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Abstract: The aim of this present study was to optimize the fermentation conditions (time and tem-
perature) of amasi (a Southern African fermented dairy product) using response surface methodology
(RSM), and to determine the physicochemical properties, as well as the microbial composition, using
next generation sequencing. Fermentation time and temperature were optimized to produce different
amasi samples and different parameters, including pH, total soluble solids (TSS), total titratable acids
(TTA), and consistency. All the variables studied were found to show significant (p ≤ 0.05) changes
with increasing fermentation time and temperature. Numerical optimization was used to obtain the
optimal fermentation conditions for amasi; based on RSM, it was 32 ◦C for 140 h, while with k-means
clustering, it was 25 ◦C for 120 h. Under both conditions for the optimal samples, the pH reduced
from 6.64 to 3.99, TTA increased from 0.02 to 0.11 (% lactic acid), TSS decreased from 9.47 to 6.67 ◦Brix,
and the consistency decreased from 23 to 15.23 cm/min. Most of the identified bacteria were linked
to lactic acid bacteria, with the family Lactobacillaceae being the most predominant in amasi, while in
raw milk, Prevotellaceae was the most abundant. The fermentation conditions (time and temperature)
had a significant influence on the parameters investigated in this study. Results of this study could
provide information for the commercialization of quality amasi.

Keywords: amasi; fermentation conditions; optimization; raw milk; amplicon sequencing; k-means

1. Introduction

Traditional fermented milk (TFM) products are widely consumed in Southern Africa
and play an important role in people’s nutrition [1]. These products are processed by natural
fermentation of raw or pasteurized milk, of which majority are processed from cow’s
milk [2]. Most of the TFMs are usually domestically produced and thus mostly for home
consumption. These TFM products with comparable or identical production processes
and characteristics may be known by other names throughout the Southern Africa region,
including madila from Botswana [3], mafi from Lesotho, mabisi from Zambia and Namibia [4],
and amasi from South Africa and Zimbabwe [5]. In other African countries, they are also
commonly known as nunu in Nigeria and Ghana [6], as well as ergo in Ethiopia [2].

According to Gadaga et al. [7], amasi is made by spontaneously (naturally) fermenting
raw milk for 1–3 days at room temperature. During this process, lactose in milk is converted
to lactic acid by activities of the fermenting microbes present in the milk [8]. This leads to
a sour milk product with a pH value ranging from 3.6 to 4.2 [9] and a thick consistency,
that can either be smooth or lumpy depending on the desirability of the consumer. The
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sourness and thickness of amasi may vary considerably depending on the producer and
consumer preference. This was a common procedure used to preserve milk in the rural
communities due to lack of storage facilities [4].

The microbial community that is present in raw milk is usually from bacterial species,
mainly from Pseudomonas and Citrobacter [10]. Kim et al. [11] also reported on members
from bacterial genera Lactococcus, Lactobacillus and Streptococcus. The ones from amasi
include Lactococcus, Streptococcus and Enterobacter species [10,12,13]. A description of
microorganisms present in amasi is necessary since their presence is directly connected to
the quality of the product and other factors such as the origin of milk, utensil use, etc. The
regular changes in nutritional content and pH of the milk during the fermentation process
usually leads to fluctuations in microbial composition of the product [14]. This suggests
that there might be some variances in the microbial composition present at the start (in
raw milk) and in the final product. Such changes in the microbial community are not only
linked to the accessibility of nutrients and pH, but can also be linked with the activities of
microbial interactions [15].

The importance of fermentation time and temperature is vital since they have an
impact on the quality and composition of final product [8]. Hence, the need to optimize
the fermentation conditions (time and temperature) using a mathematical model such as
response surface methodology (RSM) was investigated in this study. RSM is a mathematical
model that is used optimize various processing conditions including temperature, time,
levels of ingredients, and other parameters [16]. It is a valuable method for investigating
factors that have an impact on responses by differentiating them at the same time, and it
can be used to investigate the relationship of more than one dependent variable, known as
responses, and factors, which are independent variables [17–19].

To verify the efficacy of RSM for optimization, and to determine optimal subspaces
within the solution space, an unsupervised machine learning algorithm k-means clustering
is widely used here. The k-means clustering technique is commonly used to divide a
given data set into k-clusters, where k represents the number of groups specified by the
analyst [20]. It classifies objects into several classes, which is known as class similarity, while
objects from various clusters are as dissimilar as possible, which is known as low inter-class
similarity. The clusters in k-means algorithm are represented by their centres, known as
centroid, which resembles the mean of points assigned to the clusters. The reduction of total
intra-cluster distance is the main objective for using k-means [20]. Some of the advantages
of using k-means clustering are that it can proficiently handle larger amount of data sets
and it can produce a local optimum solution [21]. Many researchers in the food industry
are starting to get used to the machine learning (ML) algorithms as this multivariant
validation tools to improve methods and the final product’s quality. Considering the dearth
of information on the influence of fermentation time and temperature on the composition
of amasi, the current study aims at optimizing fermentation conditions (temperature and
time) of amasi using a multi-response numerical optimization and subsequent use of an
unsupervised ML technique (k-means clustering) for validating the RSM generated models.
The k-means technique assists here by denoting subspaces (or clusters) within the solution
space where the fermentation parameters are expected to be optimal. In this way, the
RSM efficacy is confirmed, but the optimal regions formed by cluster can be determined.
Physicochemical tests were conducted on the raw milk and derived amasi, and the microbial
(bacteria) community was investigated using an amplicon sequencing approach.

2. Materials and Methods
2.1. Collection of Raw Samples

Raw cow milk samples were purchased from Agricultural Research Council (ARC)—
Irene farm, Pretoria, South Africa. The raw milk was transported in a cooler box (with
dry ice packs) to the Food Technology Laboratory at the University of Johannesburg South
Africa and was processed upon arrival.
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2.2. Experimental Design and Processing of Amasi

Central composite design (CCD) of RSM was used to obtain an experimental design
and optimize the effect of fermentation conditions. The input factors of fermentation
studied were fermentation time (h) coded as X1 and fermentation temperature (°C) coded
as X2, with the range of 4–140 h and 18–32 ◦C, correspondingly (Table 1). The choice of
the factor levels was based on other studies in literature on the processing of amasi from
raw milk [8,10,12,13,22,23]. Thirteen experimental runs generated from the grouping of
the mentioned factors are also presented in Table 2. A second-order polynomial equation
(Equation (1)), described the relationship between the variables (fermentation time and
temperature) in terms of their linear, quadratic and interactive effects, where Y was the
response, β0 was the q constant, β1,2 were coefficients, and X1 and X2 were factors.

Y = β0 + β1X1 + β2X2 + β11X2
1 + β22X2

2 + β12X1X2 (1)

Table 1. Experimental ranges for optimization of amasi fermentation conditions (temperature
and time).

Levels

Factors Codes −α −1 0 1 +α

Fermentation time (h) X1 4 24 72 120 140
Fermentation temperature (◦C) X2 18 20 25 30 32

X1—fermentation time, X2—fermentation temperature; h—hours, α—alpha, (−α, +α, 0, −1, and 1)—minimum
and maximum treatment levels.

Table 2. Experimental combinations for amasi fermentation.

Experimental Run Fermentation Time (h) Fermentation Temperature (◦C)

1 72 25
2 72 25
3 72 25
4 72 25
5 72 25
6 140 25
7 4 25
8 120 20
9 24 20

10 120 30
11 24 30
12 72 32
13 72 18

2.3. Production of Amasi

Using the method described by Kayitesi et al. [12], the raw cow milk was processed
into amasi by pouring 200 g of milk into a sterile container and covering it with a lid. The
milk was then allowed to naturally ferment using the fermentation conditions provided in
Table 2. For each experimental run, the fermentation process was done in triplicates, and
subsequent parameters such as pH, titratable acidity (TTA), total soluble solids (TSS), and
consistency (cm/min) were determined and also done in triplicates.

2.4. Determination of the Physicochemical Properties of the Produced Amasi
2.4.1. pH and Titratable Acidity

The pH measurement was performed as indicated by Tomovska et al. [24] where
10 mL of the fermented samples were transferred into sterile containers and the pH value
was measured with a pH meter (HANNA, Woonsocket, RI, USA). Titratable acidity (TTA)
was determined by titrating a mixture of 10 g of raw milk and fermented sample in
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100 mL of distilled water against 0.1 M NaOH (Merck, Modderfontein, South Africa),
using phenolphthalein as indicator while stirring continuously until a faint pink colour
was achieved.

2.4.2. Consistency

As described by Muyabo and Urambo [25] with some modification, the consistency
of amasi was measured using a Bostwick consistometer (Endecotts, London, UK). The
sample was poured into the reservoir of the consistometer up to the brim and levelled with
a spatula, and was allowed to travel for 30 s. The results were reported as the distance
travelled in cm for 30 s.

2.4.3. Total Soluble Solids (TSS)

The TSS were analyzed using a refractometer (HANNA instruments, Woonsocket, RI,
USA). Prior to measuring the TSS content of sample, the equipment was calibrated with
distilled water. The TSS was then measured by placing a drop of sample on the surface
of the refractometer, then the reading was taken on the screen. The TSS was measured in
triplicates and expressed as ◦Brix.

2.5. RSM Based-Multi-Response Numerical Optimization

Based on the experimental results of the investigated parameters (pH, TTA, TSS
and consistency) a multi-response numerical optimization was done on Minitab software
(Minitab Ltd., Coventry, UK) to determine the optimal processing conditions for amasi. All
the parameters were set at maximum, with the exception of pH at minimum. Response
parameters were represented with model equations and their respective coefficients from
Minitab. The optimal processing conditions obtained were fermentation temperature at
32 ◦C and fermentation time for 140 h. Amasi was obtained at these fermentation conditions
and similar parameters (pH, TTA, TSS and consistency) were determined.

2.6. Unsupervised Machine Learning (k-Means Clustering) Optimization

To perform the k-means clustering, a matrix laboratory commonly known as MAT-
LAB (R2020a, MathWorks, Natick, MA, USA) software was used. The input and output
parameters from RSM experimental runs were used for the k-means optimization. For data
preparation, the rows were labelled as observations and columns as variables, and missing
values in the data set were removed or estimated [21]. Then, the data was standardized
to compare the variables. A number of clusters was chosen, in this case it was four, and
objects were selected randomly from the data set as the initial cluster centers or means. The
observations were then assigned to their closest centroid based on the Euclidean distance
between the object and the centroid; this step is called the cluster assignment step [26]. The
software computed a new mean value of each cluster after the assignment step. The centers
were recalculated, and every observation was checked again to confirm if it was closer
to another cluster. The updated cluster means were used to assign all objects again and
this was done until the cluster assignment stopped changing. The generated clusters were
spread through four regions on the k-means plot (Figure 1A–C). This enables further analy-
sis beyond the point estimates provided by RSM. The ‘regions’ around clusters highlighted
hereto indicate expected similarities or groupings of the fermentation process, associated
with the parameters indicated.

The conditions represented in Table 2 were used to further cluster the data. Unsuper-
vised machine learning algorithm on MATLAB (R2020a, MathWorks, Natick, MA, USA)
was used to obtain another set of optimal processing conditions for amasi. The resulting
optimal processing conditions were fermentation temperature at 25 ◦C and fermentation
time for 120 h. Amasi was processed under these optimal conditions and similar parameters
(pH, TTA, TSS and consistency) were determined.
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2.7. Fermentation of Optimized Amasi

Optimized amasi was fermented under the two optimal conditions from RSM and
k-means. Amasi was naturally fermented for 120 h at 25 ◦C (OP25) and for 140 h at 32 ◦C
(OP32) as per stated method (2.3). To investigate the effect of starter culture addition on
the optimized amasi, freeze-dried LAB culture (CHN-22) was used to ferment amasi for
120 h at 25 ◦C (SC25) and for 140 h at 32 ◦C (SC32). The starter cultures were purchased
at Lake Foods (Johannesburg, South Africa). To produce this, the raw milk was heated at
72 ◦C for 30 min and cooled to 43–45 ◦C. Then, 0.4 g of the starter culture was inoculated
into the cooled milk, and this was allowed to ferment as per the above conditions. The
samples obtained from the fermentation together with the raw milk (RM) samples were also
analyzed for pH, TTA, TSS and consistency. Response parameters were represented with
model equations and their respective coefficients from Minitab. The optimal processing
conditions obtained were fermentation temperature at 32 ◦C and fermentation time for
140 h. Amasi was obtained at these fermentation conditions and similar parameters (pH,
TTA, TSS and consistency) were determined.
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2.8. Bacteria Composition of Amasi Using Amplicon Sequencing/Metabarcoding
2.8.1. Deoxyribonucleic Acid (DNA) Extraction of Amasi and Data Analysis of
Microbial Composition

The bacterial DNA extraction was performed using a ZymoBIOMICS DNA miniprep
kit (Inqaba Biotech, Pretoria, South Africa). A total of three DNA samples was extracted
from the raw milk (RM), and 25 ◦C (OP25) and 32 ◦C (OP32) optimized fermented milk
samples. The extracted DNA was stored at −80 ◦C for further processing. The quality
and concentration of the DNA was determined using a nano-drop equipment (Implen
Nanophotometer N60—Touch, Cape Town, South Africa). The extracted DNA was subse-
quently sent to Inqaba Biotech Pty (Ltd.), Johannesburg, South Africa, for 16S rRNA
sequencing. The hypervariable regions targeted were V3–V4 of the 16S rRNA gene
and were sequenced on an Illumina MiSeq. This was amplified using the primer pair:
5′-CCTACGGGNGGCWGCAG-3′ and 5′-GACTACHVGGGTATCTAATCC-3′.

The analysis for bacterial composition was achieved using the quantitative insights
into microbial ecology (Qiime2) version 2019.10 [27] with demux plugins (https://github.c
om/qiime2/q2-demux (accessed on 24 May 2021)) [28]. The data for 16S rRNA sequencing
was received in the fastq file format and included forward and reverse paired-end reads.
The 16S rRNA data was de-multiplexed at the sequencing facility. The forward and reverse
reads were combined into one “qza” file in the conda environment and imported into
Qiime2 with the use of the Casava 1.8 pipeline (paired-end). The length of nucleotides
to trim and truncate, for the subsequent qiime denoise analysis, was attained from the
demux.qzv visualization. The demux.qzv visualization presented the quality scores of the
data, which permitted the removal of data with a reading that was lower than Phred33
scores. Using the Deblur plugin, the chimeric sequences and sequence variant calling of
the Illumina-amplicon sequences were removed.

The assignments for bacterial taxonomy were analyzed using qiime feature-classifier
and a pre-trained Naìve-Bayes classifier SILVA 138 database was used for the classification
of bacteria [29]. The analysis of compositional and taxonomic data was performed using
feature-classifier plugins [30] and taxa (https://github.com/qiime2/q2 (accessed on 28
May 2021)). The sequences were discarded based on the similarity, resulting in operation
taxonomic units (OTUs), as well as the generation of representative sequence for each
OTU [31]. The final representative sequences, denoted as OTUs, were used for downstream
taxonomic assignment. The feature table was then used to produce a phylogenetic tree
with the “phylogeny fasttree” command [32].

2.8.2. Exploratory Analyses

Exploratory analysis was conducted using R v.3.5.1 and Bioconductor v.3.0 [33]. Taxo-
nomic classification readings were standardized and visualized using the phyloseq and
microbiomeSeq packages.

2.9. Statistical Analysis

The analyses were performed in triplicates. The data produced was analyzed using
IBM SPSS statistics (Armonk, NY, USA) software in order to determine the significance of
variance between the means, and was expressed as ± to represent the standard deviation
(SD). The degree of freedom was set at p ≤ 0.05.

3. Results and Discussion

The effect of fermentation time and temperature (independent variables) on pH, TSS,
TTA and consistency (dependent variables) of amasi were investigated. Central composite
design (CCD) was used to study the relationship between the independent and dependent
parameters, and later used to quantify the optimum conditions. Table 3 represents the
physicochemical analysis (pH, TSS, TTA and consistency), and Table 4 represents the
analysis of variance (ANOVA) that was done based on the experimental runs (Table 2).
The data was later analyzed using multi-response numerical optimization (Minitab) and k-

https://github.com/qiime2/q2-demux
https://github.com/qiime2/q2-demux
https://github.com/qiime2/q2
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means to obtain the optimal sample (OP), and physicochemical analysis was also repeated
on the optimal sample.

Table 3. Experimental run results for fermentation conditions (X1 and X2).

Sample X1 (h) X2 (°C) pH TTA (% Lactic Acid) TSS (◦Brix) Consistency
(cm)

1 72 25 4.10 b ± 0.01 0.10 b ± 0 6.13 ab ± 0.21 17.43 e ± 0.60
2 72 25 4.13 c ± 0 0.11 c ± 0.01 5.93 a ± 0.15 14.03 b ± 0.40
3 72 25 4.10 b ± 0.01 0.11 c ± 0.01 5.90 a ± 0.20 16.10 d ± 0.36
4 72 25 4.11 bc ± 0.15 0.12 c ± 0 6.37 b ± 0.23 12.10 a ± 0.35
5 72 25 4.10 b ± 0.10 0.11 c ± 0.01 5.87 a ± 0.15 14.83 c ± 0.61
6 140 25 3.83 a ± 0.17 0.17 d ± 0.01 5.80 a ± 0.17 15.03 c ± 0.25
7 4 25 6.76 f ± 0 0.02 a ± 0 9.60 c ± 0.30 23.00 g ± 0
8 120 20 4.36 d ± 0.01 0.11 c ± 0.10 5.83 a ± 0.06 19.00 f ± 0.72
9 24 20 6.32 e ± 0.01 0.02 a ± 0 10.00 d± 0.36 23.00 g ± 0

10 120 30 3.96 b ± 0.01 0.17 d ± 0.01 6.50 b ± 0.10 15.17 b ± 0.29
11 24 30 4.42 d ± 0.01 0.10 b ± 0 6.50 b ± 0.10 16.07 c ± 0.40
12 72 32 3.87 a ± 0.01 0.11 b ± 0.01 6.57 b ± 0.21 11.40 a ± 0.36
13 72 17.93 4.21 c ± 0.01 0.13 c ± 0 6.17 a ± 0.15 16.17 c ± 0.35

X1—time, X2—temperature, TTA—titratable acidity, TSS—total soluble solids, cm—centimetres. Each value is a
mean of triplicates, ±SD of triplicates, means with different letters within a column significantly differ (p ≤ 0.05).

Table 4. Analysis of variance of the response variables.

Response Source Sum of Squares Df Mean F Value p Value R2

pH Model 9.6356 5 1.9271 16.93 0.001 0.92
Lack of fit 0.7961 3 0.2654 1561.07 0
Pure error 0.0007 4 0.0002

Total 10.4324 12

TTA (% lactic acid) Model 2.5154 5 0.5031 7.34 0.01 0.84
Lack of fit 0.4589 3 0.1530 29.03 0.004
Pure error 0.0211 4 0.0053

Total 2.9954 12

TSS (◦Brix) Model 21.6923 5 4.3385 16.21 0.001 0.92
Lack of fit 1.6954 3 0.5651 12.73 0.016
Pure error 0.1776 4 0.0444

Total 23.5653 12

Consistency (cm) Model 121.866 5 24.3732 5.43 0.023 0.80
Lack of fit 14.342 3 4.7808 1.12 0.440
Pure error 17.063 4 4.2659

Total 153.272 12

TTA—titratable acidity, TSS—total soluble solids, Df—degree of freedom, R2—coefficient of determination,
cm—centimetres.

3.1. Optimization of Fermentation Conditions (Time and Temperature) of Amasi

The experimental results on the effect of fermentation time and temperature on the
processing of amasi from raw milk are shown in Table 3. The ANOVA (Table 4) was used
as part of the search for a solution to examine the best fit of the produced model. The
capability of the models was obtained by the coefficients of the determination values and
lack-of-fit tests [16,34]. The optimized data is represented in Table 5; the experimental data
was analyzed to investigate the lack-of-fit and the importance of the quadratic model, as
well as the effect of interaction between the input and output variables.
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Table 5. Physicochemical analysis of raw milk and amasi samples.

Sample pH TSS (◦Brix) TTA (% Lactic Acid) Consistency (cm)

RM 6.64 ± 0.01 d 9.47 ± 0.15 c 0.02 ± 0 a 23.00 ± 0 e

OP 25 3.44 ± 0.01 a 6.03 ± 0.38 a 0.23 ± 0 c 9.53 ± 0.25 a

OP 32 3.99 ± 0.08 b 6.67 ± 0.15 b 0.11 ± 0 b 15.23 ± 0.25 b

SC 25 3.94 ± 0.03 b 6.67 ± 0.06 b 0.14 ± 0 b 17.27 ± 0.25 d

SC 32 4.10 ± 0.02 c 6.87 ± 0.06 b 0.12 ± 0.07 b 15.70 ± 0.17 c

RM—raw milk, OP 25—optimized fermented milk (amasi) at 25 ◦C, OP 32—optimized fermented milk (amasi) at
32 ◦C, SC 25—fermented milk (amasi) with starter culture at 25 ◦C, SC 32—fermented milk (amasi) with starter
culture at 32 ◦C. TSS—total soluble solids, TTA—total titratable acidity. Each value is a mean of triplicates, ± SD
of triplicates, means with different letters within a column significantly differ (p ≤ 0.05).

The lack-of-fit test was defined by Gan et al. [35] as a dimension of the let-down of
a model to display the trial results at the point not shown in the regression, and Lima
et al. [36] found that the goodness-of-fit of the model was obtained by the constant of
determination (R2) and can be approximately 80%. Accordingly, the p-value can be used to
determine the significance of each constant in a data set. When the F-value is high and the
p-value is low, it means that the conforming constant is more important.

The F-values and p-values of≤ 0.05 indicate that the quadratic model of amasi develop-
ment is statistically important at 95% confidence. Except for accuracy, which was negligible
with a p-value of 0.440, the lack of fit for each response factor is important. The R2 values for
all the responses were less than or equal to 80%, indicating that the model clearly explains a
large proportion of the variability [37]. The 3D response surface plots for pH, TTA, TSS and
consistency are given in Figure 2A–D for better visualization. The polynomial equations
and 3D plots were used to identify the mathematical solution of optimization.
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Figure 2. Response surface plot for the effect of fermentation time and temperature on (A) pH, (B)
TTA (titratable acidity), (C) TSS (total soluble solids), (D) consistency.
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3.2. The Effect of Fermentation Conditions on Physicochemical Properties of Amasi

The pH, TTA, TSS and consistency of amasi were taken at the end of each fermentation,
and is illustrated in Table 3. The changes of physicochemical properties were affected
by the fermentation conditions (time and temperature). As anticipated, the pH value
of raw milk significantly (p ≤ 0.05) decreased from the initial value of 6.64 (Table 5)
throughout the whole fermentation time. It was observed that the highest pH value of
6.76 was recorded at 4.11 h, which decreased to 3.83 (43.34% decrease) after 139 h. This
was in correspondence with the TTA of 0.02% at 4.11 h, and this increased to 1.17% at
the longest time. This was expected since the value of pH is inversely proportional to
the lactic/organic acids content [38]. A similar decrease in pH and simultaneous increase
in TTA with the increasing fermentation time have been reported in other studies [8,16].
The acidic conditions within the environment allow most fermenting microorganisms
such as LAB species (Lactococcus and Streptococcus) to be more active, thus causing
a low pH and high TTA value. These microorganisms produce lactic acid and other
organic acids; this might be due to the degradation of some carbohydrate and sugar-related
components [39,40]. The inverse relationship of pH and TTA is good for the product
because, in acidic conditions, most pathogenic microorganisms are inhibited, thereby
improving the microbiological safety of the product [41]. The use of low fermentation
temperatures (20–25 ◦C) resulted in high pH and low TTA values (6.32–6.76; 0.02–0.02%),
as compared to the high fermentation temperatures (25–32 ◦C) that resulted in low pH and
high TTA values (3.83–3.96; 0.11–0.17%). The high pH values observed could be associated
with the increased metabolic activities of the fermenting microorganisms [19].

Central composite design was used to optimize the fermentation conditions using the
mini tab; the polynomial model for responses (Y1—pH, Y2—titratable acidity, Y3—total
soluble solids, Y4—consistency) was regressed by taking only the significant terms into
consideration, and the equations for each response are represented below:

Y1 = 11.07− 0.0947x1 − 0.165x2 + 0.000267x2
1 − 0.00035x2

2 + 0.001563x1x2 (2)

Y2 = −0.79 + 0.0258x1 + 0.025x2 − 0.000041x2
1 + 0.00058x2

2 − 0.000354x1x2 (3)

Y3 = 24.37− 0.1873x1 − 0.798x2 + 0.000378x2
1 + 0.00857x2

2 + 0.00432x1x2 (4)

Y4 = 40.8− 0.286x1 − 0.70x2 + 0.001132x2
1 + 0.0006x2

2 + 0.00323x1x2 (5)

where Y1 is the pH, X1 is the fermentation time, and X2 is the fermentation temperature.
The R2 value of the equation was 0.92 (92%); this indicated that the regression model
could explain 92% of the data variability. The one-degree term X1 and X2 were signifi-
cant at p ≤ 0.05, suggesting that fermentation temperature and fermentation time have a
significant linear effect on pH values. The effect is also reflected in the response surface
plot (Figure 2A). As observed in Table 6, only one-degree term X1 and X2 were extremely
significant (p ≤ 0.05); this means that fermentation time and fermentation temperature
have a significant effect on TTA values (Y2). It can also be visually observed in Figure 2B.
On the other hand, X2

2 had no significant effect on all the investigated parameters. For the
TSS model (Y3), only X1, X1

2, and X1X2 were significant (Table 6), and R2 was found to be
0.92 (Table 4), portraying 92% reproducibility. On the other hand, in consistency, it was X1,
X2 and X1

2 that had an R2 value of 0.80. The singular effects X1 and X2 were significant
at p ≤ 0.05, suggesting that fermentation temperature and time have a significant linear
effect on TSS and consistency. The effect is also reflected in the response surface plot
(Figure 2C,D).

The experimental values of TSS (Y3) and consistency (Y4) of the amasi samples are
represented in Table 3. The F-value (16.21) and p-value (0.001) indicated that the model for
optimizing TSS in amasi was significant (Table 4). The TSS value of amasi decreased with an
increasing fermentation time. The lowest TSS value of amasi observed was with a higher
fermentation time (140 h) which was 5.80 ◦Brix and the highest was 10 ◦Brix and 9.60 ◦Brix
at a lower fermentation time (24 and 4 h). This suggests that TSS of amasi depends on
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the acid production and as the pH values were decreasing, the TSS values also decreased.
This is also an indication that longer fermentation periods resulted in increased sugar
metabolism and biotransformation of these components [42]. A similar trend was reported
in yoghurt samples, where the TSS values decreased with the decreasing pH values and
increased fermentation temperature [43].

Table 6. Model coefficients of physicochemical analysis of raw milk and amasi samples.

Coefficient Y1 Y2 Y3 Y4

β 11.07 −0.79 24.37 40.8
X1 −0.0947 * 0.0258 * −0.1873 * −0.286 *
X2 −0.165 * 0.025 −0.798 −0.70 *
X1

2 0.000267 * −0.000041 0.000378 * 0.001132 *
X2

2 −0.00035 0.00058 0.00857 0.0006
X1X2 0.001563 −0.000354 0.00432 * 0.00323

β—intercept, X1—fermentation time, X2—fermentation temperature, X1
2—quadratic effects of fermentation

time, X2
2—quadratic effects of fermentation temperature, X1X2—interactive effect of fermentation time and

temperature, Y1—pH, Y2—titratable acidity (TTA), Y3—total soluble solids (TSS), Y4—consistency. * significant at
p ≤ 0.05.

The consistency (cm) of amasi samples show a similar trend to TSS; a more viscous
sample was observed at higher temperatures. For instance, at 32 ◦C, a consistency of 11 cm
was observed, while a higher consistency of 23 cm was observed at lower temperatures
(20 ◦C). A higher consistency indicates that the sample was less viscous compared to that
of a higher consistency. Amasi at 32 ◦C had more whey as it was fermented at higher
temperatures, and this caused the product to be thicker because the whey was removed
at the end of the fermentation. The result was also similar to that reported in mabisi
from Zambia [8], as well as in a fermented milk product from Malaysia [16]. There are
limited studies that have reported the consistency of natural fermented dairy products
using Bostwick or any equipment to measure consistency. Monyane and Jideani [44] only
analysed the viscosity of commercially produced amasi using a viscometer.

3.3. RSM Model Validation Using k-Means Clustering

The k-means clustering is a method used to obtain clusters and cluster centres in a
data set. The data set obtained from the RSM experimental runs (Table 2) was used to
generate the k-means clustering on MATLAB R2020a (MathWorks, Natick, MA, USA). The
input features analysed in this study were fermentation time and fermentation temperature,
while the output features were pH, TTA, TSS, and consistency. The rows were labelled
as observations and columns as variables. The model generated four regions per plot
(Figure 1A–C), and each cluster was represented in a different colour of a region. The
desired number of clusters that was chosen for this study was four, and the k-means
procedure iteratively moved the centres to reduce the total with the cluster variance.

The k-means clustering technique is a very simple technique that can be used in
combination with the RSM technique to go beyond point estimates and group experimental
instances into clusters and analyse regions of optimality. Additionally, it can competently
deal with a large data set at once, although there are some weaknesses of using k-means.
A drawback of this technique is that it is unsupervised and thus the number of clusters
need to be specified. The resulting optimal fermentation conditions were 32 ◦C at 140 h
and 25 ◦C at 120 h. According to the k-means clustered results, these optimal points are
within two of the clustered ‘regions’ or solution subspaces. The response variables for these
conditions, which were done in triplicate, are represented in Table 5.

3.4. Amplicon Sequencing/Metabarcoding of the Naturally Fermented-Amasi

Most natural fermented dairy products are dominated by species of acetic acid and
lactic acid bacteria. The bacterial composition between samples of the same product may
differ due to variations in their source of raw material, processing, fermentation time, and
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temperature. Moonga et al. [45] observed that Zambian fermented milk, mabisi (a product
similar to amasi), depended on the production method, pH, and geographical location of
the sample. This study investigated the bacterial composition of three different samples
using next generation sequencing; the extracted DNA was sequenced for 16S rRNA on an
Illumina MiSeq at Inqaba Biotech. The raw cow milk sample (RM) was compared with two
amasi samples fermented at different temperatures: OP25 and OP32. The results obtained
showed that fermentation conditions have an influence on the microbial community of
fermented dairy products. Previous studies on the microbiota of amasi processed from raw
milk included various species from LAB, Enterococcus, and yeast [4,13,15,45].

3.4.1. Microbiological Composition of Bacterial Communities at Phyla Level

In the present study, four phyla were detected in the three samples (RM, OP25 and
OP32), and are summarized in Figure 3. The bacterial reads of amasi were clustered
further into six classes, 20 families, and six species (discussed in subsequent sections). The
bacterial composition of all three samples were dominated by Firmicutes and Proteobacteria.
Bacteroidetes was only dominant in raw milk as compared to the two amasi samples. The
most dominant phylum in all three samples was Firmicutes. The members of the phyla
Firmicutes and Proteobacteria were also reported by [15] in mabisi, a fermented dairy
product from Zambia. Comparing the raw milk with the two amasi samples, the bacterial
composition at the phylum level seems to be decreasing excessively from the raw milk
sample. As the fermentation temperature and time were increased for amasi, the Firmicutes
also increased in the M32 sample due to a decreased pH which could give an increased
bacterial composition. A similar trend was also reported by [43], where an elevation of
fermentation temperature and low pH favoured the survival of Lactobacillus, which belongs
to the phyla Firmicutes.
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3.4.2. Microbiological Composition of Bacterial Communities at Class Level

The bacterial community at class level was more abundant in raw milk than in fer-
mented milk. In the three classes observed (Figure 4), Bacilli was the most abundant in all
three samples. Within the phylum Firmicutes, Bacilli was dominant in raw milk, followed
by Bacteroidetes and Gammaproteobacteria from the phyla Bacteroidetes and Proteobacteria.
Alphaproteobacteria was the second most abundant class in both amasi fermented at 25 and
32 ◦C. In amasi fermented at 25 ◦C, Gammaproteobacteria was the third abundant. At low pH
levels between 3.83–4.10, the two classes (Clostridia and Actinobacteria) were observed to be
less abundant in amasi fermented at 25 and 32 ◦C.
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3.4.3. Microbiological Composition of Bacterial Communities at Family Level

A total of 20 bacterial communities at the family level were reported (Figure 5). Lacto-
bacillaceae was found to be the most abundant in both amasi samples fermented at 25 and
32 ◦C, but was less abundant in the raw milk sample. Prevotellaceae was the most dominant
in raw milk, while it was found in less abundance for the amasi samples. Streptococcaceae
is observed to be in high abundance, followed by Acetobacteraceae in M32, but found to
be decreasing in M25. They were low in abundance from RM, and started to increase in
M25 as the pH decreased from 6.64 to 3.99 (25 ◦C), and it further increased in M32 as pH
decreased to 3.44 (32 ◦C). Prevotellaceae, which was more dominated in the raw milk, started
to decrease when the fermentation was initiated. De Waal [10], reported the presence of
Prevotell copri (AB064923) species within family Prevotellaceae on fresh unfermented milk,
while it was absent in fermented milk. The abundance of Lactobacillaceae and Streptococcaceae
over other families suggested the dominance of LAB during the fermentation process, and
this was equally reported in other studies [8,10,46]. In Southern Africa, raw cow milk
is rarely consumed due to the occurrence of lactose intolerance and other safety reasons.
During the processing of amasi, most of the lactose is converted into lactic acid and other
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compounds by microorganisms present during fermentation. This also facilitates better nu-
tritional contents in amasi as compared to raw milk. The dominance of Lactobacillaceae and
Streptococcaceae in amasi is acceptable due to LAB being considered as a healthy bacterium
that may allow shifts in gut microbiota composition and healthier composition [46].
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According to Moonga [15], fermentation temperature (25–30 ◦C) and pH (4.1–4.3) have
an influence in determining the composition of bacteria in fermented milk. In this study,
fermentation temperature and pH allowed the growth of some species from the families
that were observed in Figure 5. At species level, most species were not detected; this was
also reported in previous studies [10,13,46]. This could be due to the short fragment that
was used for sequencing because only V3–V4 hypervariable regions were sequenced in
this study.

3.4.4. Microbiological Composition of Bacterial Communities at Species Level

At species level, the dominant species in all three samples (Figure 6) were potentially
classified as ‘N/A’, followed by uncultured rumen, which was only dominant in raw milk.
While in OP32 and OP25 it was observed in low abundance, Lactobacillus kefiranofaciens
was found to be the second dominant species, but less abundant in OP25. The Lactobacillus
kefiranofaciens species was observed to be in low abundance in raw milk. Lactobacillus
kefiri slightly increased as fermentation was initiated. Lactobacillus kefiranofaciens was
reported to be in abundance in mabisi in a study reported by Schoustra et al. [4], while
Lactobacillus kefiri was reported in mursik, a fermented milk product from Kenya [6], and
also in omashikawa from Namibia [3]. The results show that fermentation temperature has
a significant influence on the bacterial community composition. The low pH also plays
an important role, as an acidic environment is required by most microorganisms for the
fermentation process.
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4. Conclusions

The processing of amasi from raw milk under optimized fermentation time and tem-
perature using the RSM tool and in combination with unsupervised machine learning
algorithms for optimization analysis and validation was successful. The unsupervised
learning technique also yields optimal regions or solution subspaces which are useful,
due to the variability of experimental conditions, in contrast to being solely dependent
on points estimated from the RSM. The fermentation conditions (time and temperature)
had a significant influence on the parameters investigated on this study. The resulting
low pH values and high total titratable acidity also reduced the consistency of amasi. The
low pH also influenced the bacterial composition of amasi. Lactic acid bacteria were found
to be dominant in amasi samples at the family level (Lactobacillaceae), while in raw milk,
Prevotellaceae was found to be the one dominating. Future investigation is recommended in
identifying yeast microorganisms present in amasi, isolation of these microorganisms, and
whole genome sequencing of the microorganisms to fully understand the significance of
these organisms in amasi.
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