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Abstract: ß-poly (L-malic acid) (PMLA) is a polyester ligated by malate subunits. It has a wide
prospective application as an anti-cancer drug carrier, and its malate subunits have a great application
in the food industry. The strain Aureoabsidium melanogenum could produce a high amount of PMLA
during fermentation, and different substrates addition could influence the production. In this study,
we directly added potassium acetate, corn steep liquor, MgSO4, MnSO4, vitamin B1, vitamin B2, and
nicotinamide as the fermentation substrate to the basic fermentation medium based on a generated
random matrix that represented the added value. The PMLA production and four secondary indexes,
pH, biomass, osmotic pressure, and viscosity were measured after 144 h fermentation. Finally, a total
of 212 samples were collected as the dataset, by which the machine learning methods were deployed
to predict the PMLA production by different substrates’ concentrations and the secondary indexes.
The results indicated that PMLA production was negatively correlated with corn steep liquor and
betaine and positively correlated with potassium acetate. The PMLA production could be predicted
using all different substrates’ concentrations with a Mean Absolute Error (MAE) of 4.164 g/L and
with an MAE of 6.556 g/L by different secondary indexes. Finally, the convolutional neural network
(CNN) was applied to predict the PMLA production by fermentation medium images, in which
the collected images were categorized into three groups, 0–20 g/L, 21–40 g/L, and >41 g/L, based
on the PMLA production. The CNN model could predict the production with high accuracy. The
methods and results presented in this study provided new insight into evaluating different substrates
concentration on PMLA production and demonstrating the possibility of using the convolutional
neural network model in the PMLA fermentation industry.

Keywords: ß-poly (L-malic acid) (PMLA); machine learning; PMLA production prediction

1. Introduction

ß-poly (L-malic acid) (PMLA) is a polyester ligated by malate subunits [1]. Each malate
subunit contains a free carboxyl group that could interact with other activating groups
and chelates with the metal ions [2], which has great application potential [3]. Zhou [4]
invented a dual pH-sensitive charge-reversal PMLA-based nano complex to deliver an
anti-cancer drug. José [5] evaluated the ability of partially methylated PMLA as a novel
protein delivery carrier. Furthermore, after the hydrolysis of PMLA, it releases its malate
subunit, which has a great application in the food industry [6].

PMLA was first found to be produced by strain Physarum polycephalum, which could
obtain a 2.7 g/L PMLA production [7–9]. Recently, PMLA was produced by strain
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A. melanogenum with a high amount of PMLA during fermentation, ranging from 10 g/L
to 120 g/L, depending on different fermentation methods [6]. PMLA produced by mi-
croorganisms possesses eco-friendly and bio-degradable [10] characteristics compared to
direct synthesis by chemical reaction [11]. The biosynthesis mechanism of PMLA [12–14]
is mainly involved in the TCA cycle, glyoxylate pathway, and CO2 fixation pathway, and
these pathways were related to the malate precursor. Several optimization methods were
applied for Aureobasidium species fermentation. Ma [15] found that under 14% glucose
concentration in a fermentation medium could increase PMLA production. Cao [16,17]
adjusted pH and the stirring speed during fermentation to obtain a high PMLA production,
and Tu [18] found that the addition of Tween 80 could benefit PMLA production.

The machine learning methods could be categorized into supervised and unsupervised
learning [19]. Supervised learning often deals with regression and classification problems,
which contain a label character in the dataset [20]. Today, many machine learning methods
are used to analyze data, especially in medical data and images [21,22], but not much
is used in the fermentation industry. However, the concentration of different substrates,
fermentation indexes, and the fermentation images could be used as the dataset for machine
learning analysis to predict the metabolites of interest.

In this study, we added potassium acetate, corn steep liquor (CSL), MgSO4, MnSO4,
Vitamin B1, Vitamin B2, and nicotinamide as the fermentation substrates to the basic fer-
mentation medium to ferment A. melanogenum and evaluated the effects of these substrates
on PMLA production. Meanwhile, different substrates addition; secondary indexes, such
as pH, osmotic pressure, biomass, and viscosity; and fermentation medium images were
used to predict the PMLA production using different machine learning methods. Using
secondary indexes and fermentation medium images to predict PMLA production can
overcome the defect of the time-consuming traditional PMLA measurement and increase
the PMLA fermentation efficiency.

2. Materials and Methods
2.1. Microorganism and Medium

A. melanogenum CGMCC18996 was isolated from soil and preserved in the China
General Microbiological Culture Collection Center (Beijing, China No. CGMCC18996). The
seed medium contained 60 g/L sucrose, 3 g/L yeast extract, 2 g/L succinic acid, 1 g/L
(NH4)2SO4, 0.4 g/L K2CO3, 0.1 g/L KH2PO4, 0.1 g/L MgSO4, 0.05 g/L ZnSO4, and 0.1%
corn steep liquor (CSL, V/V). The basic fermentation medium contained 180 g/L sucrose,
35 g/L peptone, and 0.1 g/L KH2PO4. Both seed and fermentation media were sterilized
at 121 ◦C for 20 min before use.

2.2. Fermentation Medium with Different Adding Substrates

The added substrates were prepared in the water solution. Among them, the potas-
sium acetate was prepared in 25 g/mL; betaine and MgSO4 in 5 g/mL; and MgSO4, MnSO4,
Vitamin B1, Vitamin B2, and nicotinamide in 0.5 g/mL based on the experiment conducted
formerly in our lab. The solution was then added to a 100 mL shake-flask containing 20 mL
basic fermentation medium in the volume of 40 to 360 µL with a 40 µL interval.

The substrates addition matrix was generated by the Python NumPy package [23],
which normalized the 40 to 360 µL addition value into numbers 0 to 9 to generate a
random matrix. The generated matrix with the corresponding indexes is shown in the
Supplementary File (Fermentation_matrix.xsl).

2.3. Fermentation Conditions

The primary seed culture of A. melanogenum CGMCC18996 was prepared by inoc-
ulating cells grown on a solid medium into 500 mL flasks that contained 300 mL seed
culture medium, and then the medium was cultured at 25 ◦C for approximately 40 h in a
rotary shaker. The fermentation experiment was conducted in the 500 mL flasks containing
100 mL fermentation medium for 144 h at 25 ◦C with 200 rpm/min.
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2.4. Assay of PMLA Production and Fermentation Parameters

Fermentation broth (5 mL) was collected at a 24 h interval and centrifuged at
15,000 r/min. The resulting supernatant (2 mL) was mixed with 2 mL 2 M H2SO4 and then
hydrolyzed at 110 ◦C for 11 h. After the hydrolyzation process, the sample was analyzed
by HPLC (LC-20AT, Shimadzu Ltd., Kyoto, Japan) using a PrevailC18 organic acid column
at 25 ◦C eluted with 25 mM KH2PO4 at a rate of 1.0 mL/min. The PMLA concentration
was determined by comparing the difference between L-malate concentrations before and
after hydrolysis.

The biomass was determined via the method of dry cell weight (DCW). Before mea-
surement, the extra CaCO3 was eliminated using 3 M HCL. Then, the fermentation broth
(2 mL) was centrifuged at 5000 rpm for 10 min, and the resulting precipitate was washed
twice with phosphate buffer saline (PBS). After recentrifugation, the precipitates were dried
overnight at 80 ◦C and then weighed.

2.5. Machine Learning Analysis

Four commonly used machine learning analysis methods, decision tree, random
forest, bp neuron network, and support vector machine, were deployed using SPSSPRO
(Scientific Platform Serving for Statistics Professional 2021. SPSSPRO. (Version 1.0.11)
[Online Application Software]. Retrieved from https://www.spsspro.com, accessed on
1 October 2022). Among them, 70% of the data was selected as the training set and 30% of
the data was selected as the test set, and the data were selected randomly. The convolutional
neural network was deployed with 3 convolutional layers, 3 flatten layers, and a dense
layer (with 128 neuron, relu activation function, and adam optimizer) with the Tensorflow
package following the user guide (https://www.tensorflow.org/tutorials/, accessed on
1 November 2022) for image recognition. The images were taken after 144 h fermentation
in the shake-flask, and the pictures were directly shot at the top of the flask in relatively the
same environment (same place and same light).

3. Results and Discussion
3.1. Overall Data Analysis

The different concentrations of potassium acetate, CSL, MgSO4, MnSO4, Vitamin B1,
Vitamin B2, and nicotinamide were added to the basic fermentation medium. After 144 h
fermentation, the final PMLA production, pH, viscosity, biomass, and osmotic pressure
were measured, and finally, a total of 212 fermentation samples were collected and prepared
for analysis. The overall description is shown in Table 1. The results indicated that the
S-W test of all characters was significant, suggesting that all characters were not following
the standard distribution. Among them, the substrates were added based on a random
matrix. Therefore, the middle and average were alike in the substrate characters. We used
the medium [minimal, maximal] value to represent each character’s range. Therefore,
after 144 h fermentation, the samples were in a situation with a pH of 6.08 [5.13, 6.95],
osmotic pressure at 0.23 [0.12, 0.57] Pa, biomass at 53.5 [20.50, 94.50] g/L, viscosity at
36.25 [9.00, 100.50] mPas, and PMLA production at 34.96 [6.17, 61.87] g/L.

The research found that adding mixed sugars, bagasse hydrolysates, and CSL could
significantly increase PMLA production [24–26]. In this study, we collected different
substrates that may influence PMLA production, such as potassium acetate, which could
increase PMLA yield [unpublished paper]. The added value of the substrates followed a
generated random matrix to randomize the addition values and therefore randomize the
secondary indexes and PMLA production. With a large number of fermentation samples,
this method could relatively eliminate errors in the analysis.

https://www.spsspro.com
https://www.tensorflow.org/tutorials/
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Table 1. The overall description of 212 collected samples of different substrates, secondary indexes,
and PMLA production.

Substrate Medium [Minimal, Maximal] Average S-W Test

Potassium acetate 4.00 [0.00, 9.00] 4.42 0.941 (0.000 ***)
Corn steep liquor (CSL) 5.00 [0.00, 9.00] 4.79 0.925 (0.000 ***)

betaine 4.00 [0.00, 9.00] 4.49 0.929 (0.000 ***)
MnSO4 5.00 [0.00, 9.00] 4.51 0.938 (0.000 ***)
MgSO4 5.00 [0.00, 9.00] 4.50 0.939 (0.000 ***)

Vitamin B1 5.00 [0.00, 9.00] 4.47 0.933 (0.000 ***)
Vitamin B6 5.00 [0.00, 9.00] 4.93 0.933 (0.000 ***)

Nicotinamide 5.00 [0.00, 9.00] 4.74 0.927 (0.000 ***)
pH 6.08 [5.13, 6.95] 6.04 0.797 (0.000 ***)

Osmotic pressure (Pa) 0.23 [0.12, 0.57] 0.25 0.506 (0.000 ***)
Biomass (g/L) 53.5 [20.50, 94.50] 57.00 0.553 (0.000 ***)

Viscosity (mPa·s) 36.25 [9.00, 100.50] 40.39 0.897 (0.000 ***)
Final PMLA production (g/L) 34.96 [6.17, 61.87] 35.61 0.987 (0.055 *)

* Represented significant, and *** represented extremely significant.

3.2. The Correlation Analysis of Different Substrates Concentration and Different Secondary
Indexes on PMLA Production

After collecting 212 samples, the correlations between the concentration of different
substrates on pH, biomass concentration, final osmotic pressure, viscosity, and final PMLA
production were evaluated, and the results are shown in Table 2. Among them, PMLA
production was extremely negatively correlated with CSL, betaine, Vitamin B1, and nicoti-
namide, in which the CSL and betaine showed a higher negative coefficient compared to
the others. The biomass showed an extremely negative correlation with MnSO4, and the
osmatic pressure was extremely positively correlated with potassium acetate and negatively
correlated with CSL and betaine. The viscosity was extremely negatively correlated with
CSL and betaine. Therefore, the results indicated that all the substrates except vitamin B6
had a certain degree of effect on PMLA fermentation parameters.

Table 2. The correlation matrix of different substrates with final PMLA production, biomass concen-
tration, osmotic pressure, and viscosity.

Substrate Final PMLA Production Biomass Osmotic Pressure Viscosity

Potassium acetate 0.045 (0.513) −0.042 (0.543) 0.230 (0.001 ***) 0.006 (0.932)
Corn steep liquor −0.624 (0.000 ***) 0.055 (0.425) −0.175 (0.011 **) −0.406 (0.000 ***)
Glycine betaine −0.572 (0.000 ***) −0.036 (0.606) −0.198 (0.004 ***) −0.171 (0.013 **)

MnSO4 −0.124 (0.072 *) 0.262 (0.000 ***) −0.028 (0.690) −0.089 (0.197)
MgSO4 −0.049 (0.477) −0.031 (0.658) −0.096 (0.163) −0.112 (0.102)

Vitamin B1 −0.293 (0.000 ***) −0.065 (0.343) −0.024 (0.733) 0.107 (0.121)
Vitamin B6 −0.111 (0.108) −0.001 (0.985) 0.062 (0.372) −0.052 (0.454)

Nicotinamide −0.241 (0.000 ***) 0.034 (0.617) 0.067 (0.328) −0.101 (0.142)

The number outside the bracket represents the correlation coefficient, and the number in the bracket represents
the p-value, in which * represented significant, and ** and *** represented extremely significant.

Production and biomass are two critical indicators during fermentation, and Table 2
showed that potassium acetate and biomass had a positively correlated coefficient on final
PMLA production and CSL. Therefore, this result illustrates that adding potassium acetate
and CSL would benefit PMLA production and biomass. CSL is an inexpensive substrate
for efficient target metabolite production due to its large amounts of amino acids [27,28].
Therefore, it would benefit the biomass of A. melanogenum. The potassium acetate contains
acetate, which could be converted to acetyl-CoA by acetyl-CoA synthetase [29], benefiting
the TCA cycle, which could produce PMLA’s precursor malate.

Four secondary indexes, pH, osmotic pressure, viscosity, and biomass, were collected
and measured at the end of the fermentation. Table 3 shows the correlation matrix between
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each index on final PMLA production, in which the pH showed a negatively correlated
effect, and viscosity showed a positively correlated effect. This result suggested that the
secondary indexes could correlate with final PMLA production and could be used as the
input parameters to predict PMLA production using the machine learning method.

Table 3. The correlation matrix of PMLA production and secondary indexes, pH, osmotic pressure,
biomass, and viscosity.

Secondary Indexes PMLA Production

pH 0.370 (0.000 ***)
Osmotic pressure 0.102 (0.139)

Biomass −0.067 (0.333)
Viscosity 0.346 (0.000 ***)

The number outside the bracket represents the correlation coefficient, and the number in the bracket represents
the p-value, *** represented extremely significant.

Due to the time-consuming process of PMLA measurement, usually taking 2 d for
hydrolysis and HPLC analysis, we would like to explore the possibility of using easily
measured indexes to predict the PMLA production and therefore could monitor the PMLA
production in time to decide whether the PMLA production reaches the requirement in a
fermenter or shake-flask.

3.3. Evaluation of Single Substrates Addition on PMLA

The basic fermentation medium with single substrate addition was evaluated, and the
results were shown in Figure 1, which indicated that PMLA production slightly increased
with acetate potassium addition and decreased with the addition of CSL and betaine.
However, PMLA production slightly decreased after MnSO4, Vitamin B1, Vitamin B6,
and nicotinamide addition, and the MgSO4 addition suggested a non-influence effect on
PMLA production.
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The correlation matrix between final PMLA production and different substrates addi-
tion showed that final PMLA production had a great negative correlation with CSL and
betaine, and a slightly negative correlation with other substrates except for acetate potas-
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sium, which showed a slightly positive correlation with final PMLA production. The results
in Figure 1 showed consistency with the correlation matrix shown in Table 1, demonstrating
that adding different substrates in the basic fermentation medium spontaneously had the
same results as adding these substrates separately.

3.4. Prediction of Final PMLA Production Based on Different Substrates

Four common machine learning methods [30], decision tree, random forest, Bp neuron
network, and support vector machine, were used to predict the final PMLA production
by different substrates and secondary indexes. The results are shown in Table 4, in which
the mean absolute error (MAE) was used to determine whether a proper machine learning
method was deployed. The training set was composed of 70% data to train the model, and
the test set was composed of another 30% to validate the model, where the smaller MAE
represented the better model. Finally, the results indicated that the decision tree obtained
1.475 g/L MAE in the training set and 7.369 g/L in the test set, random forest obtained
2.21 g/L MAE in the training set and 5.53 g/L MAE in the test set, bp neuron network
obtained 4.215 g/L MAE in the training set and 4.164 g/L MAE in the test set, and support
vector machine obtained 4.367 g/L MAE in the training set and 4.506 g/L MAE in the
test set. Therefore, the bp neuron network method obtained the smallest MAE in the test
set. The difference between the training set and test set was also the smallest among other
methods, indicating no over-fit happened during the training process.

Table 4. The mean absolute error (MAE) of using different substrate addition values to predict final
PMLA production by four machine learning methods.

Decision Tree Random Forest Bp Neuron Network Support Vector Machine

Training set MAE (g/L) 1.475 2.21 4.215 4.367
Test set MAE (g/L) 7.369 5.53 4.164 4.506

The difference between the model-predicted and true labels is shown in Figure 2, in
which 15 data were randomly selected and the absolute difference was calculated. The
small difference between the true and predicted labels indicated that data training by the bp
neuron method model can predict the PMLA production based on the different substrates
and could make a proper prediction.

Fermentation 2022, 8, x FOR PEER REVIEW 7 of 12 
 

 

Table 4. The mean absolute error (MAE) of using different substrate addition values to predict final 
PMLA production by four machine learning methods. 

 Decision Tree Random Forest Bp Neuron Network Support Vector Machine 
Training set MAE (g/L) 1.475 2.21 4.215 4.367 

Test set MAE (g/L) 7.369 5.53 4.164 4.506 

The difference between the model-predicted and true labels is shown in Figure 2, in 
which 15 data were randomly selected and the absolute difference was calculated. The 
small difference between the true and predicted labels indicated that data training by the 
bp neuron method model can predict the PMLA production based on the different sub-
strates and could make a proper prediction. 

 
Figure 2. The prediction result of the bp neuron network of different substrates on PMLA produc-
tion. 

3.5. Prediction of PMLA Production Based on Secondary Indexes 
The results of PMLA production predicted by the secondary indexes are shown in 

Table 5, and the same machine learning algorithms in Section 3.4 were used to train the 
model. The results indicated that the decision tree obtained 2.596 g/L MAE in the training 
set and 9.634 g/L in the test set, random forest obtained 3.517 g/L MAE in the training set 
and 6.556 g/L MAE in the test set, bp neuron network obtained 8.575 g/L MAE in the 
training set and 7.414 g/L MAE in the test set, and support vector machine obtained 9.416 
g/L MAE in the training set and 8.572 g/L MAE in the test set, among which the random 
forest is the best model due to the smallest MAE compared with other machine learning 
methods. 

Table 5. The mean absolute error (MAE) of using secondary indexes value to predict PMLA pro-
duction by four machine learning methods. 

 Decision Tree Random Forest Bp Neuron Network Support Vector Machine 
Training set MAE (g/L) 2.596 3.517 8.575 9.416 

Test set MAE (g/L) 9.634 6.556 7.414 8.572 

The predicted label and its comparison with the true label are shown in Figure 3, in 
which 15 data were randomly selected and the absolute difference was calculated. Even 
though the comparison results of the secondary indexes (smallest MAE of 6.556 g/L in 
Table 5) are worse than directly using the substrates (smallest MAE of 4.164 g/L in Table 
4), this result demonstrated that the easily measured secondary indexes could be used 

Figure 2. The prediction result of the bp neuron network of different substrates on PMLA production.

3.5. Prediction of PMLA Production Based on Secondary Indexes

The results of PMLA production predicted by the secondary indexes are shown in
Table 5, and the same machine learning algorithms in Section 3.4 were used to train the
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model. The results indicated that the decision tree obtained 2.596 g/L MAE in the training
set and 9.634 g/L in the test set, random forest obtained 3.517 g/L MAE in the training
set and 6.556 g/L MAE in the test set, bp neuron network obtained 8.575 g/L MAE in
the training set and 7.414 g/L MAE in the test set, and support vector machine obtained
9.416 g/L MAE in the training set and 8.572 g/L MAE in the test set, among which the
random forest is the best model due to the smallest MAE compared with other machine
learning methods.

Table 5. The mean absolute error (MAE) of using secondary indexes value to predict PMLA produc-
tion by four machine learning methods.

Decision Tree Random Forest Bp Neuron Network Support Vector Machine

Training set MAE (g/L) 2.596 3.517 8.575 9.416
Test set MAE (g/L) 9.634 6.556 7.414 8.572

The predicted label and its comparison with the true label are shown in Figure 3,
in which 15 data were randomly selected and the absolute difference was calculated.
Even though the comparison results of the secondary indexes (smallest MAE of 6.556 g/L
in Table 5) are worse than directly using the substrates (smallest MAE of 4.164 g/L in
Table 4), this result demonstrated that the easily measured secondary indexes could be
used directly to predict PMLA production. Using these easily measured secondary indexes
(pH, Biomass concentration, viscosity, and osmotic pressure), we can quickly evaluate the
PMLA production, increasing the measurement efficiency.
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3.6. PMLA Fermentation Medium Image Identification Based on Convolutional Neuron Network

After 144 h fermentation, the fermentation mediums with different PMLA production
were collected and the pictures were taken. Eventually, a total of 100 images were collected.
Due to the large PMLA production span, the datasets were categorized into three groups
for better classification, 1–20 g/L, 21–40 g/L, and >41 g/L. The pictures were divided into
the training set, which comprised about 70% of the data, and the validation set, which
comprised another 30%. Figure 4 shows a demo of different groups and their corresponding
images. Then, the convolutional neural network was deployed to train the dataset and
predict the PMLA production. Figure 5 showed that, after 50 iterations (epoch = 50),
the validation set obtained about 90% accuracy, which illustrated that the model could
accurately predict PMLA production by the fermentation medium’s images.
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most likely belongs to the >41 group, the second belongs to the 1–20 group, and the third
belongs to the 21–40 group.
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The results demonstrated that the model could accurately predict PMLA production
by fermentation medium images after 144 h fermentation. The model was very suitable for
the shake-flask experiments to determine whether a substrate had an influence on PMLA
production quickly. However, the images were collected at the end of fermentation. Thus,
the model could not predict the images at early-stage fermentation. This method was first
applied in the PMLA production, and more images at different fermentation times and
with different PMLA production should be taken to make a more precise prediction in the
following study.

4. Conclusions

This study evaluated the influence of different substrates on PMLA production, which
was then predicted by the substrate addition value and secondary indexes. The results
indicated that PMLA production was dramatically decreased after the addition of CSL
and betaine. The machine learning methods could predict PMLA production based on
the secondary indexes, improving the PMLA measurement efficiency. Then, the convolu-
tional neural network method was applied to predict the PMLA production based on the
fermentation medium images, which obtained about 90% accuracy.
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