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Abstract: Oenococcus oeni is the main microorganism that undergoes malolactic fermentation (MLF)
in the winemaking industry due to its excellent adaptability to harsh wine environments. The start of
MLF is often delayed or even fails, and low pH appears to be a crucial parameter. To study the function
of the trxA gene in acid stress, a plasmid containing the trxA gene of O. oeni SD-2a was heterologously
expressed in Lactiplantibacillus plantarum WCFS1. The recombinant strain (WCFS1-trxA) grew better
than the control strain (WCFS1-Vector) under acid stress. The expression of thioredoxin system
genes was much higher in the recombinant strain compared with the control strain under acid stress.
In addition, a series of physiological and biochemical assays were conducted. The ATP content
was lower in the recombinant strain, while the cell membrane fluidity and integrity improved in
the recombinant strain. Moreover, reactive oxygen species (ROS) accumulation, intracellular GSH
level, and superoxide dismutase (SOD) activity assays showed that the recombinant strain decreased
the intracellular reactive oxygen species (ROS) accumulation by improving the SOD activity. In
conclusion, heterologous expression of trxA improves the SOD activity of L. plantarum WCFS1,
reducing bacterial ROS and increasing cell membrane fluidity and integrity, enhancing the tolerance
of Lactiplantibacillus plantarum WCFS1 under acid stress.

Keywords: Oenococcus oeni; heterologous expression; thioredoxin system; acid stress; malolactic
fermentation

1. Introduction

Malolactic fermentation (MLF) is essential in winemaking [1,2]. Successful MLF can
convert the malic acid (dicarboxylic acid) into softer-tasting lactic acid (monocarboxylic
acid) and carbon dioxide. Thus, the acidity of the wine is reduced, and the microbial
stability is improved [3]. In addition, MLF can change the aroma structure of wine, increase
the fruity aroma of the wine, and enrich the structure of wine [4]. Therefore, MLF is
considered to be a necessary step in the production of high-quality red wine.

The strains that initiate MLF are mainly distributed in Lactobacillus, Lactiplantibacillus,
Pediococcus, Leuconostoc, and Oenococcus [5,6]. Among them, O. oeni is the main initiator of
MLF [7]. In the process of MLF, the growth and reproduction of these microorganisms will
be inhibited by various physical and chemical properties of wine. The four main factors
affecting the progress of malolactic fermentation in wine are low pH (3.0–3.5), ethanol
(10–16% v/v), SO2 (over 10 mg/L), and low temperature (possibly below 12 ◦C) [8,9].

Currently, there are no efficient gene function research tools for O. oeni, such as gene
overexpression or gene knockout, which makes the research progress for the O. oeni gene
function relatively slow [10,11]. More researchers are directing their attention to the use of
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Lactiplantibacillus plantarum to study the role of exogenous genes, as it is easy to operate
genetic transformation technologies in this species. To date, researchers have successfully
expressed the mle, hsp18, argG, puuE, and ctsR genes derived from O. oeni in L. plantarum and
verified the function of these stress-related genes from O. oeni using L. plantarum [12–16].
Until now, there has been no report on the regulation of the trxA gene from O. oeni on the
stress tolerance to L. plantarum.

TrxA is thioredoxin, which is involved in intracellular redox balance, and is induced
with mild ethanol stress [17,18]. Margalef-Catala et al. reported that there were three
thioredoxin genes (trxA1, trxA2, and trxA3) in the genome of Oenococcus oeni PSU-1 [19].
Additionally, the trxA1 gene in O. oeni was horizontally transferred from Lactobacillus [19].
Our previous study showed that O. oeni SD-2a has only two trxA genes [2]. One trxA
gene was significantly expressed with either acid or ethanol stress pretreatments, and with
the increasing intensity of acid or ethanol stresses, the expression level of the trxA gene
was increasingly overregulated [20]. To investigate the role of this trxA under acid stress
conditions, the trxA gene was amplified from O. oeni SD-2a and heterologously expressed
in L. plantarum WCFS1. The expression of thioredoxin system (Trx system) genes, the
growth curve, a series of physiological and biochemical assays including the cell membrane
integrity, reactive oxygen species (ROS) accumulation, intracellular ATP and GSH level,
and superoxide dismutase (SOD) activity were also determined in the recombinant strain
(WCFS1-trxA) and the control strain (WCFS1-Vector) under acid stress to investigate the
mechanism of trxA gene improving acid stress tolerance.

2. Materials and Methods
2.1. Strains, Growth Conditions, and Plasmids

O. oeni SD-2a was screened from the Shandong wine region, preserved at the China
General Microbiological Culture Collection Center (CGMCC 0715, Beijing, China), and
grown at 28 ◦C in FMATB medium [19,21]. The cloning host, Escherichia coli DH5α, was
grown at 37 ◦C in Luria–Bertani medium with 200 µg/mL erythromycin (Solarbio, Beijing,
China) when appropriate. L. plantarum WCFS1 was grown at 37 ◦C in de Man–Rogosa–
Sharp (MRS) broth [22] and supplemented with 100 µg/mL erythromycin when necessary.
Agar plates were also prepared with MRS or LB media containing agar (10 g/L) supple-
mented with 100 µg/mL erythromycin. All strains and plasmids employed in this study
are listed in Table 1.

Table 1. Bacterial strains and plasmids used in this study (The superscript lowercase letter ‘r’ means
resistance).

Strains and Plasmids Relevant Property Reference/Source

E.coli DH5α Cloning host Takara
O. oeni SD-2a Donor bacteria Our lab

L. plantarum WCFS1 Plasmid-free bacteria Our lab
WCFS1(pMG36e) L. plantarum harboring pMG36e, Em r Our lab

WCFS1(pMG36etrxA) L. plantarum harboring pMG36etrxA, Em r This study
Plasmids
pMG36e E. coli-L. lactis shuttle vector (3,6 kb), Em r Our lab

pMG36etrxA pMG36e-derivative vector containing the
552 bp region with the ctsR gene, Em r This study

2.2. Plasmid Construction and Transformation

The construction of the expression plasmids is illustrated in Figure 1. The trxA
gene was amplified from genomic DNA using primers 5′-GCGTCGACAGAGAAGGAG-
GAATTATATGGCAAT-3′ and 5′-CCAAGCTTCAGGCTTTTCTTCAATAAAGTATAT-3′;
the Hind III and Sal I (underline) were introduced into the amplified gene. The methods
of plasmid construction were adopted from reference [12]. The recombinant plasmid was
verified by sequencing and named pMG36etrxA; then, it was transformed into L. plantarum
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WCFS1 by electroporation transformation [12], and these transformants were designated
WCFS1-trxA.

Fermentation 2022, 8, x FOR PEER REVIEW 3 of 13 
 

 

2.2. Plasmid Construction and Transformation 
The construction of the expression plasmids is illustrated in Figure 1. The trxA gene 

was amplified from genomic DNA using primers 5′-GCGTCGACAGAGAAGGAG-
GAATTATATGGCAAT-3′ and 5′-CCAAGCTTCAGGCTTTTCTTCAATAAAGTATAT-
3′; the Hind III and Sal I (underline) were introduced into the amplified gene. The methods 
of plasmid construction were adopted from reference [12]. The recombinant plasmid was 
verified by sequencing and named pMG36etrxA; then, it was transformed into L. planta-
rum WCFS1 by electroporation transformation [12], and these transformants were desig-
nated WCFS1-trxA. 

 
Figure 1. Construction of recombinant expression vector pMG36etrxA. Emr, erythromycin re-
sistance marker; P32, promoter; repA, replication determinant. 

2.3. Stress Challenges and the Growth Performance 
WCFS1-Vector (L. plantarum WCFS1-pMG36e) and WCFS1-trxA were cultured over-

night in MRS media; then, they were transferred (1%, v/v) into fresh MRS media and 
grown until the OD600nm reached 1.0. To assess the growth performance of both strains, the 
growth curve was conducted by measuring the absorbance at 600 nm every 4 h under 
standard MRS (pH 6.3) and acid-stress MRS (from pH 3.2 to pH 4.0, gradient 0.2) medium, 
with the same inoculum (1%, v/v). The pH of the MRS media was adjusted by 1 M HCl 
using a pH meter (INESA Scientific Instrument Co., Ltd., Shanghai, China), and 100 
μg/mL erythromycin was added to all cultures. 

2.4. ROS Accumulation and Membrane Integrity Evaluation 
After analyzing the growth performance of the WCFS1-Vector and WCFS1-trxA un-

der acid stress, pH 3.6 was selected to determine the physiological assays. The WCFS1-
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marker; P32, promoter; repA, replication determinant.

2.3. Stress Challenges and the Growth Performance

WCFS1-Vector (L. plantarum WCFS1-pMG36e) and WCFS1-trxA were cultured overnight
in MRS media; then, they were transferred (1%, v/v) into fresh MRS media and grown until
the OD600nm reached 1.0. To assess the growth performance of both strains, the growth
curve was conducted by measuring the absorbance at 600 nm every 4 h under standard
MRS (pH 6.3) and acid-stress MRS (from pH 3.2 to pH 4.0, gradient 0.2) medium, with
the same inoculum (1%, v/v). The pH of the MRS media was adjusted by 1 M HCl using
a pH meter (INESA Scientific Instrument Co., Ltd., Shanghai, China), and 100 µg/mL
erythromycin was added to all cultures.

2.4. ROS Accumulation and Membrane Integrity Evaluation

After analyzing the growth performance of the WCFS1-Vector and WCFS1-trxA under
acid stress, pH 3.6 was selected to determine the physiological assays. The WCFS1-Vector
and WCFS1-trxA cells were collected from an MRS medium (pH 3.6) at the log phase by
centrifugation; then, they were washed twice with 10 mM phosphate buffer (PBS, pH 7.0)
and resuspended in PBS. The suspension was used to determine the following physiological
assays. According to Zhang et al., the oxidant-sensitive probe 2′,7′-dichlorofluorescin diac-
etate (DCFH-DA) method was adopted to measure the ROS accumulation of strains [23].
The cell suspension was added to 10 µM DCFH-DA and then incubated at 37 ◦C for
30 min. Fluorescence intensity was measured at λEX 485 nm and λEM 525 nm using a
full-wavelength multifunctional microplate reader (Tecan, Männedorf, Switzerland). A pos-
itively charged fluorescent nucleic acid dye, propidium iodide (PI), was used to determine
the membrane integrity and was used to stain cells with compromised membranes [24].
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The samples were collected, washed, and resuspended as previously described; then, they
were mixed with 15 µM PI and cultured at 37 ◦C in the dark for 20 min. Fluorescence
intensity was measured at λEX 488 nm and λEM 630 nm using the microplate reader. Values
were expressed as the fluorescence intensity per OD600nm.

2.5. Measurement of Cell Membrane Fluidity

The fluorescence anisotropy was measured with 5 µM DPH (1,6-diphenyl-1,3,5-
hexatriene), at λEX 360 nm and λEM 430 nm (5 nm slits). The degree of fluorescence
polarization (p) and anisotropy (r) were calculated according to reference [25].

2.6. Intracellular ATP Production, Superoxide Dismutase Activity, and Glutathione Concentration

The ATP Content Assay Kit (Solarbio, Beijing, China) was adopted to measure the
intracellular ATP levels according to the manufacturer’s instructions. A colorimetric
method was employed to measure the total superoxide dismutase (SOD) activity using the
Superoxide Dismutase Assay Kit with WST-8 (Beyotime, Shanghai, China). One unit of SOD
activity was defined as the amount of enzyme required to decrease 50% of WST-8 formazan
formation. The Reduced Glutathione Assay Kit (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China) was used to measure the concentration of intracellular glutathione [26].
Additionally, a BCA Protein Assay Kit (Beyotime, Shanghai, China) was used to measure
the protein concentration.

2.7. Real-Time Quantitative PCR

The Bacteria RNA Extraction Kit (Vazyme Biotech) and HiScript III 1st Strand cDNA
Synthesis Kit (Vazyme Biotech) were used to extract RNA and reverse-transcribe it into
complementary DNA. Real-time quantitative PCR (RT-qPCR) was performed on a Real-
Time PCR Detection System (Thermo Fisher Scientific) using AceQ qPCR SYBR Green
Master Mix (Vazyme Biotech). Relative expression levels were calculated by the 2−∆∆Ct

method using 16S ribosomal RNA as the reference gene and WCFS1-Vector as the control
strain [12]. The sequences of the forward and reverse primers used for analysis are listed
in Table S1.

2.8. Statistical Analysis

All experiments were performed in triplicate. ROS accumulation, membrane integrity
evaluation, intracellular ATP production, SOD activity, GSH concentration, and anisotropy
were shown as means with standard deviations (SD). Statistical analysis was performed
using the Student’s t-test with a significance of p < 0.05.

3. Results and Discussion
3.1. Heterologous Expression of pMG36etrxA in L. plantarum WCFS1

The sequences of the trxA fragments were amplified by PCR and then digested with
SalI and HindIII enzymes. pMG36e plasmid was isolated from Escherichia coli DH5α and
digested with the same restriction enzymes. Agarose gel electrophoresis was used to test
the enzyme digestion effects. As shown in Figure S1a, a linearized DNA band of 3.6 kb
indicated that the circular pMG36e plasmids had been digested completely. The band at
0.4 kb represented the digested trxA fragments. Agarose gel was cut at the position of
the two strands, and the DNA fragments were then purified by a DNA recovery kit. T4
DNA ligase was then used to ligate the two bands. The resulting recombinant plasmid
pMG36etrxA then formed and was transformed into E. coli DH5α. To identify positive
clones that contained the resulting recombinant plasmid of pMG36etrxA, colony PCR was
performed using primers pMG36e-F and pMG36e-R. As shown in Figure S1b, using positive
clones as PCR templates can show a band of 1.0 kb in agarose gel (Figure S1b). Meanwhile,
the results of the sequencing confirmed that the recombinant plasmid pMG36etrxA had
successfully been expressed heterologously in DH5α. The pMG36etrxA was extracted from
DH5α, transformed in WCFS1 by electroporation, and subjected to colony PCR analysis



Fermentation 2022, 8, 452 5 of 11

using the primers pMG36e-F and pMG36e-R to screen recombinant cells. The positive
clones showed a band at 1.0 kb (Figure S1c). Meanwhile, the sequencing results confirmed
that the recombinant plasmid pMG36etrxA had successfully expressed heterologously
in WCFS1.

3.2. Improved Growth Ability of WCFS1-pMG36etrxA

The effects of heterologously expressed trxA on cell growth under acid stress were
investigated. As illustrated in Figure 2a, heterologously expressed trxA did not influence the
growth of L. plantarum WCFS1 under normal conditions (MRS media with pH 6.3) compared
with the control strain WCFS1-Vector. Contrastingly, the heterologous expression of trxA
improved cell growth when cells were exposed to acid stress, with a higher maximum
OD600 nm value of WCFS1-trxA compared with the WCFS1-Vector (Figure 2b–f). These
results demonstrated that the heterologous expression of trxA from O. oeni SD-2a enhances
the tolerance of L. plantarum WCFS1 cells under acid stress.

3.3. Heterologous Expression of trxA Affects the Transcription Levels of the Inherent Trx System
Genes in L. plantarum WCFS1

Since the trxA gene often works with other Trx system genes and plays a central role
in the Trx system, the expression levels of inherent Trx system genes in WCFS1-trxA and
WCFS1-Vector were studied under acid stress (pH 3.6). A former study showed that in the
L. plantarum WCFS1 genome, the Trx system had six ORFs: four thioredoxins genes (trxA1,
trxA2, trxA3, and trxH), a thioredoxin reductase (trxB), and a ferredoxin NAD (P) reductase
(fdr) [19]. This study calculated the expression levels of all the genes in WCFS1-trxA
compared with control strain WCFS1-Vector under the same culture conditions. As shown
in Figure 3, all Trx system gene expressions were significantly increased. Additionally, the
trxA gene increased more than 40,000-fold in WCFS1-trxA compared with WCFS1-Vector,
which indicated that the trxA gene derived from O. oeni SD-2a was successfully expressed in
WCFS1-trxA, while it had almost no expression in the WCFS1-Vector. The expression levels
of fdr, trxB, trxH, trxA3, trxA2, and trxA1 in WCFS1-trxA increased 12.18-, 15.79-, 40.14-,
64.11-, 75.28-, and 333.27-fold compared with those in the WCFS1-Vector, respectively.
These results indicated that the heterologous expression of the trxA gene significantly
increased the expression level of the inherent thioredoxin system genes in L. plantarum
WCFS1 cells, conferring these cells with enhanced resistance to damage caused by acid
stress. The heterologous expression of the O. oeni SD-2a trxA gene may affect the activity of
the transcription regulator, which activates the transcription of inherent thioredoxin system
genes in L. plantarum WCFS1. However, the specific mechanism of this phenomenon needs
further study.
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Figure 3. The effects of the heterologously expressing trxA gene on the transcription of Trx system
genes in L. plantarum WCFS1. trxA1, trxA2, trxA3, trxH, and trxA encode thioredoxin A1, thioredoxin
A2, thioredoxin A3, thioredoxin H, and thioredoxin A, respectively. trxB encodes a thioredoxin
reductase. fdr is a ferredoxin NAD (P) reductase encoding gene. The difference was significant at a
95% confidence level.
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3.4. Heterologous Expression of trxA Decreased ATP Content and Increased Cell Membrane
Fluidity in L. plantarum WCFS1

As the most important energy source of organisms, ATP plays a vital role in maintain-
ing cell growth, reproduction, and metabolism [27]. It was also reported that cells consume
more ATP to maintain growth under stress conditions [28]. As shown in Figure 4, compared
with the WCFS1-Vector, the intracellular ATP content of the WCFS1-trxA was significantly
reduced under the acid stress environment, indicating that trxA did not improve the acid
stress tolerance of the WCFS1-trxA by activating the energy production pathway but accel-
erated the energy expending response. The extra energy consumed by WCFS1-trxA may
partially offset the damage caused by acid stress.
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Figure 4. The ATP content in the WCFS1-trxA and WCFS1-Vector cells cultured in MRS medium
(pH 3.6). The ATP content is significantly lower in the WCFS1-trxA strain compared with the
WCFS1-Vector strain. * means T-test of p value < 0.05.

The first barrier of the cell in resisting the external stress environment is the cell
membrane [29], and changing the cell membrane fluidity is an essential response of O.
oeni to external stress [30]. Previous studies have shown that acid stress could reduce the
fluidity of cell membranes and cause sclerosis [29,31]. In Figure 5, compared with the
control strain, the fluorescence anisotropy of the recombinant strain was significantly lower,
and the lower the fluorescence anisotropy, the higher the rotational diffusion rate of the
cell membrane. Therefore, the overexpression of the trxA gene can increase the rotational
diffusion rate of the cell membrane of L. plantarum WCFS1 and accelerate the exchange of
substances and energy inside and outside the cell.

3.5. Heterologous Expression of trxA Results in Decreased ROS Accumulation and Enhanced Cell
Membrane Integrity of L. plantarum WCFS1

Acid stress affects the accumulation of intracellular ROS content, causing damage
to intracellular components [32] and affecting the integrity of cell membranes [30,31]. In
Figure 6, compared with the control strain, the accumulation of ROS in the recombinant
strain was significantly lower. The accumulation of ROS would increase the oxidative
damage of microorganisms. Therefore, the overexpression of the trxA gene can reduce the
oxidative damage caused by acid stress to L. plantarum WCFS1. The cell membrane integrity
assay needs to use a PI probe. The PI probe can stain cells with damaged cell membranes to
evaluate the cell membrane integrity of the strain by measuring the fluorescence intensity
(FI). The higher the fluorescence value, the worse the cell membrane integrity. Compared
with the control strain, the fluorescence value of PI dye in the recombinant strain was
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significantly lower, indicating that the cell membrane integrity of the recombinant strain
was better. Therefore, overexpression of the trxA gene can reduce the damage to the cell
membrane of L. plantarum WCFS1 caused by acid stress and maintain the integrity of the
cell membrane.
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3.6. Heterologous Expression of trxA Decreased ROS Accumulation through Improving
SOD Activity

There are two mechanisms (the enzymatic pathway and non-enzymatic pathway) that
protect the cells of lactic acid bacteria to reduce the cell damage caused by ROS [19,33].
It can be seen from Figure 6 that the intracellular ROS accumulation of the recombinant
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strain was lower compared with the control strain. To explore the reasons for the relatively
low ROS content in the recombinant strain, the enzymatic factor SOD activity and the
non-enzymatic factor intracellular GSH content were determined. SOD is an important
antioxidant that can resist the effect of ROS by eliminating superoxides, while GSH is a
non-enzymatic antioxidant with functions such as scavenging free radicals, detoxifying,
enhancing immunity, and eliminating the stress produced by ROS. As shown in Figure 7,
compared with the control strain, the SOD activity of the recombinant strain was signifi-
cantly higher. SOD is an essential member of the antioxidant enzyme system in cells, which
can help the organism resist oxidative damage. Compared with the control strain, the
GSH content of the recombinant strain did not have a significant difference. Therefore, the
overexpression of the trxA gene mainly removed the accumulated ROS through SOD, thus
reducing the oxidative damage caused by acid stress to L. plantarum WCFS1.
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compared with the WCFS1-Vector strain. * means T-test of p value < 0.05.

4. Conclusions

The experimental results indicated that the WCFS1-trxA showed better growth perfor-
mance than the WCFS1-Vector under acid stress (pH 3.2, pH 3.4, and pH 3.6). Moreover,
the recombinant strain WCFS1-trxA showed higher expression of Trx system genes than
the control strain under acid stress (pH 3.6), which confirmed that the trxA gene indeed
regulated the expression of these genes. The trxA gene improves acid stress tolerance
mainly by improving the SOD activity of L. plantarum WCFS1, reducing bacterial ROS,
increasing cell membrane fluidity and integrity, and enhancing the acid stress tolerance of
L. plantarum WCFS1.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation8090452/s1, Figure S1: The results of agarose gel
electrophoresis. Table S1: Primers used for real-Time quantitative PCR.
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