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Abstract: Cultivation of microalgae in waste digestate is a promising cost-effective and environmen-
tally friendly strategy for algal biomass accumulation and valuable product production. Two different
digestates obtained as by-products of the anaerobic fermentation at 35 ◦C and 55 ◦C of wheat straw
as a renewable source for biogas production in laboratory-scale bioreactors were tested as cultivation
media for microalgae after pretreatment with active carbon for clarification. The strains of microalgae
involved were the red marine microalga Porphyridium cruentum, which reached 4.7 mg/mL dry
matter when grown in thermophilic digestate and green freshwater microalga-Scenedesmus acutus,
whose growth was the highest—7.3 mg/mL in the mesophilic digestate. During cultivation, algae
reduced the available nutrient components in the liquid digestate at the expense of increasing their
biomass. This biomass can find further applications in cosmetics, pharmacy, and feed. The nitrogen
and phosphorus uptake from both digestates during algae cultivation was monitored and modeled.
The results led to the idea of nonlinear dynamic approximations with an exponential character. The
purpose was to develop relatively simple nonlinear dynamic models based on available experimental
data, as knowing the mechanisms of the considered processes can permit creating protocols for
industrial-scale algal production toward obtaining economically valuable products from microalgae
grown in organic waste digestate.

Keywords: anaerobic digestion; waste digestate; microalgae cultivation; modeling

1. Introduction

Microbial fermentation processes in biosphere are responsible for the greater part
of the biologically driven hydrogen and methane. Biomethane could be produced by
processing various types of waste. Anaerobic digestion (AD) is a well-known biological
process used for the utilization of organic waste for green energy production [1]. Increasing
biogas production worldwide, rich in biomethane, that could be used for heat and/or
electricity generation, will meet the energy supply needs with renewable alternatives [2].
The improvement in various aspects and parameters in AD, such as pretreatments, reactor
types, co-digestion, process modeling, and control, promotes reaching a better insight into
the process and improving its stability and efficiency [3].

Great quantities of digestate are thus produced after anaerobic digestion of organic
wastes, which causes problems related to transport costs, gas emissions, and sludge ac-
cumulation. At the same time, nutritional substances, such as nitrogen and phosphorus,
remain available therein. It is necessary to find alternative pathways for valorization with
the aim of reducing the environmental impact and improving the economic profitability of
anaerobic installations [4]. Waste digestate from biogas production can be used for direct
treatment of agricultural crops instead of fertilizing, but in most cases, the organic matter
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in it is very concentrated, and dilution and storage space are required. The increasing
production of digestate causes problems related to transport costs, emissions of greenhouse
gases as well as accumulation of increased amounts of nitrogen and phosphorus that can
be dangerous. Therefore, it is necessary to find alternative ways of valorization in order to
reduce the environmental impact and improve economic profitability. Current management
practices exist that involve utilization of digestate for land application either as fertilizer or
soil improver [5]. Another approach is to involve the obtained waste digestate as a source
of nutrients in a medium for microalgal growth and development. Growth enhancement
techniques are sought for cost-effective algal biomass accumulation. Nitrogen and phos-
phorus are utilized, and no contaminants remain in the waste effluents [6]. Records exist
on the traditional and ancient use of wild harvested microalgae as human and animal food,
but their cultivation for different purposes started recently [7]. Large-scale microalgae
cultivation could decisively contribute to sustainable industrial biomass production for
obtaining effective high-value products. Microalgae have attracted much attention recently
due to their extensive application potential in renewable energy [8], feed [9], cosmetics [10],
biomedicine [11], agriculture [12], etc. Microalgae are considered renewable, sustainable,
and economical sources. They can act as bioactive medicinal products and find their place
as food additives or natural colorants. Several microalgal species have been investigated for
their potential to obtain valuable products with significant pharmacological and biological
qualities. Biofertilization is another field of application as a sustainable agricultural practice
that applies biofertilizers to increase the soil nutrient content, leading to higher productivity,
being at the same time eco-friendly with no pollution. It leads to clean products for clean
food and health benefits [13]. Another application of biomass from microbial sources,
especially microalgae, is to absorb heavy metal ions as remediation practices [14] or treat
municipal, industrial, agro-industrial, and livestock wastewaters [15]. These photosyn-
thetic organisms have their role in atmospheric CO2 mitigation, which is a major concern
related to global warming. Microalgae can be cultivated under various conditions as they
adapt easily, using light as an energy source to convert water and carbon dioxide into
biomass via photosynthesis [16]. However, the main challenge in the large-scale production
of microalgae is to create stable cultures maintained for long periods, for which suitable
media and conditions should be established. In order to make algal biomass cheaper so
that it can be used for biofuels and other value-added products, it is necessary to reduce
the cost of cultivation. Cultivating microalgae in anaerobic digestate as a medium with no
addition of fresh water appears as a promising solution for nutrient recovery, pollutant
removal, and biofuel production [17]. The digestate represents a mixture of undigested sub-
strates, microbial biomass, and various metabolites. Anaerobic digestate contains excessive
amounts of phosphorous and nitrogen that can be utilized in algal biomass accumulation,
as for their growth, algae also need nitrogen and phosphorus as major nutrients [18]. Algal
growth was also documented in waste water [19]. An innovative approach to wastewater
treatment is the cultivation of algae in it, but in many cases, the waters are toxic, and the
cultivated algae are unsuitable for use in medicine, pharmacy, and the food industry. In
other cases, microalgal cultivation could be carried out in a mixotrophic mode—using ex-
traneous carbon sources, such as glucose and glycerol, thus enhancing the overall biomass
concentration and lipid accumulation [20].

The use of algae from two different taxonomic groups enables further production of
many secondary metabolites, for the saltwater Porphyridium cruentum, large amount of ex-
tracellular polysaccharide that is used in cosmetics, pharmacy, etc., and of unsaturated fatty
acids and phycobiliproteins, which are also widely used. The green microalga Scenedesmus,
in turn, accumulates a large amount of protein and green pigments, which are a suitable
nutritional supplement for animals, fish, and humans. At the same time, Scenedesmus acutus
accumulates biomass quickly and is easily adaptable in terms of cultivation conditions. By
being able to cultivate algae in waste digestate from different taxonomic groups, growing
in different environments (freshwater, saltwater), we show the high adaptability of algae
and their potential to grow in an unnatural habitat for them. This fact is a prerequisite for
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the creation of circular economy and valorization of processes, and precisely in this, the
novelty and significance of this research are expressed.

The aim of this study was to show the possibility of growing red and green microalgae
in two types of digestates obtained from anaerobic digestion of wheat straw at mesophilic
and thermophilic conditions with stable biomethane production, together with process
modeling to predict the dynamics of biomass accumulation and pigment formation as a
function of the initial nitrogen and phosphorus values.

2. Materials and Methods
2.1. Anaerobic Digestion

Two different biotechnological processes were performed for anaerobic digestion of
wheat straw at mesophilic conditions (35 ◦C) and at thermophilic conditions (55 ◦C). Anaer-
obic digestion processes were performed on a laboratory scale, as previously described [21].
Characteristics of the source digestates—total solids (TS), volatile solids (VS), chemical
oxygen demand (COD), nitrogen, phosphorus, and pH are presented in Table 1. Biogas
content measurements were performed by “Dräger” (Lübeck, Germany) type specimen
X-am 7000.

Table 1. Characteristics of the source digestate.

Parameter
Digestate From:

Mesophilic Process Thermophilic Process

TS, g/L 9.27 ± 0.04 6.31 ± 0.03
VS, %TS 60.21 ± 0.43 63.46 ± 0.72

pH 7.62 ± 0.01 7.88 ± 0.01
COD, mg/L 668 ± 0.04 591 ± 0.04

NH4-N, mg/L 177 ± 0.10 175 ± 0.13
PO4-P, mg/L 3.79 ± 0.06 3.76 ± 0.05

2.2. Microalgal Cultures

Monoalgal, non-axenic cultures of green Scenedesmus acutus (Meyen) Puncocharova
1981 (Chlorophyta) and red microalga Porphyridium cruentum (AG.) NAG Vischer
1935/107 (Rhodophyta) from the culture collection of the Institute of Botany ASCR, Třeboň,
Czech Republic, was used. An initial algal culture density of 0.8 mg/mL dry weight
(DW) for Porphyridium cruentum and 0.5 mg/mL for Scenedesmis acutus was used for all
experiments. Cultivation was carried out at 25 ◦C and continuous illumination (132 µmol
photons m−2 s−1). Carbon source was provided by bubbling sterile 2% CO2 (v/v). Standard
culture medium of Setlik [22] was used as control for cultivation of Scenedesmus acutus and
modified culture medium of Hemerick, [23]—for Porphyridium cruentum. 18 g/L of NaCl
were added to the medium for Porphyridium cruentum from digestate since it is marine.

Growth of algal cultures was measured by dry weight as the algal suspension was
centrifuged (Rotofix 32A, Hettich, Tuttlingen, Germany), then supernatant was removed,
and cells were dried at 105 ◦C for 16 h. Dry biomass concentration (mg/mL) was calculated
according to Makarevičienė et al. [24].

2.3. Clarification with Active Carbon

A definite quantity (100 mL) of both mesophilic and thermophilic digestates was
centrifuged at 15,000 rpm and the supernatant was further decolorized. Adsorption was per-
formed by introducing active carbon (Fluka) with varying concentrations (5–40 g/L) to the liq-
uid digestate taken at the end of the process for biomethane production: C 3345 Fluka ≥ 95%
for general laboratory use, Formula: C, MW: 12.01 g/mol, Melting Pt: 3550 ◦C, Storage
Temperature: Ambient. Active carbon was used for clarification as the digestate has to
become appropriate for light penetration necessary for cultivation of algae. After 24 h at
room temperature, another centrifugation followed, and the obtained supernatant was
used as a cultivation medium.
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2.4. Nitrogen and Phosphorus Quantity

Uptake of nitrogen and phosphorus from digestate during algae cultivation was
monitored, using DR 3900 Spectrophotometer (Hach Lange, GmbH, Munich, Germany) by
respective test kits PO4-P, (LCK 350); TN, (LCK 338); NH4-N (LCK 302); COD (LCK 314)
with RFID technology.

2.5. Pigment Content

Pigment content was measured to prove growth. Pigments—chlorophyll “a”, chloro-
phyll “b” and carotenoids, were measured spectrophotometrically at 665, 645, and 460 nm,
respectively, using a T70 UV/Vis (PG Instruments Ltd., Leicester, UK) spectrophotometer
after extraction with boiling methanol. Using the absorptions, the pigment content was
calculated, employing the Mackiney formulas [25]. Phycobiliproteins were extracted with
0.01 M potassium phosphate buffer (pH 6.7) from homogenized cells (vibrations homoge-
nizator VHG1, City, Germany) at 4 ◦C for 10 min. The quantities were calculated according
to the equations of Siegelman and Kycia [26].

2.6. Mathematical Modeling

The numerical computations were carried out on a PC/Intel Core i5-2320 CPU@2.67
GHz, 4 GB Memory (RAM), Windows 10 (64 bit) operating system. Modeling and numeri-
cal experiments were performed using Matlab R2016a. Sequential quadratic programming
(SQP) techniques were used as a constrained nonlinear optimization method. The back-
ground of the basic SQP algorithm applied here was described in [27].

To quantitatively compare the model with the experimental data, the least squares

method was applied, using the formula: NRMSE =

√
1
n

n
∑

i=1

(
ŷi−yi

ymax−ymin

)2
, where: yi—experi-

mental data in hour “i”; model data in hour “i”; ymax and value ymin are respectively the
maximal and minimal value of the corresponding experimental data.

3. Results and Discussion
3.1. Digestate Preparation and Clarification

The liquid fraction of digestate produced is rich in macro and micronutrients, nitrogen,
and phosphorous that can be utilized by growing microalgal cultures. Recent studies
have focused attention on the possibility of digestate application as a nutrient medium for
growing microalgae [28,29]. In this work, liquid digestate from a digester fed on waste
wheat straw was collected at the end of the process for biomethane production. Biochemical
characteristics of both—mesophilic and thermophilic digestate solutions are given in Table 1.
Active carbon was chosen as a suitable adsorbent to reduce the color of liquid digestate
in this study. Active carbon is a highly porous carbon, usually obtained from wood or
bone charcoal, during the processing of which hydrocarbons have been removed, and its
adsorption capacity has been increased. The treatment for clarification of the digestate
leads to reducing the turbidity and color of this waste, respectively, increasing the light
transmittance and penetration. It is necessary because light, together with carbon dioxide,
is needed by algae to carry out the process of photosynthesis—its transformation into the
chemical energy of carbohydrates with the release of oxygen which ensures a guaranteed
high yield of the microalgae cultivated within this liquid waste. The active carbon was used
in this decolorization process to obtain a digestate appropriate for algae cultivation as an
alternative medium, and on the other hand, the active carbon involved could be produced
from other waste, such as fruit pits, in this way, coping with waste disposal. Next step
included microalgal cultivation in the transparent digestate without dilution. The digestate
is not diluted because the clarification methodology allows achieving such clarity of the
solution that algae can grow well without any need for dilution, thus not reducing the
nutrient content without requirements of additional fresh water resources. Algal growth in
undiluted digestate is negligible and not economically viable.
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Growth in untreated digestate is also negligible as light penetration is lacking (Figure 1,
left). The recycling of nutrients from waste digestate into a nutrient medium for algae is a
challenge and a new opportunity to ensure a guaranteed high yield of bioresources with
low energy, time consumption, and saving pure water.
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Figure 1. Digestate before treatment (left) and after clarification with active carbon (right).

Optical density at 680 nm and 420 nm was determined to quantify the clarifying effect
of the adsorption process with active carbon. Having in mind that the primary pigment
involved in the process of photosynthesis is chlorophyll “a”—with strong absorption bands
in the regions 400–450 and 650–700 nm [30], tests were conveyed for estimation of the
adsorption spectrum at 420 and 680 nm for the anaerobic digestates—mesophilic (Figure 2a)
and thermophilic (Figure 2b) in dependence of the quantity of applied active carbon.

A slight difference was observed in the level of adsorption for the two types of diges-
tates at room temperature because they represent by-products of two different anaerobic
digestion processes—mesophilic and thermophilic. The similarity is revealed in obtaining
an almost transparent medium for cultivation of algae. The values for 680 nm show that
the decolorization is more than 10-fold, while for 420 nm, it is in the order of 72–75%.

3.2. Algae Cultivation

After clarification, both investigated strains were introduced once in a mesophilic diges-
tate and then in a thermophilic digestate. Scenesdesmus acutus growth was highest—7.3 mg/mL
in the mesophilic digestate, higher than growth in the control medium (Figure 3a). Por-
phyridium cruentum reached 4.7 mg/mL dry matter when grown in thermophilic digestate
(Figure 3b).
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Microalgae productive chains are attracting attention as sustainable alternatives to
obtain natural pigments [31]. Pigment content was evaluated to prove growth. Total
amount of pigments of Scenedesmus acutus at the end of the process was 117 mg/L, which
represents a 4-fold increase since the process has begun, showing good growth and pigment
synthesis (Figure 4a). For Porphyridium cruentum the increase in pigments content was
also proved to be about 4-fold since the process beginning (Figure 4b). According to the
investigations of Fernandes et al., Chlorella vulgaris grew better on all three digestates tested
in comparison to the F/2 control medium [32], which complies with the results obtained in
this study.
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Figure 4. Pigment content during growth of Scenedesmus acutus (a) and Porphyridium cruentum
(b) grown in digestate.

Indeed, digestate composition shows a vast potential to support microalgal growth,
especially in terms of macronutrients, such as phosphorus and nitrogen, and together with
remaining micronutrients in the right composition and ratio, it provided good development
of algae with production of various products [33]. The characteristic pigments are presented
for Scenedesmus acutus—chlorophyll a, chlorophyll b, and carotenoids (Figure 5a) and for
Porphyridium cruentum—phycobiliproteins (PBP), carotenoids and chlorophyll a (Figure 5b).
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Figure 5. Pigment content of Scenedesmus acutus (a) and Porphyridium cruentum (b) at the end
of cultivation.

3.3. Nitrogen and Phosphorous Uptake

Nitrogen and phosphorus are essential macronutrients needed to promote algal growth
and metabolic activities [34]. The uptake of nitrogen and phosphorus from digestate
necessary for growth during algae cultivation was monitored. Nitrogen decreased 3.5-fold
during growth in thermophilic digestate of Porphyridium cruentum and 4.3-fold when
Scenedesmus acutus grew in mesophilic digestate (Table 2).

During growth of Scenedesmus acutus in the mesophilic digestate, phosphorous was
completely utilized. After growth of Porphyridium cruentum in the thermophilic digestate,
the remaining quantity was only 0.12 mg/L (Table 3).

The high mineral content of digestate is the reason to try its direct application as a
fertilizer in agriculture [35], but in recent years, after such fertilization, cases of vegetable
production contaminated with pathogens have been identified [36]. It could also be easily
washed away during rain falls. Application of microalgae as biofertilizers is beneficial
as they introduce carbohydrates, as well as nitrogen and phosphorous that are being
released gradually. Circular economy has appeared as a challenge with dual purposes
implementation—to improve the production of economically valuable products together
with a reduction of the environmental impact by decreasing the inflow of resources and
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waste generation [37]. After the accumulation of algal biomass, value-added products could
be obtained from microalgae that could find further applications. The remaining part of it
could be returned back into the anaerobic bioreactor working on lignocellulosic substrates
as a co-substrate for enhancing biogas and biomethane production [38] or used as food
supplements. Microalgae also favor soil nutrient cycling and promote plant growth by
improving nutrient availability for plants [39]. The produced by algae exopolysaccharides
also act to improve soil structure and contribute to the stabilization of soils by the formation
of biological soil crusts [40], together with the algal cell itself, containing high levels, from
30 to 50% sulfated polysaccharides of its dry matter [41]. Thus, they appear as promising
sources of plant biostimulant development [42].

Table 2. Nitrogen uptake during growth for the two investigated strains.

Scenedesmus acutus Porphyridium cruentum

Time Control Mesophilic
Digestate

Thermophilic
Digestate Control Mesophilic

Digestate
Thermophilic

Digestate

N (mg/L) N (mg/L) N (mg/L) N (mg/L) N (mg/L) N (mg/L)

0 h 200 176 173 280 139 140
24 h 170 134 168 260 130 123
48 h 156 98 160 248 124.8 116
72 h 148 92.3 154.1 225 112.1 109
96 h 127 84 130 219 109 92

120 h 114 77 117 212 108 70.2
144 h 100.6 60.2 90.6 200 100 55.6
168 h 94 41 88 180 99 40

Table 3. Phosphorus uptake during growth for the two investigated strains.

Scenedesmus acutus Porphyridium cruentum

Time Control Mesophilic
Digestate

Thermophilic
Digestate Control Mesophilic

Digestate
Thermophilic

Digestate

P (mg/L) P (mg/L) P (mg/L) P (mg/L) P (mg/L) P (mg/L)

0 h 42.5 3.88 3.52 38.75 3.77 3.98
24 h 37 3.42 3.46 29 3.65 3.62
48 h 25 2.6 2.8 18 3.51 3.1
72 h 18 2.1 2.4 12.2 3 2
96 h 11.4 1.8 2.1 8.3 2.1 1.78

120 h 8 0.87 2 5.9 1.9 0.6
144 h 4.1 0.3 1.1 3.2 0.66 0.33
168 h 3.63 0 0.3 1.3 0.18 0.12

3.4. Modeling of the Obtained Experimental Data

To our knowledge, mathematical models related in a dynamic way to the concentra-
tions of nitrogen (N) and phosphorus (P) as substrate with biomass concentration and
pigment content does not exist. The purpose of modeling in this work was to develop rela-
tively simple nonlinear dynamic models based on the available experimental data because
many of the mechanisms of the considered processes are unknown or poorly studied.

The analysis of the obtained experimental data for the two investigated strains of
microalgae in this study led us to the idea of nonlinear dynamic approximations with an
exponential character. They were created in two stages based on the available results:

1. Modeling of nitrogen (N(t)) and phosphorus (P(t)) uptake;
2. Modeling of biomass accumulation (X(t)) and pigments (Pigm(t)) based on the

first stage.
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As a result of the analysis of the experimental data, the following structure of the
model is proposed:

N(t) = N0e−KNt (1)

P(t) = P0e−KPt (2)

X(t) = A0 + A1ebN(t)+cP(t) (3)

Pigm(t) = B0 + B1edN(t)+fP(t) (4)

Equations (1) and (2) correspond to the first stage (consumption of N and P in time).
In them, N0 and P0 are the initial conditions of the variables (they are known from experi-
mental data), and KN and KP are unknown coefficients that must be identified based on
experimental data.

As a result of the performed parametric identification for the digestate from a mesophilic
AD process and strain Porphyridium cruentum, the following optimal coefficients were ob-
tained: KN = 0.0023, KP = 0.0067.

Grafical comparisons of results obtained in the first stage (for N and P) are presented
in Figure 6a,b.
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Visually, it was revealed that the model fits quite well with the experimental data for
N(t) and P(t). Quantitative verification was done for the final form of the model by the
method of calculating the normalized root mean square error.

Equations (3) and (4) correspond to the second stage. In them, N(t) and P(t) are the
functions found during the first stage (Equations (1) and (2)), and A0, A1, B0, B1, b, c, d,
and f are unknown coefficients, which must be identified on the basis of experimental data.

In order to reduce the number of unknown coefficients, we started with the following
simpler solution: We assume that A0 = B0 = 1, where A1 = [X(∞) − 1], B1 = [Pigm (∞) − 1].
X(∞) and Pigm (∞) are taken from the experimental data (the attained final values). Under
this assumption, only the following four coefficients: b, c, d, and f remain for identification.

After performing the identification, the results obtained in the second stage are shown
in Table 4, Figure 7a,b.

Table 4. Coefficients identification.

Coefficient A1 b c B1 d f

Coefficient lower bound 0 −1 −1.5 0 −1 −2
Coefficient upper limit 6000 1 1 500 1 1

Coefficients identified values 5015.42 −0.002 −0.6 129.55 −0.004 −0.32
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Figure 7. Experimental data (in green) and model approximation (in red) for digestate from
mesophilic AD process for: (a) X(t); (b) Pigm (t); (N0 = 139; KN = 0.0023; P0 = 3.77; KP = 0.0067).
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The same model was applied for the process with the digestate from a thermophilic
AD process. Results are shown in Figure 8a,b.
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Figure 8. Experimental data (in green) for digestate from thermophilic and model approximation (in
red) for: (a) X(t); (b) Pigm (t); (N0 = 139; KN = 0.0023; P0 = 3.77; KP = 0.0067).

Quantitative comparison of the model with the experimental data was carried out by
the widely used least squares method, which was applied by the formula:

NRMSE =

√√√√ 1
n

n

∑
i=1

(
ŷi − yi

ymax − ymin

)2
(5)

where: yi—experimental data in hour “i”; ŷi—model data in hour “i”; ymax and value ymin
are respectively maximal and minimal value of the corresponding experimental data.

The normalized root-mean-square error (NRMSE) for the biomass in the mesophilic
digestate is 0.0261, and for the thermophilic—0.2587, respectively. The values for NRMSE
for the pigments in mesophilic and thermophilic digestates are 0.0257 and 0.0808.

It is generally accepted that an NRMSE of less than 5% is acceptable. Considering the
relatively small number of experimental data in our case, the found values of root mean
square errors in terms of biomass and pigmentc are completely acceptable. As pointed out
by Alvarez-Garreton et al. [43], the NRMSE provides information about the spread of the
ensemble and the performance of the ensemble mean, which can be considered the best
estimate of the ensemble prediction [44].
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It was calculated that NRMSE for X is 10-fold greater and for Pigm—even more than
3-fold, when the obtained model for the digestate from termophilic AD process was applied.
Finally, qualitatively and quantitatively, it could be concluded that the same model is not
appropriate, and new coefficients are identified for this case.

Based on the optimal coefficients from the first stage for the digestate from the ther-
mophilic AD, the following ones were obtained:

KN = 0.0034, KP = 0.0109 (6)

After performing the second stage of identification for the digestate from thermophilic
AD process, the results obtained are shown in Table 5 and Figure 9a,b.

Table 5. Coefficient identification for the thermophilic digestate.

Coefficient A1 b c B1 d f

Coefficient lower bound 0 −1 −1.5 0 −1 −2
Coefficient upper limit 6000 1 1 1000 1 1

Coefficients identified values 2743.33 0.012 −0.84 889.15 −0.029 0.12
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Figure 9. Experimental data (in green) and model approximation (in red) for for digestate from
thermophilic AD process for (a) X(t); (b) Pigm (t); (KN = 0.0034, KP = 0.0109).
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The value for NRMSE for the biomass in the thermophilic digestates is 0.0058 and
for the pigments—0.0321. Qualitatively and quantitatively, the obtained coefficients are
appropriate for the thermophilic case.

Models were simulated under different initial conditions for nitrogen and phosphorus,
and predictive results for biomass and pigment were obtained, which show the trend of
the experimental results and provide a basis for future work (Figure 10a,b).
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Figure 10. Model prediction for digestate from mesophilic AD process for different initial conditions
for (a) X(t); (b) Pigm (t); (N0 = 200; KN = 0.0023); (b) P(t) (P0 = 5; KP = 0.0067).

Microalgal biomass production requires nutrients like nitrogen, carbon, phosphorus,
and traces of metals. In industry, creating a cost-effective and stable supply of essential
nutrients is still challenging. Microalgal biomass production is costly due to the necessity
of nutrients and harvesting, which remains a significant barrier to their larger-scale utiliza-
tion [45]. Estimation of nitrogen and phosphorous content for microalgal growth is of ut-
most importance. These essential macronutrients play a role in microalgal metabolism [46].
Depletion or excessive sources of these nutrients might affect the quality of biomass [34].
Higher concentrations though could be toxic to microalgae [47]. The presented vision for
utilization of anaerobic digestate with its components for algal biomass production may
be considered as one of the options for recycling and can be included in waste manage-
ment. Another is involving the phytoremediation ability of algae to purify contaminants
from water bodies and wastewater [48]. Finally, it is a cost-effective strategy, support-
ing the conservation of the environment and energy security as critical challenges in the
global economy.
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4. Conclusions

Cultivation of microalgae in waste digestate is a promising cost-effective strategy for
valuable algal product production with various applications. This approach encourages
circular economy and leads to saving fresh water and nutritional supplements for the
growth medium preparation. The proposed nonlinear dynamical models are “black box”
type. They reflect the dynamics of biomass accumulation and pigment formation as
functions of nitrogen and phosphorus consumption and can serve to predict the dynamics
of these variables as a function of the initial nitrogen and phosphorus values.
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