in cell density [165]

A. protothecoides A. brasilense 90% increase in cell density [165]

I. galbana Alteromonas sp. 52% increase in cell density [166]

I. galbana Labrenzia sp. 71% increase in cell density [166]

P. tricornutum Stappia sp.
72%, 144%, and 172% increase in

growth, chlorophylls, and pigment,
respectively

[166]

C. vulgaris S. smaltophilia
18%, 20%, and 22% increase in
productivity, growth rate, and

biomass, respectively
[167]

T. striata P. bermudensis 200% increase in biomass
productivity [168]

C. minutissima Escherichia coli 700% increase in biomass
productivity [169]

T. pseudonana D. shibae 35% increase in cell density [170]

Ankistrodesmus sp. Rhizobium sp. 29% increase in dry weight [171]

Dunaliella sp. Muricauda sp 7% increase in cell biovolume [172]

C. sorokiniana brasilense 40% and 35% increase in cell density
and growth rate, respectively [173]

C. vulgaris brasilense 16% and 11% increase in cell density
and growth rate, respectively [173]

B. braunii Rhizobium sp. 55% increase in optical density [174]
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3. Pull-Down Process

The Pull-Down process includes (1) harvesting and (2) drying algal biomass (wet
weight). In the case of the manufacture of algal products, the (3) extraction of bioactive
compounds is included [175].

3.1. Harvesting Technologies

Harvesting (dewatering) is the separation of algae biomass from the culture column
using several harvesting techniques. The harvesting of microalgae is a significant challenge
facing microalgae cultivation, which is attributed to the small cell size (5–20 µm), low
biomass concentrations (0.2–1.0 g L−1 in OP and 2–9 g L−1 in PBR), their similar density to
water (1.08–1.13 g mL−1), and a negative charge on their cells. The cost of the harvesting
process contributes to 20–30% of the total cost of biomass production.

Harvested biomass contains a lot of moisture, which reduces the quality of biomass
within a few hours at room temperature. However, the selected harvesting technique
impacts the quality of microalgae biomass [7]. As reported by Mathimani and Mallick [176],
microalgae harvesting techniques are (1) physical techniques, which include centrifuga-
tion, filtration, gravity sedimentation, and flotation; (2) chemical techniques (flocculation
methods), including inorganic and organic flocculants; (3) biological techniques, including
autoflocculation and bioflocculation [177]. Harvesting techniques may be used alone or in
combination with other techniques. However, there is no all-purpose harvesting approach
that can handle all types of microalgae suspensions in terms of cost, energy consumption,
and target products.

Among all the harvesting methods, centrifugation is considered the most widely and
fastest-used harvesting technology [55]. A study by Levine and Fleurence [178] concluded
that centrifugation technology works based on the density difference, which offers more
advantages over other technologies, such as chemical-free biomass, biological-free biomass,
no toxicity, 100% complete recovery efficiency, short duration, and high biomass quality.
These advantages make the centrifugation technique the main technology used in the
food products, cosmetics, and pharmaceutical industries. Although centrifugation has
been reported as a very effective technique, it is highly energy consuming and expensive
when applied on a commercial scale [179]. There are several types of centrifugation
equipment, including the nozzle discharge centrifuge, continuous flow centrifuge, spiral
plate centrifuge, self-cleaning disc stack centrifuge, and decanter bowl centrifuge [179].

Recently, harvesting edible fungi, either fungal spores or fungal pellets, has become the
most recent sustainable, cost-effective, and highly efficient harvesting technique [177]. The
co-cultivation of microalgae with fungal spores has been studied by Zhou et al. [180], who
reported that using fungi pellets could harvest more than 95% of microalgae biomass in a
short time (about 1.5 h), resulting in a great performance of the microalgae biomass [181].
In aquaculture, the selected fungi strain should have a high safety level and should not
contain toxic components. Some fungi species, such as Aspergillus sp., Penicillium sp., and
Monascus sp., which are classified as food-grade, have a safety level as a value-added
compound, while the beneficial impacts of these fungi on aquatic animals have not yet
received much attention from aquaculture scientists [177,181]. Interestingly, the Revolving
Algal Biofilm technique (RAB technology), which was designed to grow microalgae on a
film, was supposed to be a promising harvesting technology to simplify harvesting and
wastewater treatment and increase land-use efficiency [182]. In this technology, when
compared to traditional harvesting technologies, RAB technology is more efficient, cost-
effective, and environmentally friendly for harvesting the biomass attached to films via a
scraper [177,182–184].

3.2. Drying Technologies

After harvesting microalgae biomass, the harvested biomass contains a high water
content that must be drained before further treatments of the biomass, depending on the
type of process and the products that will be extracted in the next step. Neves et al. [185]
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stated that the value of microalgal biomass may be lost depending on the drying technique
applied. The drying process changes the characteristics of microalgae cells. In the food
industry, the nutritional quality of dried microalgae may decrease due to the loss of
pigments, proteins, carbohydrates, lipids, and other valuable components. In general,
pigments are most affected by drying techniques and drying conditions, such as the
temperature level, time exposed, and oxygen [185]. There are several drying methods,
including solar, cross-flow air-drying, oven and microwave drying, and spray- and freeze-
drying [7]. Solar drying is the most environmentally friendly drying technique, but it
is time-consuming and requires a massive surface area [186]. Spray-drying is assumed
to be an effective technique for high-value-added products. This technique can produce
green or green dark microalgae powder due to the use of spray-drying at the correct
temperature [187].

Interestingly, spray-dried microalgae biomass can also be used for pharmaceutical
products and human food supplements. There are two different spray-drying techniques:
spray-drying and drum-drying. The second method is recommended for pharmaceutical
and human food consumption products due to its better digestibility, lower investment,
and less energy [188]. Freeze-drying is a widely applied drying technique used in the
pharmaceutical and food industries since the cell constituents are well protected without
cell wall disruption using this technique [187].

Among all drying techniques concerning maximizing the productivity of microal-
gae biomass, spray-drying is the most promising technology used to extract high-value
products. However, the spray-drying technique is costly and may damage the biomass
pigment content [189]. In the future, more attention should be given to improving the spray
drying-technique so that it can be applied to all microalgae products. As described by Ruiz-
Dominguez et al. [190], Muriellopsis sp. contains low amounts of astaxanthin, zeaxanthin,
and violaxanthin, while having a huge amount of lutein. However, these pigments have
received global attention and extensively contribute to pharmacological, antiviral, food
supplement, nutraceutical, and several biotechnological applications. Ruiz-Domínguez
et al. [190] compared the effect of spray-drying and freeze-drying techniques on the biomass
yield of Muriellopsis sp. and found that the freeze-drying technique increased the lutein
content and recovery by 0.3–2.5-fold when compared to the spray-drying technique. They
concluded that the freeze-drying technique is a promising technique for lutein production,
particularly for pharmacological, antiviral, food supplement, and nutraceutical applica-
tions [190]. Similar findings were reported by Stramarkou et al. [191] on Chlorella vulgaris.
The advantages and disadvantages of the most common drying techniques are shown in
Table 9.

Table 9. Advantages and disadvantages of the most common microalgae biomass-drying technolo-
gies [55].

Method Advantages Disadvantages

Solar Sustainable and no energy
consumption Dependence on the weather

Spray
Fast and economical method,
suitable for algae production

for human consumption

Degradation in the quality,
operational cost

Freeze Highly energy intensive Applicable for small scale

Oven drying Less energy intensive Suitable for small scale

Crossflow air-drying Economical and fast drying Energy cost

Incinerator Algal biomass burning can be
avoided High cost and complicated
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3.3. Extraction Technologies

In recent years, high-value bioproducts derived from microalgae biomass, especially
in the fields of pharmaceuticals and human food supplements, have received global interest.
Therefore, choosing the correct extraction procedure is important to consider. The extraction
of bioactive compounds from microalgae biomass is no less important than the harvesting
or drying techniques. The extraction technique is one of the most important keys to
determining the quality of the target product, especially in the fields of nutrition and
medicine. While extracting the biomolecules from microalgae biomass, it is necessary to
use a completely biocompatible technology that does not change or affect the bioactivity of
the extracted molecule [192].

Based on the microalgae’s target product and the nature of the bioactive compounds,
the extraction method is determined. Several extraction procedures may be used to disrupt
the cell wall [193]. Currently, traditional extraction procedures include organic solvents,
such as methanol, acetone, chloroform, and diethyl ether, which have been used many
times [194]. Onay et al. [195] reported that conventional organic solvent extraction proce-
dures include Folch [196], Bligh and Dyer [197], and Soxhlet [198], while some assisted lipid
extraction techniques include cell disruption, homogenization, microwave, ultrasonication,
glass bead, and lyophilization-assisted methods [195].

Several published reports have demonstrated the efficiency of one-step or assisted
extraction techniques for lipid extraction from microalgae. Koberg et al. [199] used a
one-step biodiesel extraction process using a microwave and ultrasonication directly from
Nannochloropsis. The direct transesterification of Cryptococcus curvatus was determined using
the microwave irradiation technique of Cui et al. [200]. Cheng et al. [201] investigated the
direct transesterification of Chlorella pyrenoidosa using a microwave-assisted lipid extraction
method, compared to the two-step process of biodiesel extraction. They reported that for
Chlorella pyrenoidosa, the one-step technique demonstrated a six-fold greater biomass than
the two-step procedure [201]. Table 10 shows the most important microalgae extraction
techniques, cell extraction, and cell rupture mechanisms [202].

Table 10. Techniques for microalgae cell extract and cell rupture mechanisms.

Category Technique Mechanism Refs.

Mechanical

High-pressure
homogenization

When cells are pushed to flow via a narrow valve under
tremendous pressure, they break. [203]

Rotor–stator homogenization
Cells are disrupted by the shearing between a fixed outer

stator and a rapid-spinning inner rotor when they are
drawn into a long shaft

[204]

Bead milling Contact of cells with agitated beads crushes them. [205]

Grinding with mortar and
pestle

Cells are crushed when they are cut between two hard
surfaces, such as a stationary mortar and a rotating pestle.

Before the grinding procedure, the sample is frozen by
submerging it in liquid nitrogen.

[206]

Ultrasonication The cavitation, which is created by high-frequency sound
waves, causes the cells to explode [207]

Hydrodynamic cavitation Cells break down by the cavitation caused by a rapid shift
in pressure [208]

Screw expeller pressing
When the dried cells are pressed through a barrel-like
chamber, a large volume of them is crushed. Direct oil

extraction is possible with this technique.
[209]
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Table 10. Cont.

Category Technique Mechanism Refs.

Physical

Repeated freeze-thaw
Production of intracellular ice crystals during the freezing

process and cell expansion during the thawing process
both cause cell disruption.

[210]

Osmotic shock
When fluid comes into cells rapidly during a sudden

osmotic transition, internal pressure builds up in the cells,
causing the cells to burst.

[211]

Explosive decompression Gas bubbles escape out from the cells in point holes when
pressure is released suddenly [212]

Pulsed electric field (PEF) The effect of electroporation, caused by strong electric
fields, causes cells to lysis [177]

Microwave

The intrusion of water vapor within the cells causes the
cells to be disturbed. Microwaves create a fast fluctuating
electric field that leads to the development of heat due to

the frictional forces by inert-molecular movement.

[213]

Thermolysis (autoclave)
When cells are heated to 121 ◦C for 30 min, they are lysed.

Heat is transferred from the outside to the inside of the
cells via the cell membrane.

[214]

Chemical

Alkalis or acids The cell membrane is solubilized through saponification
with an alkali or acid [215]

Detergent(surfactant) Detergent chemicals cause cellular disruption by
dissolving cell membrane proteins. [216]

Enzyme E Through the process of enzymatic hydrolysis, the enzyme
digests the cell wall. [217]

New generations of green extraction technologies have been developed. These tech-
nologies do not require the involvement of toxic solvents. Global interest has been con-
ducted in green extraction technologies that enhance the yield of extracted molecules while
minimizing environmental impacts [218]. These environmentally friendly technologies
require bioactive products to be obtained, thus reducing environmental impact, in agree-
ment with various green chemistry principles. In addition, a minimization of extraction
time and yield (productivity) has been obtained [40]. In recent years, the demand for safer,
greener, and more natural bioproducts that do not require toxic solvents has increased.
For Botryococcus sp., Chlorella vulgaris, and Scenedesmus sp., Lee et al. [219] reported that
microwaves were the most effective technique used in oil extraction.

According to Lee et al. [202], green extraction techniques are divided into mechanical
(such as high-pressure homogenization, rotor-stator homogenization, bead milling, grind-
ing with mortar and pestle, ultrasonication, hydrodynamic cavitation, and screw expeller
pressing), physical (such as repeated freeze–thaw, osmotic shock, explosive decompression,
pulsed electric field, microwave, and autoclave), and chemical (such as the use of acids or
alkalis, surfactant, and enzyme) techniques.

Alam et al. [7] demonstrated that, currently, many bioproducts are extracted from ma-
rine microalgae at a commercial scale, including for human nutrition, phycobilins, animal
and aquatic feed, PUFA, sterols, β-carotene, vitamins, stable isotope biochemicals, polysac-
charides, bioactive molecules of antimicrobials, antibacterial, antiviral, anti-inflammatory,
and anticancer drugs. Most recently, microalgae extracts have been strongly recommended
as an anti-pro-inflammatory agent, as well as a blocker, and inhibitor of cytokine storm
and Tumor Necrosis Factor-α (TNF-α), suggesting that microalgae extracts are an attractive
source against many diseases, including COVID-19 [220]. The most notable microalgae
species rich in astaxanthin and carotenoids are Haematococcus pluvialis [221] and Dunaliella
salina [222,223]. Species rich in omega-3, PUFA, and fatty acids include Phaeodactylum tricor-
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nutum [224], Porphyridium cruentum [225], Crypthecodinium cohnii [226], and Nannochloropsis
spp. [227].

Microalgal extracts, such as polysaccharides, are extensively used in food items as
thickeners and stabilizers [228]. As reported by Rahman [229], in 2010, over 75% of
the global market and manufacturing of microalgae were utilized in human health food
(mainly EPA and DHA). In the USA, microalgae-derived DHA is found and marketed
in more than 99% of all baby foods [230]. Taufiqurrahmi et al. [231] demonstrated that
phycoerythrin and phycocyanin, red and blue pigment–protein complexes, respectively,
extracted from Arthrospira platensis, were extensively used in the food industry as natural
coloring agents [231]. Zanella and Alam [232] reported that some microalgae strains were
significant suppliers of specific compounds that accumulate in huge quantities, particularly
when grown under ideal environmental conditions.

4. Microalgae Derivatives against the COVID-19 Cytokine Storm

Several studies have suggested that a key factor in COVID-19 patients’ deaths is Acute
Respiratory Distress Syndrome (ARDS). Cytokine storm syndrome causes ARDS. ARDS is
the main cause of death in COVID patients [233]. Intensive care units (ICUs) are necessary
for ARDS patients if mechanical ventilation is needed [234]. Pro-inflammatory cytokines
(IL-1, IL-6, and NFT-α), as well as chemokines (CCL2, CCL3, CXCL10, and CXCL9), are
produced during a cytokine storm in great quantities, leading to an overactive immune
system and Acute Lung Damage (ALI) in a short time [235,236]. The drugs considered for
the treatment of COVID-19 may operate through one of two mechanisms: (1) slowing the
rate of viral reproduction or (2) symptom suppression by anti-inflammatory therapy [237].

Patients with COVID-19 often suffer immune damage caused by a reactive cytokine
storm as a result of hyperactive inflammatory responses that culminate in cytokine release
syndrome [238,239]. Tzachor et al. [59] reported that as a part of the cytokine storm (CS), the
overflow of TNF-α results in destabilized endothelial cell networks, which cause damage to
the vascular barrier, capillary damage, diffuse alveolar damage (DAD), apoptotic cell death,
and multi-organ failure [59]. Since the pandemic started, TNF-blockers have demonstrated
promising results in the treatment and mitigation of severe sickness [240]. The increased
production of TNF-α has a significant role in disrupting the lung endothelial and epithelial
barriers, which may cause ARDS [241].

Interestingly, several studies reported that introducing microalgae derivatives to
COVID-19 patients may reduce the cytokine storm and have anti-TNF-α effects, preventing
ARDS and ALI [56,59,242–245], as shown in Figure 3.

Microalgae are of commercial importance due to their structural, functional, and nutri-
tional importance, as well as their high yield of proteins, lipids, carbohydrates, and other
bioactive compounds [97]. According to the literature, microalgae derivatives have many
beneficial immunomodulatory effects on humans [246]. Microalgae are one of the richest
sources of natural bioactive compounds that have antioxidant, anti-inflammatory, antimi-
crobial, and antiviral activities [247]. Therefore, microalgae can scavenge free radicals; thus,
the damage caused by free radicals is reduced either in vitro or in vivo [248,249]. These
natural free radical scavengers include carbohydrates (polysaccharide, monosaccharide,
oligosaccharide, carrageenan, alginate, etc.), proteins (amino acids, peptides, DNA, and
RNA), lipids (fatty acids, saturated fatty acids, unsaturated fatty acids, phospholipids,
polyunsaturated fatty acids, omega-3, AA, EPA, DHA, etc.), pigments (phycobiliprotein,
phycocyanin, phycoerythrin, β-carotenes, lutein, zeaxanthin, astaxanthin, chlorophyll,
violaxanthin, etc.), vitamins, and minerals [250].
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Figure 3. Impact of microalgae-derived products and the Coronavirus (COVID-19) pandemic.

However, many types of free radical scavengers are found in different origins of mi-
croalgae and are well known as antioxidant compounds, such as phenolics, polyphenolics,
flavonoids, terpenoids, sterols, anthraquinones, stilbenes, phlorotannin, and hydroxycin-
namic compounds [193]. For the biomedical applications of microalgae carotenoids, the
biological activities of β-carotene, astaxanthin, and phycocyanin are widely recognized as
being candidates for use as natural antioxidants, as well as antiviral and anti-inflammatory
substrates [251]. The natural superfood supplement Arthrospira is well known as a pow-
erful natural source of pigments, such as phycocyanin, phycobiliproteins, β-carotenes,
lutein, and astaxanthin [16,252–254], amino acids and polysaccharides [255] that have a
long history of several biomedical applications [256]. The success of any of the microal-
gae biomedical products depends on which technologies are applied in the cultivation,
harvesting, drying, and extraction of the active biomolecules of these health products. In
the context of combating COVID-19 using the extract of the blue–green algae Arthrospira
platensis, Tzachor et al. [59] investigated the effect of several doses of A. platensis extracts,
as a novel approach, as TNF-blockers and TNF-α inhibitors. A. platensis (strain UTEX 3086)
was grown in flat panel airlift photobioreactors (PBR, 180 L) using Zarrouk medium [257],
under a control temperature (31 ± 2 ◦C), pH (10.8 ± 0.2 ◦C), and filtered air conditions
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(with a flow of 0.5 vvm). In this study, the only different cultural condition was cultural
illumination, which was performed in two irradiations: (1) Solar Spirulina: full-range solar
irradiation (750 µmol m2 s−1) and (2) LED Spirulina: red, blue, and UV at photosynthetic
irradiation of 750 µmol m2 s−1. The two different cultures (Solar and LED) were physically
extracted using water and freeze–thawing cellular disruption, as previously described
by Chu et al. [220]. In this study, macrophages and monocytes, which were stimulated
by pathogenic stimulator lipopolysaccharides (LPSs), were exposed to several doses of
A. platensis extracts from both Solar and LED. Photosynthetically active Arthrospira (LED
Spirulina) inhibited the secretion of TNF-α by 70% and 40% from LPS-activated macrophage
and monocyte cells, respectively. The findings of this study suggest that the advanced
technologies applied in the production of the bioactive compounds of Arthrospira platensis,
in both their culture (including the PBR system with controlled conditions of temperature,
pH, and filtered air using Zarrouk medium and LED photosynthetic illumination) and
extraction (physically extracted using water and freeze–thawing cellular disruption), are
strongly recommended, as these molecules may serve as blockers and inhibitors of TNF-α
and act as anti-NFT-α, suggesting that the extracts of blue–green microalga A. platensis may
be attractive for combating COVID-19 [220].

5. Conclusions and Future Perspectives

Microalgae have a wide range of commercial applications, such as aquaculture, biofer-
tilizer, biofuel, cosmetics, functional foods, and pharmaceuticals, receiving more global
attention both industrially and academically. The success of the biomedical products of
microalgae biomass, as well as their derivatives or metabolites, mainly depends on the
technologies used in the cultivation, harvesting, and drying processes, as well as the extrac-
tion of bioactive molecules. The extract of the blue–green microalgae A. platensis may be an
attractive source for combating COVID-19, depending on the techniques used for culturing,
harvesting, drying, and extracting its bioactive substrates. The production scheme for
microalgae biomass mainly consists of two processes: (I) the Build-Up process and (II) the
Pull-Down process. The Build-Up process consists of (1) the super strain concept and (2)
cultivation aspects. The Pull-Down process includes (1) harvesting and (2) drying algal
biomass (wet weight). In some cases, such as the manufacture of algal bioproducts, the
(3) extraction of bioactive compounds is included. To achieve the “super strain concept”,
the selection of the microalgal strain must (1) have all primary requirements of the quality
and quantity of bioactive molecules, especially concerning its lipid content and profile, (2)
be able to be genetically engineered, and (3) be able to produce bioenergy and valuable
co-products that enhance economic profitability. Economically, scientists are searching for
microalgae strains that have been genetically engineered to increase growth rate, biomass
yield, lipid content, and high-value co-products. Genetic improvement techniques have
been widely applied to revolutionize the microalgae cultivation industry. Considering
these observations, there is a need for innovations, solutions, and technologies that enhance
and advance the commercial viability of algal biomass production and its technologies.
Closed photobioreactor systems (PBR) are better than open pond systems (OP) in terms of
their operation, maintenance, and biomass productivity, and they produce a greater control
over biomass production than open pond systems. Temperature and light intensity must
be adjusted to promote the accumulation of targeted bioactive compounds. Microalgae
culture medium should be cost-effective, promote rapid development, meet the require-
ments of microalgae cells, and be easy to produce. LED light is a cost-effective technology
for producing microalgae. Microalgal–bacteria interactions promote algal growth and
biomass production, reduce production costs, and improve the accumulation of valuable
bioactive compounds. The centrifugation harvesting technique is considered the most
widely harvested technology. Recently, Revolving Algal Biofilm (RAB technology) has
been proposed as a promising technology to simplify harvesting and wastewater treatment
and increase land-use efficiency. Among all drying techniques concerning maximizing
the productivity of microalgae biomass, spray-drying is the most promising technology
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used to extract high-value products. In the future, more attention should be given to the
improvement of spray-drying and the development of the devices and methods applied to
all types of microalgae products. Globally, the most frequently extracted molecule from
microalgae is oil. Green extracting technologies are being developed that do not require the
involvement of toxic solvents.
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145. Hawrot-Paw, M.; Koniuszy, A.; Gałczyńska, M.; Zając, G.; Szyszlak-Bargłowicz, J. Production of microalgal biomass using
aquaculture wastewater as growth medium. Water 2019, 12, 106. [CrossRef]

146. Sfez, S.; Van Den Hende, S.; Taelman, S.E.; De Meester, S.; Dewulf, J. Environmental sustainability assessment of a microalgae
raceway pond treating aquaculture wastewater: From up-scaling to system integration. Bioresour. Technol. 2015, 190, 321–331.
[CrossRef] [PubMed]

147. Boopathy, R.; Fontenot, Q.; Kilgen, M.B. Biological treatment of sludge from a recirculating aquaculture system using a sequencing
batch reactor. J. World Aquac. Soc. 2005, 36, 542–545. [CrossRef]

148. Boopathy, R.; Bonvillain, C.; Fontenot, Q.; Kilgen, M. Biological treatment of low-salinity shrimp aquaculture wastewater using
sequencing batch reactor. Int. Biodeterior. Biodegrad. 2007, 59, 16–19. [CrossRef]

149. Schulz, C.; Gelbrecht, J.; Rennert, B. Constructed wetlands with free water surface for treatment of aquaculture effluents. J. Appl.
Ichthyol. 2004, 20, 64–70. [CrossRef]

150. Mirzoyan, N.; Parnes, S.; Singer, A.; Tal, Y.; Sowers, K.; Gross, A. Quality of brackish aquaculture sludge and its suitability for
anaerobic digestion and methane production in an upflow anaerobic sludge blanket (UASB) reactor. Aquaculture 2008, 279, 35–41.
[CrossRef]

151. Suhr, K.I.; Pedersen, L.-F.; Nielsen, J.L. End-of-pipe single-sludge denitrification in pilot-scale recirculating aquaculture systems.
Aquac. Eng. 2014, 62, 28–35. [CrossRef]

152. Kumar, V.; Gururani, P.; Parveen, A.; Verma, M.; Kim, H.; Vlaskin, M.; Grigorenko, A.V.; Rindin, K.G. Dairy Industry wastewater
and stormwater energy valorization: Effect of wastewater nutrients on microalgae-yeast biomass. Biomass Convers. Biorefinery
2022, 1–10. [CrossRef]

153. Yogev, U.; Sowers, K.R.; Mozes, N.; Gross, A. Nitrogen and carbon balance in a novel near-zero water exchange saline recirculating
aquaculture system. Aquaculture 2017, 467, 118–126. [CrossRef]

154. Barbu, M.; Ceangă, E.; Caraman, S. Water quality modeling and control in recirculating aquaculture systems. Urban Agric. 2018, 2,
64.

155. Pittman, J.K.; Dean, A.P.; Osundeko, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour.
Technol. 2011, 102, 17–25. [CrossRef] [PubMed]

156. Rawat, I.; Kumar, R.R.; Mutanda, T.; Bux, F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass
production for sustainable biofuels production. Appl. Energy 2011, 88, 3411–3424. [CrossRef]

157. Wu, J.-Y.; Lay, C.-H.; Chen, C.-C.; Wu, S.-Y. Lipid accumulating microalgae cultivation in textile wastewater: Environmental
parameters optimization. J. Taiwan Inst. Chem. Eng. 2017, 79, 1–6. [CrossRef]

158. El-Kassas, H.Y.; Mohamed, L.A. Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt. J. Aquat. Res. 2014, 40,
301–308. [CrossRef]

159. Gopalakrishnan, V.; Ramamurthy, D. Dyeing industry effluent system as lipid production medium of Neochloris sp. for biodiesel
feedstock preparation. BioMed Res. Int. 2014, 2014, 529560. [CrossRef]

160. Parikh, A.; Madamwar, D. Textile dye decolorization using cyanobacteria. Biotechnol. Lett. 2005, 27, 323–326. [CrossRef]
161. Verma, K.; Kumar, P.K.; Krishna, S.V.; Himabindu, V. Phycoremediation of Sewage-Contaminated Lake Water Using Microalgae–

Bacteria Co-Culture. Water Air Soil Pollut. 2020, 231, 299. [CrossRef]
162. Luo, H.; Moran, M.A. Evolutionary ecology of the marine Roseobacter clade. Microbiol. Mol. Biol. Rev. 2014, 78, 573–587.

[CrossRef]
163. Paddock, M.B.; Fernández-Bayo, J.D.; VanderGheynst, J.S. The effect of the microalgae-bacteria microbiome on wastewater

treatment and biomass production. Appl. Microbiol. Biotechnol. 2020, 104, 893–905. [CrossRef]
164. Fuentes, J.L.; Garbayo, I.; Cuaresma, M.; Montero, Z.; González-del-Valle, M.; Vílchez, C. Impact of microalgae-bacteria

interactions on the production of algal biomass and associated compounds. Mar. Drugs 2016, 14, 100. [CrossRef]
165. Peng, H.; de-Bashan, L.E.; Bashan, Y.; Higgins, B.T. Indole-3-acetic acid from Azosprillum brasilense promotes growth in green

algae at the expense of energy storage products. Algal Res. 2020, 47, 101845. [CrossRef]
166. Sandhya, S.; Vijayan, K. Symbiotic association among marine microalgae and bacterial flora: A study with special reference to

commercially important Isochrysis galbana culture. J. Appl. Phycol. 2019, 31, 2259–2266. [CrossRef]
167. Xue, L.; Shang, H.; Ma, P.; Wang, X.; He, X.; Niu, J.; Wu, J. Analysis of growth and lipid production characteristics of Chlorella

vulgaris in artificially constructed consortia with symbiotic bacteria. J. Basic Microbiol. 2018, 58, 358–367. [CrossRef] [PubMed]

http://doi.org/10.1016/j.algal.2017.12.006
http://doi.org/10.1007/s40726-015-0013-1
http://doi.org/10.1016/j.apenergy.2017.08.060
http://doi.org/10.3390/w12010106
http://doi.org/10.1016/j.biortech.2015.04.088
http://www.ncbi.nlm.nih.gov/pubmed/25965258
http://doi.org/10.1111/j.1749-7345.2005.tb00403.x
http://doi.org/10.1016/j.ibiod.2006.05.003
http://doi.org/10.1046/j.0175-8659.2003.00520.x
http://doi.org/10.1016/j.aquaculture.2008.04.008
http://doi.org/10.1016/j.aquaeng.2014.06.002
http://doi.org/10.1007/s13399-022-02947-7
http://doi.org/10.1016/j.aquaculture.2016.04.029
http://doi.org/10.1016/j.biortech.2010.06.035
http://www.ncbi.nlm.nih.gov/pubmed/20594826
http://doi.org/10.1016/j.apenergy.2010.11.025
http://doi.org/10.1016/j.jtice.2017.02.017
http://doi.org/10.1016/j.ejar.2014.08.003
http://doi.org/10.1155/2014/529560
http://doi.org/10.1007/s10529-005-0691-7
http://doi.org/10.1007/s11270-020-04652-5
http://doi.org/10.1128/MMBR.00020-14
http://doi.org/10.1007/s00253-019-10246-x
http://doi.org/10.3390/md14050100
http://doi.org/10.1016/j.algal.2020.101845
http://doi.org/10.1007/s10811-019-01772-2
http://doi.org/10.1002/jobm.201700594
http://www.ncbi.nlm.nih.gov/pubmed/29488634


Fermentation 2022, 8, 466 27 of 30

168. Park, J.; Park, B.S.; Wang, P.; Patidar, S.K.; Kim, J.H.; Kim, S.-H.; Han, M.-S. Phycospheric native bacteria Pelagibaca bermudensis
and Stappia sp. ameliorate biomass productivity of Tetraselmis striata (KCTC1432BP) in co-cultivation system through mutualistic
interaction. Front. Plant Sci. 2017, 8, 289. [CrossRef]

169. Higgins, B.T.; VanderGheynst, J.S. Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of
biofuel precursors. PLoS ONE 2014, 9, e96807. [CrossRef]

170. Paul, C.; Mausz, M.A.; Pohnert, G. A co-culturing/metabolomics approach to investigate chemically mediated interactions of
planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics 2013, 9, 349–359. [CrossRef]

171. Do Nascimento, M.; de los Angeles Dublan, M.; Ortiz-Marquez, J.C.F.; Curatti, L. High lipid productivity of an Ankistrodesmus–
Rhizobium artificial consortium. Bioresour. Technol. 2013, 146, 400–407. [CrossRef]

172. Le Chevanton, M.; Garnier, M.; Bougaran, G.; Schreiber, N.; Lukomska, E.; Bérard, J.-B.; Fouilland, E.; Bernard, O.; Cadoret, J.-P.
Screening and selection of growth-promoting bacteria for Dunaliella cultures. Algal Res. 2013, 2, 212–222. [CrossRef]

173. Choix, F.J.; De-Bashan, L.E.; Bashan, Y. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized
Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions. Enzym. Microb. Technol. 2012, 51, 300–309.
[CrossRef]

174. Rivas, M.O.; Vargas, P.; Riquelme, C.E. Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb. Ecol. 2010, 60,
628–635. [CrossRef]

175. Butler, T.; Golan, Y. Astaxanthin production from microalgae. In Microalgae Biotechnology for Food, Health and High Value Products;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 175–242.

176. Mathimani, T.; Mallick, N. A comprehensive review on harvesting of microalgae for biodiesel—Key challenges and future
directions. Renew. Sustain. Energy Rev. 2018, 91, 1103–1120. [CrossRef]

177. Han, P.; Lu, Q.; Fan, L.; Zhou, W. A review on the use of microalgae for sustainable aquaculture. Appl. Sci. 2019, 9, 2377.
[CrossRef]

178. Levine, I.; Fleurence, J. Microalgae in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2018.
179. Alam, M.A.; Wang, Z. Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment; Springer: Berlin/Heidelberg,

Germany, 2019.
180. Zhou, W.; Min, M.; Hu, B.; Ma, X.; Liu, Y.; Wang, Q.; Shi, J.; Chen, P.; Ruan, R. Filamentous fungi assisted bio-flocculation: A

novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Sep. Purif. Technol. 2013, 107, 158–165.
[CrossRef]

181. Chen, J.; Leng, L.; Ye, C.; Lu, Q.; Addy, M.; Wang, J.; Liu, J.; Chen, P.; Ruan, R.; Zhou, W. A comparative study between
fungal pellet-and spore-assisted microalgae harvesting methods for algae bioflocculation. Bioresour. Technol. 2018, 259, 181–190.
[CrossRef]

182. Liu, H.; Lu, Q.; Wang, Q.; Liu, W.; Wei, Q.; Ren, H.; Ming, C.; Min, M.; Chen, P.; Ruan, R. Isolation of a bacterial strain,
Acinetobacter sp. from centrate wastewater and study of its cooperation with algae in nutrients removal. Bioresour. Technol. 2017,
235, 59–69. [CrossRef]

183. Naaz, F.; Bhattacharya, A.; Pant, K.K.; Malik, A. Impact of heavy metal laden algal biomass on hydrothermal liquefaction and
biorefinery approach. Process Saf. Environ. Prot. 2021, 145, 141–149. [CrossRef]

184. Zhang, Q.; Yu, Z.; Zhu, L.; Ye, T.; Zuo, J.; Li, X.; Xiao, B.; Jin, S. Vertical-algal-biofilm enhanced raceway pond for cost-effective
wastewater treatment and value-added products production. Water Res. 2018, 139, 144–157. [CrossRef]

185. de Farias Neves, F.; Demarco, M.; Tribuzi, G. Drying and quality of microalgal powders for human alimentation. In Microalgae-from
Physiology to Application; IntechOpen: London, UK, 2019.

186. Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of
biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [CrossRef]

187. Chen, C.-L.; Chang, J.-S.; Lee, D.-J. Dewatering and drying methods for microalgae. Dry. Technol. 2015, 33, 443–454. [CrossRef]
188. Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological

and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental
safety. J. Environ. Chem. Eng. 2021, 9, 105012. [CrossRef]

189. Tan, X.B.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Wong, C.Y.; Lee, K.T. Cultivation of microalgae for biodiesel production: A review on
upstream and downstream processing. Chin. J. Chem. Eng. 2018, 26, 17–30. [CrossRef]

190. Ruiz-Domínguez, M.C.; Marticorena, P.; Sepúlveda, C.; Salinas, F.; Cerezal, P.; Riquelme, C. Effect of drying methods on lutein
content and recovery by supercritical extraction from the microalga Muriellopsis sp.(MCH35) cultivated in the arid north of Chile.
Mar. Drugs 2020, 18, 528. [CrossRef] [PubMed]

191. Stramarkou, M.; Papadaki, S.; Kyriakopoulou, K.; Krokida, M. Effect of drying and extraction conditions on the recovery of
bioactive compounds from Chlorella vulgaris. J. Appl. Phycol. 2017, 29, 2947–2960. [CrossRef]

192. Saini, R.K.; Keum, Y.-S. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103.
[CrossRef]

193. Monteiro, M.; Santos, R.; Iglesias, P.; Couto, A.; Serra, C.; Gouvinhas, I.; Barros, A.; Oliva-Teles, A.; Enes, P.; Díaz-Rosales, P. Effect
of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro-and microalgae
extracts. J. Appl. Phycol. 2020, 32, 349–362. [CrossRef]

http://doi.org/10.3389/fpls.2017.00289
http://doi.org/10.1371/journal.pone.0096807
http://doi.org/10.1007/s11306-012-0453-1
http://doi.org/10.1016/j.biortech.2013.07.085
http://doi.org/10.1016/j.algal.2013.05.003
http://doi.org/10.1016/j.enzmictec.2012.07.012
http://doi.org/10.1007/s00248-010-9686-6
http://doi.org/10.1016/j.rser.2018.04.083
http://doi.org/10.3390/app9112377
http://doi.org/10.1016/j.seppur.2013.01.030
http://doi.org/10.1016/j.biortech.2018.03.040
http://doi.org/10.1016/j.biortech.2017.03.111
http://doi.org/10.1016/j.psep.2020.08.005
http://doi.org/10.1016/j.watres.2018.03.076
http://doi.org/10.1016/j.rser.2009.10.009
http://doi.org/10.1080/07373937.2014.997881
http://doi.org/10.1016/j.jece.2020.105012
http://doi.org/10.1016/j.cjche.2017.08.010
http://doi.org/10.3390/md18110528
http://www.ncbi.nlm.nih.gov/pubmed/33114504
http://doi.org/10.1007/s10811-017-1181-8
http://doi.org/10.1016/j.foodchem.2017.07.099
http://doi.org/10.1007/s10811-019-01927-1


Fermentation 2022, 8, 466 28 of 30

194. Zhang, R.; Parniakov, O.; Grimi, N.; Lebovka, N.; Marchal, L.; Vorobiev, E. Emerging techniques for cell disruption and extraction
of valuable bio-molecules of microalgae Nannochloropsis sp. Bioprocess Biosyst. Eng. 2019, 42, 173–186. [CrossRef]

195. Onay, M.; Sonmez, C.; Oktem, H.A.; Yucel, M. Evaluation of various extraction techniques for efficient lipid recovery from
thermo-resistant microalgae, Hindakia, Scenedesmus and Micractinium species—Comparison of lipid extraction methods from
microalgae. Am. J. Anal. Chem. 2016, 7, 141. [CrossRef]

196. Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J.
Biol. Chem. 1957, 226, 497–509. [CrossRef]

197. Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917.
[CrossRef]

198. De Castro, M.L.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [CrossRef]
199. Koberg, M.; Cohen, M.; Ben-Amotz, A.; Gedanken, A. Bio-diesel production directly from the microalgae biomass of Nan-

nochloropsis by microwave and ultrasound radiation. Bioresour. Technol. 2011, 102, 4265–4269. [CrossRef]
200. Cui, Y.; Liang, Y. Direct transesterification of wet Cryptococcus curvatus cells to biodiesel through use of microwave irradiation.

Appl. Energy 2014, 119, 438–444. [CrossRef]
201. Cheng, J.; Yu, T.; Li, T.; Zhou, J.; Cen, K. Using wet microalgae for direct biodiesel production via microwave irradiation. Bioresour.

Technol. 2013, 131, 531–535. [CrossRef] [PubMed]
202. Lee, S.Y.; Khoiroh, I.; Vo, D.-V.N.; Senthil Kumar, P.; Show, P.L. Techniques of lipid extraction from microalgae for biofuel

production: A review. Environ. Chem. Lett. 2021, 19, 231–251. [CrossRef]
203. Xie, Y.; Ho, S.-H.; Chen, C.-N.N.; Chen, C.-Y.; Jing, K.; Ng, I.-S.; Chen, J.; Chang, J.-S.; Lu, Y. Disruption of thermo-tolerant

Desmodesmus sp. F51 in high pressure homogenization as a prelude to carotenoids extraction. Biochem. Eng. J. 2016, 109, 243–251.
[CrossRef]

204. Wang, R.; Wang, Z.; Zhang, J. Science of Marine Shellfish Culture; Ocean University of China: Qingdao, China, 2008.
205. Rivera, E.C.; Montalescot, V.; Viau, M.; Drouin, D.; Bourseau, P.; Frappart, M.; Monteux, C.; Couallier, E. Mechanical cell

disruption of Parachlorella kessleri microalgae: Impact on lipid fraction composition. Bioresour. Technol. 2018, 256, 77–85.
[CrossRef] [PubMed]

206. Zheng, H.; Yin, J.; Gao, Z.; Huang, H.; Ji, X.; Dou, C. Disruption of Chlorella vulgaris cells for the release of biodiesel-producing
lipids: A comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl. Biochem. Biotechnol. 2011,
164, 1215–1224. [CrossRef]

207. Greenly, J.M.; Tester, J.W. Ultrasonic cavitation for disruption of microalgae. Bioresour. Technol. 2015, 184, 276–279. [CrossRef]
208. Lee, A.K.; Lewis, D.M.; Ashman, P.J. Microalgal cell disruption by hydrodynamic cavitation for the production of biofuels. J. Appl.

Phycol. 2015, 27, 1881–1889. [CrossRef]
209. Khedkar, S.V.; Chavan, Y.; Bhagat, S. Extraction of oil from algae by solvent extraction and oil expeller method. Sadguru Publ.

2011, 9, 1746–1750.
210. Thoisen, C.; Hansen, B.W.; Nielsen, S.L. A simple and fast method for extraction and quantification of cryptophyte phycoerythrin.

MethodsX 2017, 4, 209–213. [CrossRef] [PubMed]
211. González-González, L.M.; Astals, S.; Pratt, S.; Jensen, P.D.; Schenk, P.M. Impact of osmotic shock pre-treatment on microalgae

lipid extraction and subsequent methane production. Bioresour. Technol. Rep. 2019, 7, 100214. [CrossRef]
212. Günerken, E.; D’hondt, E.; Eppink, M.H.; Wijffels, R.H.; Elst, K. Disruption of microalgae with a novel continuous explosive

decompression device. Algal Res. 2019, 39, 101376. [CrossRef]
213. Gim, G.H.; Kim, S.W. Optimization of cell disruption and transesterification of lipids from Botryococcus braunii LB572. Biotechnol.

Bioprocess Eng. 2018, 23, 550–556. [CrossRef]
214. Sheng, J.; Vannela, R.; Rittmann, B. Disruption of Synechocystis PCC 6803 for lipid extraction. Water Sci. Technol. 2012, 65, 567–573.

[CrossRef]
215. Harun, R.; Danquah, M.K. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem.

2011, 46, 304–309. [CrossRef]
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