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Abstract: This paper addresses the design and evaluation of a robust observer for second order
bioprocesses considering unknown bounded disturbance terms and uncertainty in the dynamics
of the unknown and known states. The observer design and the stability analysis are based on
dead-zone Lyapunov functions, and a detailed procedure is provided. The transient response bounds
and the convergence region of the unknown observer error are determined in terms of the disturbance
bounds, considering persistent but bounded disturbances in the dynamics of both the known and
unknown observer errors. This is a significant contribution to closely related observer design studies,
in which the transient response bounds are determined, but persistent and bounded disturbances
are not considered in the dynamics of the known observer error. Other important contributions are:
(i) the procedure for defining the observer parameters is significantly simpler than common observer
designs, since a solution to the Ricatti equation, solution to LMI constraints, or the accomplishment
of eigenvalue inequality conditions are not required; (ii) discontinuous signals are not used in the
observer; and (iii) the effect of the gain sign associated with the unknown state in the dynamics of the
known state is explicitly and clearly considered in the observer design and in the convergence study.
In addition, the guidelines for selecting the observer parameters are provided. Numerical simulation
confirms the stability analysis results: the observer errors converge within a short time, with a low
estimation error, if observer-parameters are properly defined.

Keywords: state estimation; nonlinear observer design; nonlinear systems; bioprocess monitoring;
software sensor

1. Introduction

Due to the adverse influence of anthropogenic activities on world climate stress, the
scarcity of natural resources and environmental deterioration, development agendas world-
wide have aligned strategies to rapidly migrate to a bioeconomy, where renewable resources
can be transformed into food/feed, chemicals, materials, or energy. However, the viability
of these technoeconomic bioprocesses is limited by relevant challenges such as composition
variability in renewable raw materials, sensitivity to biological transformations and com-
plex dynamics and monitoring difficulties, which lead to a lack of process understanding
and high-fidelity models, thus limiting the capability of process optimization and slowing
technological breakthroughs [1]. From a process and control perspective, the application
of advanced processes is constrained due to the unknown time varying nature of influent
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substrate characteristics and biological systems (relevant for second generation biorefiner-
ies). The reason is that uncertainty sources generate uncertainty in biomass formation rate,
substrate consumption rate and product formation rate [2,3].

To overcome the monitoring limitations, state observers can be used to provide im-
proved monitoring useful for system diagnosis, adaptive optimization, and model-based
bioprocess control. For instance, nonlinear state observers can be used to estimate bio-
chemical reaction terms [4,5]. Furthermore, sliding mode and super twisting observers
(STO) are capable of guaranteeing convergence of the estimation error towards zero or a
small value, while accounting for disturbance terms, which can be caused by unmodelled
variations, unknown model terms or measurement noise [6–9]. In addition, STOs achieve
fast and finite time convergence [2,10,11]. In [2], a design procedure for a super twisting
observer is developed for second order systems, and guidelines for the selection of the
observer parameters are proposed, considering assumptions related to the uncertainty
boundaries. The developed approach is applied for the estimation of growth and uptake
rate in a photo-bioreactor. In [12], a high gain observer is formulated for a fed-batch process
of ethanol production by Saccharomyces cerevisiae, where starch is converted to glucose
(by enzymatic hydrolysis) and glucose is consumed for both biomass growth and ethanol
production. In that case, the concentrations of starch and glucose are known. The observer
estimates the reaction rate of enzymatic hydrolysis and biomass growth rate, based on the
measurements of starch and glucose concentrations. In [13], a second order sliding mode
observer is proposed for a continuous process, for the estimation of microbial growth rate
and biomass concentration, based on a known product concentration. The convergence
region of the biomass observer error is determined in terms of the upper bound of the
uncertainty as a function of either the growth rate or biomass concentration. Simulation
is performed for a batch fermentation of lactic acid bioproduction. In [14], an extremum
seeking scheme is proposed for optimization of the specific growth rate (SGR) in fed-batch
processes, using a high order sliding mode observer for estimating the SGR, based on
measurements of biomass concentration.

In [15], a hybrid observer is proposed for high-cell density culture of S. Cerevisiae, and
it combines an asymptotic and an extended Kalman filter observer. The observer estimates
the concentrations of biomass, ethanol and specific growth rate, using the measurements of
dissolved oxygen, carbon dioxide and glucose. The culture experiences switch between
oxidative and respiro-fermentative regimes under aerobic conditions. Simulations show
that the observer is capable of estimating the specific growth rate during different metabolic
regimes and during metabolic switch, and also exhibits the following features: (i) adequate
stability and convergence under various measurement noises and parametric uncertainty,
and (ii) higher performance compared to asymptotic observer and extended Kalman
filter. In addition, the metabolic switch is computed on the basis of the growth rate
estimation and the critic value. In [16], an observer is designed for a bioconversion process,
consisting of conversion of methane to lactate by bacterium Methylomicrobium buryatense
5GB1. The model consists of six mass flow balance equations, the state variables of which
are the concentrations of biomass (X), CH4 in the gas phase (SCH4,G), CH4 in the liquid
phase (SCH4,L), O2 in the liquid phase (SO2,L), O2 in the gas phase (SO2,G), lactate in the
liquid phase (Plact,L). Eight different configurations of measured states are considered,
and the observability analysis indicates that all of these configurations are observable.
Extended and unscented Kalman filters are designed to account for the nonlinearity of the
system. Additionally, practical observability was assessed, using the empirical observability
Graminan, and it was concluded that using biomass measurement decreases practical
observability due to its measurement noise. Simulations show the convergence of the
observer errors in the presence of measurement noise. In [17], a robust fuzzy state observer
is designed for a nonlinear system with input quantization, unknown control directions
and unknown external disturbances. The unknown nonlinear terms are approximated by
fuzzy logic systems. A coordinate transformation is applied so that the control gains of the
transformed system are known. The unknown system states are estimated by the fuzzy
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observer, and the external disturbances are estimated by the disturbance observer. The
boundedness of all signals and the convergence of the observer errors are ensured. Finally,
the observer is applied to an isothermal continuous stirred tank reactor by simulation.

In the observer applications, the capability of the observers to overcome the effect
of disturbances depends on the disturbance features considered in the observer design,
which is based on the dynamics of the observer error between the states and their estimates.
Several nonlinear biosystems are represented by second order models or can be recasted
to this form with a known and an unknown state (designed by x1 and x2). An observer
for this system involves states x̂1, x̂2 which are the estimates of x1, x2; and the observation
errors for the known and unknown states are x1 = x̂1 − x1, x2 = x̂2 − x2, respectively.
The resulting dynamic model of the observation errors involves disturbance terms δ1 and
δ2, respectively. The convergence of the observation errors depends on the considered
properties of the disturbance terms:

- When the additive disturbance term δ1 is zero, the system is observable and the
observer errors converge to zero, even if the disturbance term δ2 is different from zero.
The convergence of the observer states for this case is determined in [10,11].

- In other cases, it is assumed that the disturbance terms δ1, δ2 are upper bounded
by injection nonlinearities, which are a function of the observer errors and are later
used as stabilizing functions in the observer model. This assumption implies that δ1
vanishes when the observer error x1 vanishes, but it is nonzero otherwise. This case is
studied in [2,10].

- When the disturbance term δ1 is persistent but bounded, the observer errors converge
to the origin neighborhood, but not to zero [2,10]. The stability for this case is known
as “practical stability” and is studied in [18]. Therein, it was established that the
observer errors converge to some compact set if the observer parameters are properly
defined, but the size of the convergence region is not determined.

For larger systems, an observer study for a third order model is addressed in [13],
where the disturbance δ1 is persistent, and the convergence of the biomass observer error is
analyzed, as the biomass observer error is a linear filter of the observer error x2. However,
the stability analysis assumes that the observer error x1 and its time derivative vanish,
and the disturbance of the second observer error dynamics is required to be lower than a
constant value that is associated with eigenvalue conditions.

In addition to the determination of the convergence region of the observer errors, it is
also convenient to avoid discontinuous signals and to determine the bound of the transient
response of the observer errors since:

- Discontinuous signals are commonly used in observers, for instance in [2,13]. Those
signals have the following drawbacks: (i) it may lead to the possible failure of the
trajectory’s unicity and introduce the need to use Filippov’s construction in case of
sliding motion [19]; and (ii) a numerical solution to the differential equations may be
problematic [2]. To mitigate these problems, saturation type signals can be introduced,
which are commonly used in robust control design to avoid input chattering [20].

- Determining the bound of the transient response of the observer errors allows esti-
mating the convergence speed, but also the effect of model uncertainties, user-defined
parameters and initial values of observer states on the convergence. In turn, it allows
drawing guidelines for setting the observer parameters and the initial values of the
observer states [21].

In the numerical solutions to differential equations with discontinuous right-hand
side, traditional numerical methods may become inaccurate or inefficient, even if the state
trajectory does not stay in the discontinuity. Indeed, the derivatives are not computed
correctly if the switching time is not accurately identified. Therefore, an adequate numerical
approach intended for discontinuous differential equations must be used [22,23].

In this paper, the design of a robust observer for second order biosystems is proposed
and evaluated and its convergence is investigated considering unknown bounded distur-
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bance terms in the dynamics of the observer errors. In particular, no model of the unknown
state is required. The observer design and the stability analysis are based on the theory of
dead-zone Lyapunov functions. Using this approach, it is guaranteed that the estimation
error of the known state converges to a compact set where its width is user-defined. In
addition, guidelines for selection of the user-defined observer parameters are provided. At
last, the observer is applied to estimate the reaction rate terms of the bioreactor.

The main contribution of the developed observer study is that the transient response
boundary and the convergence region of the unknown observer error are determined
in terms of the bounds of the disturbance terms, considering persistent but bounded
disturbances in the dynamics of both the known and unknown observer errors. In contrast:
(i) the disturbance of the dynamics of the known observer error is assumed to be zero
in [24] and not persistent in [10,11], and in the non-practical stability case in [2]; and (ii)
only the convergence region of the known observer error is determined in the practical
stability case in [2]. Furthermore, other contributions compared with observer designs in
the literature for systems with bounded disturbance terms are:

- The procedure to define the observer parameters is simpler. Commonly, a solution to
the Ricatti equation (see [21]), solution to LMI constraints (see [2]), and accomplish-
ment of eigenvalue inequality conditions (see [13]) are required. In contrast, those
procedures are not required in the presented observer; thus, the trial-and-error effort
(or sensitivity-based approaches) for defining the observer parameters is significantly
reduced.

- The effect of the gain sign of the unknown state in the dynamics of the known state
is explicitly and clearly considered in the stability analysis and the observer design,
whereas this is lacking in observers for general structure (for instance [2]).

- Discontinuous signals are not used, while signum-type signals are commonly used
(see [2,13]).

The paper is organized as follows. The second order generic model is presented in
Section 2. The observer equations and the results of the observer design and stability
analysis are depicted in Section 3, whereas the details are presented in the Supplementary
Material. The application of the observer to bioreactors and the numerical simulation are
shown in Section 4. Finally, the conclusions are drawn in Section 5.

2. Dynamic Model

Consider the system
dx1

dt
= h1 + bx2 + δ1 (1)

dx2

dt
= h2 + δ2 (2)

where x1, x2 are the states; h1, h2 are model functions; δ1, δ2 are disturbance terms; and b is
the x2 gain in the dynamics of x1. The model terms fulfill the following assumptions:

Assumption 1. The functions h1, h2 are known; the state x1 is measured and the
coefficient b is known; the state x2 and the terms δ1, δ2 are unknown.

Assumption 2. The coefficient b is bounded away from zero:

|b| ≥ bmin > 0 (3)

where bmin is an unknown positive constant.
Assumption 3. The disturbance term δ1 is persistent but bounded:

δ1 6= 0, |δ1| ≤ d1 (4)

where d1 is an unknown positive constant and the disturbance term δ2 is bounded.
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Remark 1. The state x2 is the state to be estimated. The case of unknown dynamics of the unknown
state corresponds to h2 = 0.

Remark 2. Notice that the gain b is not required to be constant, whereas the disturbance terms
δ1, δ2 are not constrained to be functions or noise.

Remark 3. When δ1 = 0, it is posible to guarantee convergence of the estimation error x2 = x̂2− x2
to zero. However, when δ1 is persistent but bounded according to (4), only “practical stability” is
achieved. That is, it is guaranteed that [2,10]:

(i) The error x2 = x̂2 − x2, the estimation error of the unknown state, converges to the origin
neighborhood;

(ii) The width of the convergence region of x2 depends on d1, the bound of the disturbance δ1 ;
(iii) The width of the convergence region of x2 can be reduced to some extent, but it cannot be

made arbitrarily small; this is because of δ1.

3. Observer Algorithm, Observer Design and Stability Analysis

This section includes: (i) the observer equations in Sub Section 3.2; (ii) the results of the
observer design and the stability analysis in Sub Section 3.2, including the transient response
bounds and the convergence region of the unknown observer error. To this end, the generic
second order model (Equations (1) and (2)), subject to assumptions 1 to 3, is considered.
The details of the stability analysis are presented in the Supplementary Material.

3.1. Observer Equations

The observer equations are:

dx̂1

dt
= bx̂2 − |b|

(
ωx1 +

(
k +

1
4ω

)
ψx1 + satx1 θ̂δ

)
+ h1 (5)

dx̂2

dt
= −bω

((
k +

1
4ω

)
ψx1 + satx1 θ̂δ

)
+ h2 (6)

dθ̂δ

dt
= γ|b||ψx1 | (7)

where
x1 = x̂1 − x1 (8)

ψx1 =


x1 − ε for x1 ≥ ε

0 for x1 ∈ [−ε, ε]
x1 + ε for x1 ≤ −ε

(9)

satx1 =


1 for x1 ≥ ε

1
ε x1 for x1 ∈ [−ε, ε]
−1 for x1 ≤ −ε

(10)

σ = sign(b)

In addition, the observer model, x̂1 is the estimate of x1, x̂2 is the estimate of x2, θ̂δ is
the updated parameter, and: (i) γ, k, ω are user-defined positive constants; (ii) the width
of the convergence region of x1, that is, ε, is user-defined, positive and constant, thus it is
independent of model parameters or bounds of model terms. The observer structure is
shown in Figure 1.
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Figure 1. General structure of the observer. x1 is the known state, x2 is the unknown state, b, h1, h2

are known terms of plant model (1), (2), and x̂2 is the estimate of x2.

Remark 4. The formulated observer equations use saturation instead of discontinuous signals,
whereas the bounded nature of the updated parameter θ̂δ, the asymptotic convergence of the
observer error x2 = x̂2 − x2 are ensured in the observer design and stated in Theorem 3, be-
ing Ωx2 = {x2 : |x2| ≤ max{−δmin, δmax}+ ωε} the convergence set, where δmin, δmax are
unknown constants that satisfy δ ≥ δmin, δmin ∈ (−∞, 0] , δ ≤ δmax, δmax ∈ [0, ∞) ,
δ = 1

b

(
δ2
σω − δ1

)
. To this end, dead-zone Lyapunov functions are properly defined and applied.

Remark 5. (Guidelines for the choice of the observer parameters.) To achieve proper convergence
speed and width of the convergence region of the unknown observer error x2, it is convenient to use
the following observer parameters:

(i) a high positive value of k that leads to proper convergence rate of x1;

(ii) a low positive value of ε, a value of x̂1|to fulfilling x̂1|to ∈
[
−ε + x1|to, ε + x1|to

]
, and a high

positive value of γ, to reduce the bound of the transient response of x2;
(iii) a positive value of ω that gives a balance between convergence speed and width of the

convergence region for x2.

Remark 6. In the application of the developed observer, the case of unknown dynamics of the
unknown state can be addressed by using h2 = 0.

3.2. Observer Design and Stability Analysis

The observer design is based on dead-zone Lyapunov functions; this is an interesting
approach that allows achieving convergence of the observer states to compact sets, despite
unknown disturbance terms, while avoiding the use of discontinuous signals. Dead-zone
Lyapunov functions have been mainly applied to control design: early global stability
studies are presented in [20,25,26], and recent studies in [27–32]. Additionally, there are a
few applications for stability analysis of open loop systems, for instance [33,34].

The observer design procedure includes the following tasks: definition of the general
observer structure; definition of the observer errors x1 = x̂1 − x1, x2 = x̂2 − x2, and the
weighted sum z; definition of the subsystem Lyapunov function Vz corresponding to z and
determination of the dynamics of z and Vz; definition of the subsystem Lyapunov function
Vx1 corresponding to x1, and determination of the dynamics of x1 and Vx1; selection of the
observer terms in accordance with the time derivatives of Vz and Vx1; determination of the
convergence properties of z, x1 and x2.

Theorem 1. (Convergence of the weighted sum of the observer errors.) Consider the model (1), (2)
subject to assumptions 1 to 3 and the observer (5)–(7), with definitions (8)–(10) and observer error
x2 = x̂2 − x2. As a result of this observer:

(Ti) the function z = x2 − σωx1, σ = sign(b), satisfies dz
dt = (−1)ω|b|(z + δ), where

δ = 1
b

(
δ2
σω − δ1

)
;

(Tii) the function z converges to Ωz =
[
zl , zu

]
, where zl = −δmax ≤ 0, zu = −δmin ≥ 0,

and δmin, δmax are unknown constants that satisfy δ ≥ δmin, δmin ∈ (−∞, 0] , δ ≤ δmax,
δmax ∈ [0, ∞) ;

(Tiii) the upper bound of the transient response of z is

|z| ≤
∣∣∣ψz|to

∣∣∣e−ωbmin(t−t0) + max{−δmin, δmax}.
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Proof. Consider the Lyapunov function

Vz =
1
2

ψ2
z

ψz =


z + δmin for z ≥ −δmin ≥ 0

0 for z ∈ (−δmax,−δmin)
z + δmax for z ≤ −δmax ≤ 0

where z = x2 − σωx1, σ = sign(b), x1 = x̂1 − x1, x2 = x̂2 − x2,

δ =
1
b

(
δ2

σω
− δ1

)
Additionally, δmin, δmax are unknown constants that satisfy

δ ≥ δmin, δmin ∈ (−∞, 0] , δ ≤ δmax, δmax ∈ [0, ∞)

Additionally, x̂1, x̂2 are provided by the general observer form

dx̂1

dt
= bx̂2 − bg1 + h1

dx̂2

dt
= −bg2 + h2

g1 = σωx1 +
1

σω
g2

where h1, h2, b are terms of model (1), (2) and g2 is a function that will be defined later.
Differentiating z and the Lyapunov function Vz with respect to time, arranging and using
the definitions of Vz and ψz, yields

dz
dt

= (−1)ω|b|(z + δ)

dVz

dt
≤ −2ω|b|Vz ≤ −2ωbminVz ≤ 0

|ψz| ≤
∣∣∣ψz|to

∣∣∣e−ωbmin(t−t0)

|z| ≤
∣∣∣ψz|to

∣∣∣e−ωbmin(t−t0) + max{−δmin, δmax}

In addition, ψz converges to zero and z converges to Ωz =
[
zl , zu

]
, zl = −δmax ≤ 0,

zu = −δmin ≥ 0. Thus, statements Ti, Tii and Tiii are accomplished. �

Remark 7. The convergence region of z, that is Ωz, depends on the bounds of δ, hence on the
bounds of δ2/(bω) and δ1/b. Consequently, its width can be reduced to some extent by choosing a
high ω value, but it cannot be made arbitrarily small.

Remark 8. The convergence rate of z is given by the dz/dt expression and the definition of δ:
(i) large values of ω increase the convergence rate of z; (ii) large values of ω decrease the effect of
disturbance δ2, but not the effect of disturbance term δ1.

Theorem 2. (Convergence of x1 and boundedness of the updated parameter.) Consider the model
(1), (2) subject to assumptions 1 to 3 and the observer (5)–(7), with definitions (8)–(10). As a
result of this observer: (Ti) the updated parameter θ̂δ remains bounded; (Tii) the observer error
x1 = x̂1 − x1 asymptotically converges to Ωx1 = [−ε, ε]; (Tiii) the bound of the transient response
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of x1 is: |x1| ≤ ε +
√

ψ2
x1|to + ψ2

z|to + γ−1θ̃2
to, where ψx1|to, ψz|to, θ̃to are the initial values of

ψx1, ψz, θ̃δ, respectively, ψx1 is given by

ψx1 =


x1 − ε for x1 ≥ ε

0 for x1 ∈ [−ε, ε]
x1 + ε for x1 ≤ −ε

,

θ̃δ is θ̃δ = θ̂δ − θδ, and θδ is the upper bound of (−δzt − δ1/b).

Proof. Consider the g2 function and the subsystem Lyapunov functions:

g2 = ω

((
k +

1
4ω

)
ψx1 + satx1θ̂δ

)
,

Vzθx1 = Vzx1 + Vθ ,

Vθ =
1
2

γ−1θ̃2
δ

Vzx1 = Vx1 + Vz

Vx1 =
1
2

ψ2
x1

where

ψx1 =


x1 − ε for x1 ≥ ε

0 for x1 ∈ [−ε, ε]
x1 + ε for x1 ≤ −ε

dθ̂δ

dt
= γ|b||ψx1|

θ̃δ = θ̂δ − θδ

δzt = ψz − z

θδ is the upper bound of (−δzt − δ1/b), and it is unknown, positive, and constant:
|−δzt − δ1/b| ≤ θδ. Differentiating Vzθx1 with respect to time and arranging, integrating,
and applying the Barbalat’s lemma, yields

dVzθx1

dt
≤ −kbminψ2

x1 ≤ 0

|x1| ≤ ε +
√

ψ2
x1|to + ψ2

z|to + γ−1θ̃2
to

lim
t→∞

ψ2
x1 = 0

Therefore, x1 converges asymptotically to Ωx1 = [−ε, ε], and θ̃δ ∈ L∞, θ̂δ ∈ L∞. Thus,
statements Ti, Tii and Tiii are accomplished. �

Theorem 3. (Convergence of x2: upper bound of the transient response and convergence region.)
Consider the model (1), (2) subject to assumptions 1 to 3 and the observer (5)–(7), with definitions
(8)–(10). As a result of this observer: (Ti) the transient response of the observer error x2 = x̂2 − x2
satisfies:

|x2| ≤
∣∣∣ψz|to

∣∣∣e−ωbmin(t−t0) + max{−δmin, δmax}+ω
(

ε +
√

ψ2
x1|to + ψ2

z|to + γ−1θ̃2
to

)
,
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where δ = 1
b

(
δ2
σω − δ1

)
; (Tii) |x2| ≤

∣∣∣ψz|to

∣∣∣e−ωbmin(t−t0)+max{−δmin, δmax}+ω
(

ε +
∣∣∣ψz|to

∣∣∣)
holds true for x̂1|to ∈

[
−ε + x1|to, ε + x1|to

]
and a high γ value leading to γ−1θ̃2

to ≈ 0; (Tiii) the
observer error x2 asymptotically converges to

Ωx2 = {x2 : |x2| ≤ max{−δmin, δmax}+ ωε}.

Proof. From the definition of z, and the results of convergence of z and x1 obtained in
Theorem 1 and Theorem 2, it follows that x2 fulfills:

|x2| ≤
∣∣∣ψz|to

∣∣∣e−ωbmin(t−t0) + max{−δmin, δmax}+ω
(

ε +
√

ψ2
x1|to + ψ2

z|to + γ−1θ̃2
to

)
|x2| ≤

∣∣∣ψz|to

∣∣∣e−ωbmin(t−t0) + max{−δmin, δmax}+ω
(

ε +
∣∣∣ψz|to

∣∣∣)
for x̂1|to ∈

[
−ε + x1|to, ε + x1|to

]
and a high γ value leading to γ−1θ̃2

to ≈ 0.
Additionally, x2 converges to

Ωx2 = {x2 : |x2| ≤ max{−δmin, δmax}+ ωε}

where ψx1|to, ψz|to, θ̃to are the initial values of ψx1, ψz, θ̃b Thus, statements Ti, Tii and Tiii are
accomplished. �

Remark 9. The bound of the transient response of x2 depends on model terms b, δ2, δ1 and user-
defined parameters ω, ε, γ. Indeed, the bound of the transient response of x2 can be decreased
by using a low value of ε and the conditions: x̂1|to ∈

[
−ε + x1|to, ε + x1|to

]
and a high γ value

leading to γ−1θ̃2
to ≈ 0. In addition, the convergence speed can be increased by using a high ω value,

but it would also increase the width of the convergence region.

Remark 10. The convergence region of x2, that is Ωx2, depends on model terms b, δ2, δ1 and
user-defined parameters ω, ε. Additionally, it can be reduced to some extent by using a low ε value
and by properly defining ω, but it cannot be made arbitrarily small, due to the presence of δ2, δ1,
and the effect of ω.

Remark 11. The bound of the transient response and the convergence region of x2 are not affected
by parameter k. However, the convergence of x1 is strongly affected by parameter k, as can be
concluded from the results from Theorem 2.

Remark 12. The convergence of x1 is asymptotic and it depends on user-defined gains k, γ.
Additionally, its convergence can be improved through a high k value.

Remark 13. The guidelines provided in Remark 5 are derived from Remarks 9 to 12.

3.3. Discussion of Observer Design and Evaluation Results

The robust observer has been designed for a second order system involving bounded
persistent disturbance terms. The bound of the transient response and the convergence
region of the unknown observer error have been determined in terms of the bounds of
persistent disturbance terms. Additionally, the guidelines for the choice of the observer
parameters have been provided in Remark 5.

Some improvements have been made in the observer design procedure in order to
achieve the aforementioned contributions of the work, namely: (Ti) the use of dead-zone
modifications in the definition of the subsystem Lyapunov functions Vx1 and Vz; (Tii) the
definition of the weighted sum of the observer errors (z), involving the sign of b; (Tiii) the
use of z instead of x2 in the definition of the Lyapunov function; (Tiv) the consideration of
the persistent disturbance term δ1 in the dynamics of x1. The basic idea of improvements Iii
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and Iiii is taken from [35], but in this work this idea has been developed using dead-zone
Lyapunov functions and the sign of b has been incorporated in the definition of z, and also
improvement Iiv has been made.

The improvements (Ti) and (Tiii) allow us to simplify the observer design, such that the
solution to the Ricatti equation, solution to LMI constraints and the fulfillment of eigenvalue
conditions are not necessary. Indeed, the use of the dead-zone Lyapunov function facilitates
the examination of the convergence to compact sets, but it also allows us to avoid using
discontinuous signals in the update law and in the observer equations.

The equations of the transient response and convergence region of the unknown
observer error indicate the effect of the user-defined parameters of the observer, so that the
guidelines for the choice of these parameters can be derived.

In summary, in this work an observer is proposed for online estimation of the unknown
state, but also: (i) the bound of the steady state of the observer error for the unknown state
is determined as a function of the model error and the user-defined observer parameters;
(ii) the bound of the trajectory of the observer error is determined as a function of the model
error and the user-defined observer parameters; and (iii) the guidelines for choosing the
observer parameters are significantly simpler than other common observer designs. In
turn, these results allow us to achieve an improved online estimation of the unknown state:
the setting of the observer parameters by the user is simpler, it considers the transient and
steady state bounds of the observer error, and the model errors appearing in the dynamics
of the known and unknown states are considered. In monitoring and process control tasks,
these features lead to more accurate knowledge on the error of the estimate of the unknown
state, so that the control parameters can be defined to achieve improved robustness.

4. Application of the Observer to Bioreactors: A Simple Bioreactor Model and
Numerical Simulation

The proposed observer given by Equations (5) to (7) can be applied to estimate the
reaction rate terms of bioreactors, for instance, specific growth rate or substrate uptake rate.
To this end, simple bioreactor models are described as follows, and numerical simulations
are given afterwards.

4.1. Simple Bioreactor Model

A generic fermentation model for bioreactors can be described by mass balance models
of substrate, biomass and product concentrations. The bioreactor consists of a stirred tank
of liquid volume (v), biomass concentration (x), substrate concentration (s) and product
concentration (p). Additionally, a substrate solution of concentration si is added at a rate Fi,
in the case of fed-batch or continuous operation.

For the sake of simplicity, the cases of batch, fed-batch and continuous flow opera-
tion modes can be encompassed by a general mass balance model for constant density
fermentation [35]:

Volume :
dv
dt

= Fi − F0

Biomass :
dx
dt

= µx− Dx (11)

Substrate :
ds
dt

= −ρx + D(si − s) (12)

Product :
dp
dt

= (αµx + βx)− Dp

where D = Fi/v is the dilution rate, Fi is the feeding flow rate, Fo is the outlet flow rate, v is
the broth volume, si is the fed substrate concentration, µ is the specific growth rate; ρ is the
uptake rate, for which the expression

ρ = ysµ + ms
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Is commonly used, where ys is a yield coefficient, and ms is the maintenance coefficient.
In addition, Fi = Fo = 0 for batch mode; Fi = Fo 6= 0 for continuous operation mode;

Fi 6= 0; Fo = 0 for fed-batch mode. Thus, dv/dt = 0 can be used for batch and continuous
operation modes.

In case of continuous operation mode with a known biomass concentration and an
unknown concentration of substrate, the growth rate µ can be estimated with the proposed
observer. To this end, the biomass model (11) can be cast in the form (1), (2) with

x1 = x; x2 = µ; h1 = −αDx; b = x; h2 = 0; δ2 = dµ/dt

In case of continuous operation mode with known substrate concentration and un-
known biomass concentration, the substrate consumption rate ρx can be estimated, recast-
ing the substrate model (12) in the form (1), (2) with

x1 = s; x2 = ρx; h1 = D(si − s); b = −1; h2 = 0; δ2 = d(ρx)/dt

In case of continuous operation mode with known substrate and biomass concentra-
tions, the specific substrate uptake rate ρ can be estimated, recasting the substrate model
(12) in the form (1), (2) with

x1 = s; x2 = ρ; h1 = D(si − s); b = −x; h2 = 0; δ2 = d(ρ)/dt

4.2. First Simulation Example

The formulated observer is applied for estimating the substrate uptake rate ρ for a
continuous bioreactor with known concentrations of substrate and biomass. The inlet
concentration si is inaccurately known: si = sim + δsi, where sim is the known value of si,
and δsi is the uncertainty. The growth rate expression and model parameters are:

µ = µmax

(
1− x

xmax

) f
; µmax = 0.01484 h−1; xmax = 0.31999 g

L ; f = 1.607;

α = 1; ys = 0.0234; ms = 0.22425 h−1;
sim = 53 g

L ; δsi = 0.1 sim × sin
(

2π
τsi

t
)

g
L ; τsi = 1h

xto = 0.09 g
L ; sto = 49.6 g

L ; D = 0.002 h−1

(13)

where the initial concentrations of biomass and substrate xto, sto are positive; µmax, xmax, f
are coefficients of the specific growth rate. The model parameters µ, µmax, xmax, α, ys, ms,
were obtained by numerical model fitting (not shown), for experimental data of a batch
process of Gluconacetobacter diazotrophicus provided in [36]. The details of the experimental
system and measurements are shown in [36] in pages 118–127. The substrate concentration
is the known state, and the substrate uptake rate ρ is the unknown state, so that model (12)
can be cast in the form (1), (2) with

x1 = s; x2 = ρ; b = −x; h1 = D(sim − s); h2 = 0; δ1 = Dδsi; δ2 =
dρ

dt
(14)

Additionally, the observer (5)–(7) provides the estimate of ρ; that is, x̂2 = ρ̂. The
observer structure is given in Figure 2a.

The following values of the observer parameters are used:

ε = 0.015; k = 10; γ = 72; ω = 9; x̂1|to = x1|to = 49.6
g
L

; x̂2|to = 0 h−1; θ̂to = 0 (15)

where ε, k, γ, ω are chosen in accordance with guideliness provided in Remark 5 and some
trial-and-error effort.
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tions are shown in Figure 3. 

  

Figure 2. Structures of the observer applications to bioreactor: (a) first simulation example; (b) second
simulation example. x is the biomass concentration, s is the substrate concentration, µ is the specific
growth rate, ρ is the specific substrate uptake rate, D = Fi/v is the dilution rate, Fi is the feeding flow
rate, v is the broth volume, x1 is the known state, x2 is the unknown state, b, h1, h2 are known terms
of plant model (1), (2), and x̂2 is the estimate of x2.

The observer simulation requires the observer (5)–(7), the plant model terms and
parameters given by Equation (13), the definition of the terms of the system model given
by Equation (14), and the values of observer parameters given by Equation (15). The
simulations are shown in Figure 3.
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Figure 3. Performance of the proposed observer in the first simulation example: (a) trajectory of state
x1 and estimate x̂1; (b) trajectory of the observer error for the known state, x1; (c) trajectory of state x2

and estimate x̂2; (d) trajectory of the observer error for the unknown state, x2; (e) trajectory of the
updated parameter θ̂b.

The observer simulations show that (Figure 3):
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(i) The observer error x1 = x̂1− x1 converges asymptotically to the compact set Ωx1 = [−ε, ε]
and remains inside for t ≥ 3.7 h approx (Figure 3a,b). Additionally, x1 exhibits an
upward overshoot (Figure 3b), but the distance between the peak and the upper
bound of Ωx1 is small.

(ii) The observer error x2 = x̂2− x2 converges to its compact set in 18 h approx., and a low
width of the convergence region is achieved, due to the small value of δ (Figure 3c,d).
In addition, no overshoot is observed.

(iii) The updated parameter θ̂δ changes when x1 is outside the convergence set Ωx1, or
equivalently when ψx1 is different from zero. This behavior agrees with the update
law (7), which is a function of ψx1 (Figure 3e).

In addition, the choice of the user-defined parameters of the observer is quite simple,
involving only some trial-and-error. The used values allow to cope with both uncertainties
δ1 and δ2.

4.3. Second Simulation Example

The developed observer is employed to estimate the specific growth rate µ for a
continuous anaerobic digester with a known concentration of biomass, whose biomass
model is [37]:

dx
dt

= µx− αDx (16)

ds
dt

= −k1µx + D(si − s) (17)

here, α is the biomass fraction in the liquid phase; x is the concentration of acidogenic bacte-
ria; s is the concentration of chemical oxygen demand (COD). The fraction α is inaccurately
known: α = αm + δα, where αm is the known value of α, and δα is the uncertainty. The
growth rate expression and model parameters are:

µ = µmax
s

s+Ks
; µmax = 1.2 d−1; Ks = 7.1 g

L ;
αm = 0.5; k1 = 42.14; si = 10 g

L ;
xto = 0.3 g

L ; sto = 1.2 g
L ; D = 0.35 d−1

δα = 0.37 αm × sin
(

2π
τα

t
)

; τα = 3.5 d

(18)

where the initial concentrations of biomass and substrate, xto, sto, are positive and µmax, Ks
are coefficients of the specific growth rate. The details of the experimental system, mea-
surements, and model, including parameters and specific growth rate expression, are given
in [37]. The biomass concentration (x) is the known state, and the specific growth rate µ is
the unknown state, so that model (16) can be cast in the form (1), (2) with

x1 = x; x2 = µ; b = x; h1 = −αmDx; h2 = 0; δ1 = −δαDx; δ2 =
dµ

dt
(19)

Additionally, the observer (5)–(7) provides the estimate of µ, that is, x̂2 = µ̂. The
observer structure is given in Figure 2b. The following values of the observer parameters
are used:

ε = 0.015; k = 10; γ = 72; ω = 9; x̂1|to = x1|to = 0.3
g
L

; x̂2|to = 0 d−1; θ̂to = 0 (20)

The observer simulation requires the observer (5)–(7), the plant model terms and
parameters given by Equation (18), the definition of the terms of the system model given
by Equation (19), and the values of observer parameters given by Equation (20).

The simulation of the observer shows that (Figure 4):

(i) The observer error x1 = x̂1 − x1 converges asymptotically to the compact set
Ωx1 = [−ε, ε] and remains inside for t ≥ 1.25 d approx. (Figure 4a,b). Additionally,
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x1 exhibits a downward overshoot, but the distance between the peak and the lower
bound of Ωx1 is small.

(ii) The observer error x2 = x̂2 − x2 converges to its compact set in 5.6 days approx.,
and a low width of the convergence region is achieved due to the small value of δ
(Figure 4c,d). In addition, there is a downward overshoot (Figure 4d), but it is small
when measured in respect to x2|to.

(iii) The updated parameter θ̂δ changes when x1 is outside the convergence set Ωx1, or
equivalently, when ψx1 is different from zero. This behavior agrees with the update
law (7), which is a function of ψx1 (Figure 4e).
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Figure 4. Performance of the proposed observer in the second simulation example: (a) trajectory of
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state x2 and estimate x̂2; (d) trajectory of the observer error for the unknown state, x2; (e) trajectory of
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In addition, the choice of the user-defined parameters of the observer is quite sim-
ple, involving only some trial-and-error. The used values allow us to cope with both
uncertainties δ1 and δ2.

4.4. Third Simulation Example

The developed observer is employed to estimate the specific growth rate µ for a
continuous microalgae bioreactor, based on known concentrations of biomass and substrate,
using the Droop model ([37]):

dx
dt

= µx− Rx− Dx (21)

ds
dt

= −ρx + D(si − s)

dq
dt

= ρ− µq
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where x is the biomass concentration, s is the substrate concentration, q is the cell quota of
assimilated nutrient; and ρ is the specific substrate uptake rate. The growth rate expression
and model parameters are:

µ(q) = max
{

0, µm

(
1− QO

q

) }
; ρ = ρm

(
s

s + Ks

)
;

ρm = 0.03
mgN

mgC·d; Ks
= 0.0010

mgN
L

; µm = 0.5 d−1; (22)

QO = 0.045 mgN/mgC;

xto = 0.1 mgC/L; sto = 0.01 mgN/L; qto = 0.06 mgN/mgC;

D =

{
0.25

(
1 + sin

(
2π
τD

t
))

d−1 for t < 6 d
0 for t ≥ 6 d

;

τD = 8 d; si = 0.05 mgN/L;

In addition, R is inaccurately known: R = Rm + δR, where Rm is the known value of
R, and δR is the uncertainty; Rm = 0.081; δR = 0.1Rm × sin

(
2πt
τR

)
; τR = 3. The details of

the model, including parameters and specific growth rate expression are given in [2]. The
biomass concentration (x) is the known state, and the specific growth rate µ is the unknown
state, so that biomass model (21) can be cast in the form (1), (2) with

x1 = x; x2 = µ; b = x; h1 = −Rmx; h2 = 0; δ1 = −δRx; δ2 =
dµ

dt
(23)

Additionally, the observer (5)–(7) provides the estimate of µ, that is, x̂2 = µ̂. The
following values of the observer parameters are used:

ε = 0.007; k = 40; γ = 200; ω = 9; x̂1|to = x1|to = 0.1 mgC/L; x̂2|to = 0 d−1; θ̂to = 0 (24)

The observer simulation requires the observer (5)–(7), the plant model terms and
parameters given by Equation (22), the definition of the terms of the system model given
by Equation (23), and the values of observer parameters given by Equation (24).

The performed simulations confirm the adequacy of the parameter recommendations
provided in Remark 5 to achieve proper convergence speed and width of the convergence
region of x2: a low value of ε; a value of x̂1|to in the range

[
−ε + x1|to, ε + x1|to

]
; a high

value of γ; and a high value of k. The observer error x1 converges faster than x2.
The simulation of the observer shows that (Figure 5):

- The observer error x1 = x̂1 − x1 converges asymptotically to the compact set
Ωx1 = [−ε, ε] and remains inside for t ≥ 8.95 d approx. (Figure 5a,b). Addition-
ally, x1 exhibits an upward and a downward overshoot, but the distance between the
peak and the bounds of Ωx1 are small.

- The observer error x2 = x̂2 − x2 converges to its compact set in 11.5 days approx.,
and a low width of the convergence region is achieved, due to the small value of δ
(Figure 5c,d). In addition, there is a downward overshoot (Figure 5d), the width of
which is significant compared to x2 values, but it vanishes in 7 d approx.

- The updated parameter θ̂δ changes when x1 is outside the convergence set Ωx1
(Figure 5e).



Fermentation 2022, 8, 173 16 of 18Fermentation 2021, 7, x FOR PEER REVIEW 16 of 18 
 

 

  
Figure 5. Performance of the proposed observer in the third simulation example: (a) trajectory of 
state 𝑥  and estimate 𝑥 ; (b) trajectory of the observer error for the known state, �̅� ; (c) trajectory 
of state 𝑥  and estimate 𝑥 ; (d) trajectory of the observer error for the unknown state, �̅� ; (e) trajec-
tory of the updated parameter 𝜃 . 

5. Conclusions 
In this paper, a new observer design is proposed for second order systems applicable 

to generic fermentation models, considering bounded disturbance terms, and the dynam-
ics of the unknown state are not required to be known by the observer. The bound of the 
transient response and the convergence region of the unknown observer error are deter-
mined in terms of the bounds of the disturbance, considering disturbances in the dynam-
ics of both the known and unknown observer errors with a persistent but bounded nature. 
This is a significant contribution to closely related observer design studies, in which the 
transient response bounds are determined, but persistent and bounded disturbances are 
not considered in the dynamics of the known observer error. In addition, the guidelines 
for the choice of the observer parameters are provided. Other important contributions 
over current observer studies for systems with disturbances are: (i) the procedure for de-
fining the observer parameters is greatly simpler, so that the solution to the Ricatti equa-
tion, solution to LMI constraints, and the accomplishment of eigenvalue inequality condi-
tions are not required; (ii) discontinuous signals are not used in the observer; and (iii) the 
effect of the signum of the gain associated with the unknown state in the dynamics of the 
known state is explicitly and clearly considered in the design. 

It was concluded that: (i) the upper bound of the transient response and the conver-
gence region of the observation error of the unknown state depends on model terms and 
user-defined parameters; and (ii) the width of its convergence region can be reduced to 
some extent by properly defining the user-defined parameters, but it cannot be made ar-
bitrarily small, due to the presence of the disturbance terms.  

Numerical simulation shows that observer errors converge within a short time with 
a low estimation error, if observer-parameters are properly defined.  

Figure 5. Performance of the proposed observer in the third simulation example: (a) trajectory of
state x1 and estimate x̂1; (b) trajectory of the observer error for the known state, x1; (c) trajectory of
state x2 and estimate x̂2; (d) trajectory of the observer error for the unknown state, x2; (e) trajectory of
the updated parameter θ̂b.

5. Conclusions

In this paper, a new observer design is proposed for second order systems applicable to
generic fermentation models, considering bounded disturbance terms, and the dynamics of
the unknown state are not required to be known by the observer. The bound of the transient
response and the convergence region of the unknown observer error are determined in
terms of the bounds of the disturbance, considering disturbances in the dynamics of
both the known and unknown observer errors with a persistent but bounded nature.
This is a significant contribution to closely related observer design studies, in which the
transient response bounds are determined, but persistent and bounded disturbances are
not considered in the dynamics of the known observer error. In addition, the guidelines for
the choice of the observer parameters are provided. Other important contributions over
current observer studies for systems with disturbances are: (i) the procedure for defining
the observer parameters is greatly simpler, so that the solution to the Ricatti equation,
solution to LMI constraints, and the accomplishment of eigenvalue inequality conditions
are not required; (ii) discontinuous signals are not used in the observer; and (iii) the effect
of the signum of the gain associated with the unknown state in the dynamics of the known
state is explicitly and clearly considered in the design.

It was concluded that: (i) the upper bound of the transient response and the con-
vergence region of the observation error of the unknown state depends on model terms
and user-defined parameters; and (ii) the width of its convergence region can be reduced
to some extent by properly defining the user-defined parameters, but it cannot be made
arbitrarily small, due to the presence of the disturbance terms.

Numerical simulation shows that observer errors converge within a short time with a
low estimation error, if observer-parameters are properly defined.
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