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The detailed proofs of Theorem 1, Theorem 2 and Theorem 3 are presented at what
follows.

Theorem 1 [Convergence of the weighted sum of the observer errors]. Consider the
model (1), (2) subject to assumptions 1 to 3 and the observer (5)—(7), with definitions (8)—(10) and
observer error X, = X, — x,. As a result of this observer:

Ti) the function z = X, — owX,, o = sign(b), satisfies

dz _ . _1 & _ .
== (—Dw|b|(z + &), where § = > (m 61),
Tii) the function z converges to 0, = [z}, z%], where z' = —8ppax <0, 2% = —8pin =0,

and Spin , Omax are umnknown constants that satisfy & = 8min , Omin € (—=0,0], § <
Smaxr Omax € [0,0);
Tiii) the upper bound of the transient response of z is
|Z| < |lpz|to|e_wbmm(t_t0) + max {_6min' 6max}'
Proof. Consider the general observer form :

dd_ftl =bX; —bg1 + hy (S1)
G ="bg:+hy (52)
where g, and g, are functions that will be defined later, whereas h,, h,, b are

terms of model (1), (2). Substracting the x; dynamics (1) from expression (S1) and sub-
tracting the x, dynamics (2) from expression (S2), yields
= DT —bg ~ 6 (53)

d
=2 =—bg, -6, (S4)

where X; = %, —x; , X, = X, — x,. Thus, the dynamics of the observation errors X;
and X, are given by Eqs (53), (54), which can be arranged as:
s
di; =-bg, - &, (S5)
ow % = owbX, — owbg, — owé, (S6)

where o = sign(b). Adding and arranging Egs. (S5), (S6), yields

d(‘ %) = (—1wob ) +— +1<62 5)
X, — owxy) = (—Dwob | %, Uwgz g1 b \ow 1

dt
which can be rewritten as
dz _ 1
i (—1)0-)|b|(z+awx1 +Eg2—g1+6) (57)
where
Z =X, — owXx, (S8)
—1(82 _
s=1(2-¢) (S9)

To counteract the effect of the term ocwX; + ﬁ g, appearing in Eq (57), the function
g1 is defined as
o, 1
g1 = owx, + Egz (510)
So, it remains to define the function g,. Substituting into Eq (57), yields
dz

== (-Dwlbl(z+6) (S11)

This completes the proof of Ti.

The term z + § appearing in Eq (S11) satisfies:

Z+62z+6pn=0forz= -6, 20 (S12a)

Z+60<z2+6,4u <0f0orz< =00 <0 (512b)
And also

Z4+622+6uin>0forz> =6, =0 (513a)

Z+0 <2+ 6pmax <0 forz< —06pe, <0 (513b)

where 6,in, Omax are unknown constants that satisfy
6= 6min ’ 5min € (—oo, 0], 6 < (Smax’ 6max € [0' oo)
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Therefore,
z+8>0forz>z% z%=—=8;, =0
Z+8<0forz<zl, z'=—6,4, <0
To prove the convergence of z, we consider the Lyapunov function
v, = %1/,22 (S14)
Z+ Opin forz= —=6pin =0
Y, = 0forz € (_Smax' mzn) (515)
Z+ Omax fOrZ < —Opmax <
The main properties of 1, are:
Y, =20 forz=—06pin =
Y, < 0forz < =6pax < 0
Y, =0 forz € [~8max, —Omin] (S16)
Therefore, the main properties of V, (514) are:
v, —0 forze€[z!, z¥]
V,>0 forzé|z', z¥
V, is continuous with respect to z
Where z% = —8,, =0, z' = =84, < 0. Differentiating V, (S14) with respect to
time, yields

dr l»bz dt
Substituting the expression of dz/dt (511) and arranging, yields
T = (Dol + ) (517)

From the definition of 1, (S15) and properties (S13a), (513b), (S16) it follows that
z+62y,>0 forz>—6,;, =0
zZ+0<Y, <0 forz< ——6,4, <0

IIJZ(Z +6)=0= lpzz forz € [_6max' mm] (518)
Therefore,
sgn(z +6) =sgn(y,) #0 forz ¢ [_amax:_amin]
|z+ 48] = |¢z| for z & [_6maxt_6min]
From these properties it follows that

z+8Y,=z+6| Y, = llJzZ for z & [_6max' _6min] (519)

Combining properties (S18), (S19), yields (z+ &)y, =2 . Hence —¢,(z+6) <
—1pZ . Using this property in Eq (S17), yields
< (~Dwlbly? <0
Using the definition of V, (814) we have
22 < —20|b|V, <0 (520)
Hence, V, < V0 zwftolbldt Using the property (3), yields V, < V,;,e2®Pmin(t=to),
Using the definition of V, (S14) and applying square root, yields
92| < [P410 | Pmin(t=t0) (S21)
Therefore, V, € L, and V, converges to zero. From this result and the definition of
V, (S14), it follows that 1, € L, and 1, converges to zero. This and the definition of
Y, (S15) imply that z € £, and z converges to Q, = [z}, z%], 2! = =8 <0, z% =
—Omin = 0. This completes the proof of Tii.

From the definition of 1, (S15) it follows that |z| < [,| + max {—8,in, Omax}- Sub-
stituting the equation for the convergence of 1, (521), yields

|Z| < |lpz|to|e_wbmm(t_t0) + max {_5min' (Smax} (522)

This completes the proof. o
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Remark 7. The convergence region of z, that is 12,, depends on the bounds of & (19), hence
on the bounds of &,/(bw) and 6,/b. Consequently, its width can be reduced to some extent by
choosing a high w value, but it cannot be made arbitrarily small.

Remark 8. The convergence rate of z is given by the dz/dt expression (21) and the defini-
tion of & (19): 1) large values of w increase the convergence rate of z; ii) large values of w de-
crease the effect of disturbance &,, but not the effect of disturbance term J;.

Theorem 2. [Convergence of X; and boundedness of the updated parameter]. Con-
sider the model (1), (2) subject to assumptions 1 to 3 and the observer (5)-(7), with definitions (8)-
(10). As a result of this observer: Ti) the updated parameter 85 remains bounded; Tii) the observer
error X, = X; — x;, asymptotically converges to 2, = [—¢, €]; Tiii) the bound of the transient

response of X, is: |%;| < e+ \/w,zcllm + P2 + ¥10%, where Wyijeo, PyjeorOro  are the initial

values of Pyq, Wy, Os, respectively, 1, is given by
X, —¢ forx; = ¢
Y1 =40 forx, € [-e¢]
X, +¢& forx; < —¢
05 is 05 = 85 — 05, and 5 is the upper bound of (—8,; — 61/b).

Proof. Using the defined function g; (S10), the x; observer (S11) takes the form

dz o _ 1
% = bX, —b(a(ux1 +Egz) + hy
and the dynamics of X; (S13) takes the form
dx _ _ 1
= bz, - b (awx1 += gz) -5, (S23)
It remains to define the function g,. The ¥; dynamics (S23) can be rewritten as
dz; 1 51
Eop(z-—g,—-2) (S24)
Where z is defined in Eq (S18). The subsystem Lyapunov function for ¥; and z is
selected:
Vox1 =V +1 (525)
where
Vir = 592 (S26)

X, —¢€ forx; =€
WYy =10 forkx; € [—¢¢€] (527)
X, +¢& forx, < —¢
and V, is defined in Eq (S14). The main properties of V,, are:
Vei =0 forx; € [—¢¢]
Vii>0 forkx; & [—¢¢]
V.1 is continuous with respect to x;
Differentiating V,,; (525) and V,; (526) with respect to time, yields

AVaxr _ dVz | AVxy AVer _ dxy
au ~ at | dt ’ o = Vaig
Combining these expressions with the expressions for dV,/dt (520) and dx;/
dt (524), yields:
avy 1 5
T < <20lblV; + b (2~ 292~ F) (528)
Let
Sp =Y, —2 (529)

Using the definition of 1, (S15), yields
Smin for 2= —=6,in =0
6zt =42 fOT‘ z € (_6maxﬁ_6min)
Omax fOr Z< —0pmax <0
Hence, 8,: € [0mins Omax |, and
|6zt| < 95Zt (530)
O052¢ = max {—8min, Omax }
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From the definition of §,, (529), it follows that z = i, — §,;. Substituting into Eq
(528) and arranging, yields:
T < —o|b] (Y2 = = Paath,) + bss (- =9, = 6, — ) (831)
The term 2 — (1/(ocw))P,1 Y, can be rewritten as
, 1 B 1 21
Ipz - Elpxllpz - (lpz - _Ipxl) - —lpxl

20w 4w?
Substituting into Eq. (S31) and arranging, yields

A7 1 1
< _ 2 _ o a2
dt = |b| klpxl w(lpz Zaw¢X1> + 4w1/)x1

112 s (koW = 2= 2 ) + bpsr (—62e — ) (S32)
where —6,,6,,1/b are bounded as indicated by Eqs (530), (54), (52), so that
(=8, — 61/b) is bounded and:
bipss (=650 = 2) < bl [haal | =6, = 2| < 051l 1B (833)
where 65 is the upper bound of (—38,; — 8,/b), and it is unknown, positive, and con-
stant: |-, — 6,/b| < 05. Let

2

g(g = 95 - 95 (834)
Hence 05 = 85 — 5. Substituting into Eq (533), yields

6 PO o ~
Der (=82 =) < 16185 = ) el = 1b1 3165 — s 510

1 ~ ~
= |bl = x1059n(¥x1)05 — [x11651D]
Substituting into Eq (532) and arranging, yields

AV, X 1 N
?Slbl _klpxl_w(lpz_%lpxl) +E¢x1

+1b| <%1/’x1 (km/’n - %92 + ngn(¢x1)96> - |1/’x1|§6>

Arranging, yields
av, 1 2
e ) (—kw,%l o (¥, ==t )
1 1 PN ~
101 (Y1 (s ¥s1 + kthas == 92) + 52105 — [12105) (535)
Which is equivalent to
dVZXl

< |b| (_klpnzcl - <¢Z B ﬁlpxl)Z)

151 (Yar (oo Was + Kthas — = G2 + 5Gn(Px1)05 ) — 121105 (S36)

This equation would lead to a g, definition involving the discontinuous signal
sgn(YP,1). To remedy this, we will use a saturation signal instead, but guaranteeing that
the negativeness of dV,,,/dt is not affected. From definition (S27), it follows that [1},|

satisfies:
[x1| = saty (537)
where
1 forx;=>¢
saty; = éfl for x; € [—¢¢€]

—1 forx; < —¢
Substituting (S37) into Eq (S35), yields

AV ) 1 2
Sz <y (—kwxl — (b, — 55— a)
1 ~ 1 =~
+1b] (s (55 %1 + Khas + 50t 05 — = 92 ) = Y215 ) (538)

To counteract the effect of the term 1, (ﬁ Y +H kY + satxlég), we choose

g, =w ((k + ﬁ) Yy + satxlég)
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Substituting into Eq (S38), yields

dVyy 1 2 ~
et < b (—kpds — 0 (= 7 r) — a1 (539)
We choose the subsystem Lyapunov function for ¥;, z, 85 to be:
Vaox1 = Vlle +~V9: (540)
Vo =3y7163 (541)

where V,,, is defined in Eq (S25) and 85 in Eq (S34). Differentiating (S40) with re-
spect to time, yields

AVzex1 — AVzx1 dﬁ (342)
dt dt dt 5
Differentiating V, (S41) with respect to time, using the definition of 85 (S34), we get
dv _15 df
—te =y 104 df (543)

Substituting the expression for dV,,,/dt (S39) and dV,/dt (543) into Eq (S42) and
arranging, yields

dele 2 2
e A (A

_1d0
+05 (— 1Bl l + v Z2) (S44)
To eliminate the effect of the term 85(—|b|[1),|), we choose the update law
d95
V1Bl
Substituting into Eq (544), yields
AV 405
Wets < 1) (—kps - (W, — 7)) (545)

In summary, the observer equations are:

dx1 A~ _ 1 ~

-, — b |b| (wxl (k + _w) l/)xl + Satxlgg) + h1
2 = _pw ((k + ) Wa + 50ty B5) + by

dt
dbs

——VI thsa
9> = w((k + )¢x1 + sat 195)

1 forx, > ¢
saty, = %3?1 for X, € [—¢,¢€]
-1 forix, £ —¢
X, —¢ forx; > ¢
Yo =10 foriy € [
X;+¢€ forx; < —¢
We prove that ¥; converges to Q,; = [—¢,¢] at what follows. From Eq (545) it fol-

lows that V,g,; < —k|b|1p2; < 0. Since coefficient b satisfies property (3), we have
L0 < —kbyip?y <0 (546)

Arranging and integrating/ ylelds Vzox1 + kbmin ftto 1/)>zc1dt = Vzexllto where V29x1|to
is the initial value of V,4,,. Hence,
V20x1 < Vzexllto (547)
and kbpp [ W31 dt < Vygyijo, S0 that Vygu € Lo, 3 € £;. This implies:

i) Vo1 € Loo, Vg € Loy, V, € Loy, Vi € L, what follows from the definitions of
Vzﬂxl(S40) and szl (525)

ii) Y, € L,, zE€EL,, what follows from the definitions of V,g,,(540), V 1
(525), V,(S14), and ¢, (515)

iii) Ve €Ly, X €Ly, Y2 € Ly, what follows from the definitions of V,,
(526) and ., (527)

iv) 0s € Lo, Bs € Ly, what follows from the definitions of V, (S41) and 65

(834),
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This completes the proof of Ti.

To apply the Barbalat's lemma, the fulfilment of condition dyZ,/dt € L, is re-
quired, which requires the fulfillment of dx,/dt € L,,. The latter condition is verified
based on Eq. (524) and the boundedness of the signals involved therein. Applying the
Barbalat’s lemma ([28]), yields

lim 2, = 0 (548)

This result and the definition of ¥,, (527) imply that X; converges asymptotically

to O, = [—¢, €]. This completes the proof of Tii.

From the definition of ¥, (527) it follows that
1| < [Yxal + € (549)
Using the definitions of V,g,; (540), V.1 (525), Vg (541), V4 (S26), V, (S14)in
Eq (547), yields:
1,2 121 152 1,2 12 1 -172
Elpxl + Elpz + EV 0° < wallto + Elpz|to + EV gto
where Yyiit0, PYzito, 0,, are the initial values of ,,, ¥,, 8,. Therefore, [1),,| <
(W&o + V20 + y‘létzo)l/z. Combining this result with Eq (S49), yields

|f1| se+t \/lpazflno + 1/)glto + y_létzo (550)

This completes the proof. o

Theorem 3. [Convergence of X,: upper bound of the transient response and con-
vergence region]. Consider the model (1), (2) subject to assumptions 1 to 3 and the observer (5)-
(7), with definitions (8)-(10). As a result of this observer: Ti) the transient response of the observer
error X, = X, — x, satisfies:

%] < |Ws100] e PminC=t0) + max{—Spmin, Smax} +w (s + \/lpazcllto + Y0 + y—létzo),
where § = %(j—i - 61) 5 Tii) %] < [Wy00]e ™ @Pmin(=0) + max{—8min, Smax} + 0 (e +
|l/)z|to|) holds true for Xy, € [—e + X1)t0r € +x1|m] and a high y value leading to y 102, ~
0; Tiii) the observer error X, asymptotically converges to

2y, = (%2 %3] < max{—8min, Omax} + we}.

Proof. From the definition of z (S18), it follows that
%, = |z — owi;| < |z| + |wxy| = |z| + w|i,] (S851)
Recall that z can be expressed as function of ¥, and ¥; as function of ,,. Substi-
tuting Eqs (522), (550) into Eq (S51), yields

Vyieo|e™@Pmin(t=0) + max{—G6pmin, Omax} + © (e + \/lpﬁllm + P2+ y—létzo)
(S52)

1%, <

This completes the proof of Ti.

Low values of the terms 4, and y~'6%, appearing in Eq (S52) can be obtained

as follows:
i) Ystjo = 0 if 9?1|~w € [—e + X1j¢0, €+ x1|w], what implies ¥, € [—¢, €]
ii) alow value y~ 0% =~ 0 is obtained by using a high y value

Substituting these values into Eq (S52), yields
|f2| < |lpz|to|e_wbmm(t_to) + max{_gmin: 5max} + (*)(5 + |lpf|to|)
for %y, € [—e + Xqjp0, €+ x1|to] and a high y value leading to y 182, = 0 (S53)
This completes the proof of Tii.

Expression (S51), jointly with the convergence of z to Q, (See Theorem 1) and the
convergence of X; to £, = [—¢,&] (Theorem 2) implies that ¥, converges to
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Qyp = {Xy: %] < max{—6pin, Omax) + we} (S54)
This completes the proof of Tiii. o



