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Abstract: This paper proposes a general approach for building a mechanistic yeast model able to
predict the shift of metabolic pathways. The mechanistic model accounts for the coexistence of
several metabolic pathways (aerobic fermentation, glucose respiration, anaerobic fermentation and
ethanol respiration) whose activation depends on growth conditions. This general approach is
applied to a commercial strain of Saccharomyces cerevisiae. Stoichiometry and yeast kinetics were
mostly determined from aerobic and completely anaerobic experiments. Known parameters were
taken from the literature, and the remaining parameters were estimated by inverse analysis using the
particle swarm optimization method. The optimized set of parameters allows the concentrations to be
accurately determined over time, reporting global mean relative errors for all variables of less than 7
and 11% under completely anaerobic and aerobic conditions, respectively. Different affinities of yeast
for glucose and ethanol tolerance under aerobic and anaerobic conditions were obtained. Finally,
the model was successfully validated by simulating a different experiment, a batch fermentation
process without gas injection, with an overall mean relative error of 7%. This model represents
a useful tool for the control and optimization of yeast fermentation systems. More generally, the
modeling framework proposed here is intended to be used as a building block of a digital twin of any
bioproduction process.

Keywords: yeast; fermentation; Crabtree effect; switching metabolism; modeling; calibration

1. Introduction

Following the growing popularity of digital twins in bio-production [1–3], mechanistic
modeling has received renewed attention by the scientific community. Whatever the
complexity of digital twins at the plant level, mechanistic models remain important, as they
provide an excellent summary of available process knowledge. Although scientists and
industry experts use these models efficiently, they can be further improved by machine
learning, either using data taken from online sources or existing databases. In addition,
such models are useful for planning experiments and determining which critical process
variables need to be monitored and controlled tightly [4]. More precisely, these mechanistic
models allow a better understanding, description, and quantification of the phenomena
involved in highly important and complex bioprocesses, such as alcoholic fermentation
using the yeast Saccharomyces cerevisiae.

Saccharomyces cerevisiae is a Crabtree-positive yeast of great importance for various
biotechnological applications, some of which date back several thousands of years [5]. This
yeast strain is commonly used for its capacity to rapidly convert sugars to ethanol and
carbon dioxide under both aerobic and anaerobic conditions [6]. Although the Crabtree
effect has been extensively studied, much remains to be well understood about this phe-
nomenon. Under aerobic conditions, the alcoholic fermentation process occurs when the
glucose concentration exceeds 0.10–0.15 g/L [7], switching to the respiration process when
the glucose concentration is below these values. Once the glucose is depleted, ethanol
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respiration takes place. Even under aerobic conditions, the anaerobic metabolic pathway
can also be activated when the rate of biological oxygen uptake exceeds the rate of oxygen
supply, which is identifiable by the production of glycerol. In the absence of molecular
oxygen, S. cerevisiae carries out the anaerobic fermentation process, producing glycerol for
the cytosolic redox balance [8].

The above observations confirm the complexity of yeast metabolism, and its use
requires precise control of the process to obtain maximum productivity and quality prod-
ucts. Modeling has proven to be a powerful ally in explaining yeast metabolism and
a useful tool for optimizing and controlling fermentation processes under aerobic and
anaerobic conditions.

Several mechanistic yeast models have been developed using the typical Monod-type
expression (S/(K + S)). This mathematical expression considers the limiting substrates as
glucose, nitrogen and oxygen. Glucose is particularly important to Saccharomyces cerevisiae,
as it is by far the yeast’s preferred carbon source. Yeast cells can sense glucose and utilize
it efficiently over a broad range of concentrations, from a few micromolars to even a few
molars [9]. Nitrogen is also an essential element in S. cerevisiae’s composition, since it is
mandatory for protein synthesis and represents 9 % (w/w) of yeast biomass [10]. Oxygen
is required to regenerate the NAD+ used in the glycolytic pathway of biomass formation,
closing the redox balance for the co-enzyme system NAD+/NADH. The oxidation of
cytosolic NADH into NAD+ can occur through mitochondrial respiration with external
NADH dehydrogenase [8,11]. Oxygen is also important for the synthesis of yeast mem-
brane compounds (sterols and unsaturated fatty acids) [12], though this process could be
neglected since the required amount is very weak, between 0.3 and 1.5 mgO2 gDW−1 [13].

Saccharomyces cerevisiae is a superb ethanol producer yet is also sensitive to higher
ethanol concentrations, especially under high-gravity or very-high-gravity fermentation
conditions. The term “gravity” (actually specific gravity) is commonly used in the fermen-
tation industry to indicate the dissolved solids content of the fermentation medium. The
progress of fermentation is usually monitored by measuring the specific gravity of the
medium. Very-high-gravity (VHG) technology for fuel alcohol production is defined as
“the preparation and fermentation to completion of mashes containing 27 or more grams
of dissolved solids per 100 g mash” [14]. The application of VHG fermentation technol-
ogy, i.e., the use of highly concentrated sugar substrates, for the industrial production
of bioethanol has a number of benefits, including decreased process water requirements,
energy costs and bacterial contamination risk, increased overall plant productivity and
higher ethanol concentrations in the fermentation product that allow considerable savings
in energy for distillation [15–17]. High contents of saccharides in fermentation medium
cause an increase in the osmotic pressure, which has a detrimental effect on yeast cells.
However, Saccharomyces cerevisiae, which is commonly used for ethanol production, can
ferment an increased amount of sugars in the medium, when all the other required nutri-
ents are in adequate amounts [18]. High ethanol concentrations are the major stress factor
during VHG fermentation, but fortunately, many strains of S. cerevisiae are tolerant to very
high ethanol concentrations even without genetic manipulation [19]. Research in yeast
physiology has revealed that many strains of S. cerevisiae can potentially tolerate far higher
ethanol concentration than previously believed [19,20], usually without any conditioning
or genetic modifications.

Ethanol tolerance is associated with the interplay of complex networks at the genome
level. Although significant efforts have been made to study the ethanol stress response
in past decades, mechanisms of ethanol tolerance are not well known [21,22]. Eukaryotic
cells have developed diverse strategies to combat the harmful effects of a variety of stress
conditions. In the model yeast Saccharomyces cerevisiae, the increased concentration of
ethanol as the primary fermentation product will influence the membrane fluidity and be
toxic to membrane proteins, leading to cell growth inhibition and ultimately death [23].

These limiting substrates’ and by-products’ inhibition effect on yeast growth rate
should be considered in any model describing the metabolism of this complex yeast in
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order to adequately describe the fermentation process under both aerobic and anaerobic
conditions. Each limiting substrate can be easily included in the model with the Monod-
like function, and several alternative expressions exist for the inhibiting by-products’
effects [24–30]. However, the Monod-like function and even the conventional expres-
sion used by computer scientists to shift from a limiting substrate to an inhibiting one
(K/(K + S)) are not suitable to model the shift between aerobic fermentation and respira-
tion in the particular case of the Crabtree effect. This phenomenon requires a more precise
switching function that allows aerobic fermentation to be turned off and glucose respiration
to be turned on when glucose concentration falls under 0.10–0.15 g/L. Several models
have already been developed to simulate the fermentation process with Saccharomyces
cerevisiae, achieving significant advances in its metabolism description [26,27,31–36]. How-
ever, much work remains to be done to increase the accuracy of the models in terms of
triggering/inhibiting metabolism pathways when the environmental conditions change.

The main objective of this work is to propose an accurate mechanistic model capable
of predicting the metabolic shift from glucose aerobic fermentation to glucose respiration
when the glucose concentration is lower than 0.10–0.15 g/L and to ethanol respiration
once glucose is depleted. This mechanistic model is developed to be as simple as possible,
easy to use, and adaptable to the conditions of each system. The model can be adapted
to a significant number of existing mutated yeast strains used currently in the industry.
In addition, the model activates/deactivates simultaneous anaerobic fermentation in the
absence/presence of dissolved oxygen, respectively. This integral model will be calibrated
by combining experimental data generated using a commercial yeast strain Saccharomyces
cerevisiae used for wine production and modeling in an inverse method where the metabolic
pathways’ stoichiometry and kinetics are determined independently when possible.

2. Materials and Methods
2.1. Experimental Setup

A Sartorius Biostat B Plus bioreactor (Figure 1) of 5 L was used in batch mode for the
experimental tests.

Substrate

M

Control
and data

acquisition
T

pH

pO2

Water
(T1)

Water
(T2)

Air flow
input

Air flow
output

Figure 1. Experimental setup of the bioreactor.

The yeast used in this study is a strain commercialized by the Institut Oenologique
de Champagne under the name IOC Fizz+. This yeast strain is presented in the form
of active dry yeast (ADY). It is a Saccharomyces cerevisiae yeast resistant to alcohol up to
14% vol. (approximately 110 g/L of ethanol) and possessing the killer factor (K2). These
properties allow it to grow while blocking wild yeasts that do not possess this K2 factor.
After rehydration, the number of living yeast is more than 10 billion cells/g, with a purity
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of less than 10 wild yeasts per million cells. The culture medium was composed of glucose
(10–35 g/L), peptone (20 g/L), yeast extract (20 g/L), and silicone antifoaming. The initial
temperature was set at 25 ◦C. The bioreactor was continuously stirred at 295 rpm. It was
operated under aerobic and anaerobic conditions ensured by a continuous injection of
500 cc of sterilized air and nitrogen gas flow, respectively. A cooling finger was installed on
the gas output to reduce the ethanol and water losses caused by vaporization. The pH and
dissolved oxygen values in the liquid phase were continuously measured using internal
Hamilton electrodes, while a Pt100 probe was used for temperature measurement.

2.2. Analytical Methods
2.2.1. Yeast, Glucose, Ethanol and Glycerol Concentration Measurements

The yeast concentration was determined using samples of known volumes taken
from the bioreactor. These samples were centrifuged in a Centrifuge 5804 R Eppendorf
at 2 ◦C and 5800× g for ten minutes, dried in a Memmert oven at 105 ◦C during seven
days, and weighed. Glucose, ethanol, and glycerol concentrations were measured by
high-pressure liquid chromatography with refractive index detection. A Thermo Scientific
UltiMate 3000 (HPLC-RI) equipped with a Bio-Rad Aminex HPX-87H column performed
the measurements. The mobile phase had a flowrate of 0.5 mL/min with 2 mM H2SO4,
and the column temperature was controlled at 30 °C. The supernatants were filtered by
HPLC-Certified Syringe Filter Whatman Spartan 0.20 µm/30 mm of regenerated cellulose
before the HPLC analysis.

2.2.2. Determination of Parameter kLa

The procedure proposed by Garcia-Ochoa and Gomez [37] was used for the kLa deter-
mination, which consisted of filling the bioreactor with the culture medium without yeast
inoculation. The dynamic technique of absorption consists of producing the elimination of
oxygen in the liquid phase by means of bubbling nitrogen until the oxygen concentration
is equal to zero. Bubbling was then changed to air, and the time-increase in the oxygen
concentration was recorded. The kLa value can be calculated as the slope of the resulting

straight line representing the ln

(
S∗O2
− SO2

S∗O2

)
versus time:

ln

(
S∗O2
− SO2

S∗O2

)
= −kLa · t (1)

3. Theoretical Formulation

We applied the following assumptions in our model:

1. A perfectly stirred bioreactor;
2. Constant yeast kinetic parameter values without considering the temperature effect;
3. Constant stoichiometric parameter values;
4. A constant chemical composition of yeast, independent of the metabolic process

and substrate nature (glucose or ethanol). The yeast elementary composition ob-
tained by Rieger et al. [38] expressed per mol of carbon (Cα HβNγOω , in which α = 1,
β = 1.79, γ = 0.15 and ω = 0.57) was used;

5. Glycerol and ethanol formation pathways which are included; however, pathways for
the production of other by-products, such as fusel alcohols, were not considered;

6. Glycerol consumption under aerobic conditions was not considered;
7. A constant oxygen transfer rate coefficient kLa without including the influence of

medium properties variation throughout the study.
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3.1. Stoichiometry

In the absence of molecular oxygen, S. cerevisiae carries out anaerobic fermentation
(Equation (2)), producing glycerol for the cytosolic redox balance [8].

C6H12O6 + γc1NH3 → d1CαHβNγOω + e1C2H6O + f1C3H8O3 + g1CO2 + h1H2O (2)

It is well known that S. cerevisiae is a Crabtree-positive yeast that exhibits fermentation
in aerobic conditions producing ethanol (Equation (3)) when the glucose concentration
exceeds 0.10–0.15 g/L [7].

C6H12O6 + b2O2 + γc2NH3 → d2CαHβNγOω + e2C2H6O + g2CO2 + h2H2O (3)

Once the glucose concentration reaches values below this threshold, the metabolism
switches from aerobic fermentation to respiration (Equation (4)):

C6H12O6 + b3O2 + γc3NH3 → d3Cα HβNγOω + g3CO2 + h3H2O (4)

Even when aerobic conditions are established in our model, the anaerobic fermentation
pathway is still included. In some cases, the specific respiration rate in a bioreactor is limited
by low concentrations of dissolved oxygen. The anaerobic fermentation pathway is then
partly activated, in which case, both ethanol and glycerol are produced. In anaerobic
cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize
NADH produced in biosynthetic processes. Glycerol consequently becomes a major by-
product during the anaerobic production of ethanol by S. cerevisiae, the largest fermentation
process in industrial biotechnology [39,40].

Once glucose is completely depleted, the degradation of ethanol by yeast occurs under
aerobic conditions:

C2H6O + b4O2 + γc4NH3 → d4Cα HβNγOω + g4CO2 + h4H2O (5)

These four metabolic pathways are included in the model shown in Figure 2. Depend-
ing on the growth conditions, each pathway can be inhibited or partially/fully activated.
The following section describes the activation/deactivation of these metabolic pathways
via kinetics expressions.

3.2. Kinetics

As the YPD medium used here supplies enough nitrogen, no nitrogen limitation was
taken into account in the metabolic pathways. For the other substrates, the limiting effect on
the specific growth rate was described as the product of the switching mathematical expres-
sions proposed by Monod, which is represented in the first product term of Equation (6).
In contrast, the inhibiting by-products’ effect and the metabolism switching from aerobic
to anaerobic conditions and glucose to ethanol respiration were described as a product of
a conventional mathematical expression used in most of the biological models, which is
represented in the second product term of Equation (6)

dXY
dt

= µmax(i)

n

∏
j=1

S(j)

KS(j) + S(j)

k

∏
j=n+1

Kinh
S(j)

Kinh
S(j) + Sinh

(j)

XY, (6)

where µmax(i) is the maximum growth rate for the process i; S(j) is the limiting substrate j;
KS(j) is the half-saturation coefficient for the limiting substrate S(j); Sinh

(j) is the inhibiting

by-product of j; and Kinh
S(j) is the half-saturation coefficient for the inhibiting by-product Sinh

(j) .
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Figure 2. Metabolic pathways of Saccharomyces cerevisiae considering the Crabtree effect. (1) Anaerobic
fermentation. (2) Aerobic fermentation (glucose concentration > 0.10–0.15 g/L). (3) Respiration based
on glucose (glucose concentration < 0.10–0.15 g/L). (4) Respiration based on ethanol.

In the Monod-like function, SGlc is a generic substrate concentration, KGlc defines the
steepness of the function near zero, and the rate is divided by 2 when SGlc = KGlc.

As the Monod-like function is not suitable to model the shift between fermentation and
respiration, a smoothed C∞-stepwise function proposed by La et al. [35] was used instead:

λr =
1 + tanh(α(SGlc/SGlc,c − 1))

2
(7)

The stepwise function is defined by two parameters: the shift value SGlc,c defines
the concentration value at which the transition occurs, and the α parameter defines the
sharpness of this transition. In this case, taking α = 150 and SGlc,c = 0.125 g/L (the mean
value of the glucose transition range), the metabolism transition occurs in the interval of
0.10–0.15 g/L of glucose (Figure 3).
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0.0
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1.0

r -
fu
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 v

al
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SGlc, c=0.125 g/l

Figure 3. Shift function used to obtain a metabolism transition between aerobic fermentation and
respiration processes over the glucose concentration range of 0.10–0.15 g/L.
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3.3. Matrix Model Representation

A detailed description of the stoichiometry and kinetics of the model’s biological
processes is shown in Table 1.

Table 1. Matrix representation of the biological model.

Component→ j 1 2 3 4 5
i ↓ Process SGlc SO2 SE SGly XY Rate

1 Anaerobic fermentation based on glucose − MGlc
d1 MXY

e1 ME
d1 MXY

f1 MGly

d1 MXY

1 R1

2 Aerobic fermentation based on glucose − MGlc
d2 MXY

−
b2 MO2

d2 MXY

e2 ME
d2 MXY

1 R2

3 Respiration based on glucose − MGlc
d3 MXY

−
b3 MO2

d3 MXY

1 R3

4 Respiration based on ethanol −
b4 MO2

d4 MXY

− ME
d4 MXY

1 R4

5 Aeration 1 R5

The process expression rates are shown in Appendix A.

The system of differential equations that describes the biological system is represented
in matrix form, establishing the corresponding balance equations

dC(j)

dt
=

5

∑
i=1

5

∑
j=1

υ(i,j)R(i), (8)

where C(j) is the concentration of the component j, υ(i,j) is the stoichiometric coefficient
corresponding to the biological process i and the component j, and R(i) is the rate of the
biological process i.

3.4. Model Calibration

The yeast stoichiometry and kinetics of each metabolic pathway were studied indepen-
dently to the extent that was possible. Experiments with the injection of nitrogen or air were
performed to achieve complete anaerobic fermentation (anaerobic sub-model) or aerobic
conditions (aerobic sub-model), respectively (step 1, Figure 4). Six batch fermentation
experiments (A–F, Table 2) with different initial glucose, ethanol and yeast concentrations
were performed to observe the effects of glucose and ethanol on the yeast kinetics during
calibration, while experiment G was used to test the calibrated model. The initial conditions
of the batch experiments are shown in Table 2.

Table 2. Initial conditions of batch fermentation experiments performed under anaerobic and aero-
bic conditions.

Exp. SGlc (g/L) SO2 (mg/L) SE (g/L) SGly (g/L) XY (g/L) T (◦C) Conditions

A 13.75 - 52.13 0.26 2.43 26.10 N2 injection

B 15.37 - 10.60 0.12 0.30 25.20 N2 injection

C 31.06 - 10.99 0.15 0.81 26.50 N2 injection

D 10.24 6.08 49.44 0.16 0.81 24.60 Air injection

E 15.93 5.84 9.11 0.10 0.50 26.10 Air injection

F 30.79 2.86 9.84 0.25 1.31 25.20 Air injection

G 12.41 - 1.27 0.15 0.40 23.80 -
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Most of the model parameters in this work were experimentally determined to the
extent that was possible. The remaining model parameters were taken either from the
literature or estimated by inverse analysis using the particle swarm optimization method.
The oxygen and ethanol half-saturation coefficients were considered the same for all aerobic
metabolic pathways. However, for the first time, to our knowledge, different glucose
affinities and ethanol tolerances for aerobic and anaerobic conditions were applied in the
model, establishing different half-saturation coefficients for glucose and ethanol inhibition.
This modeling process was guided by the identification procedure and is notably different
from what the literature reports, i.e., that average values of these parameters are used for all
metabolic pathways and both for aerobic and anaerobic conditions. The modeling strategy
used in the calibration of the developed model is explained in Figure 4. This strategy
requires advancing step by step towards maximum complexity, starting with the analysis
of experiments under nitrogen injection, which ensures that one single metabolic pathway
exists (Equation (2)).

MODELING STRATEGY

FORMULATION CALIBRATION

KINETICSSTOICHIOMETRY

Experimental (d1, e1, f1) Inverse analysis ( µmax1, KGlc,Ax, KE,Ax )

Experimental (d2, e2, d4) 

Literature (b3, d3, b4) 

Inverse analysis (b2)

(1)

(2)

Anaerobic stoichiometric 
 parameters

(3)

Anaerobic fermentation process (1)

Aerobic fermentation process (2)

Glucose respiration process (3)

Ethanol respiration process (4)

MODEL

Anaerobic sub-model

Set of stoichiometric and
kinetics parameters for

future use

(4)

Aerobic sub-model

Physical sub-model

Experimental (kLa) 
Literature (µmax3, KGlc,Ox, KE) 

Inverse analysis (µmax2, µmax4, KE,Ox)

Anaerobic kinetics 
 parameters

Aeration process

inh

inh

Figure 4. Modeling strategy.

The procedure varies according to the specific metabolic pathway:
Anaerobic fermentation process
The stoichiometry of the anaerobic fermentation process was initially determined ex-

perimentally using three experiments (A, B, and C). Kinetics parameters (maximum growth
rate and half-saturation coefficients for glucose and ethanol inhibition under anaerobic
conditions) were then estimated by inverse analysis (step 2, Figure 4).

Aerobic fermentation processes
Three experiments (D, E, and F) were used to determine the stoichiometry and kinetics

of the different aerobic metabolic pathways. The inverse analysis was performed, applying
the previously calibrated anaerobic sub-model. This application was required since anaer-
obic conditions were observed during the aerobic fermentation process when the rate of
biological oxygen uptake was higher than the rate of oxygen dissolution provided by the
aeration process (step 3, Figure 4).

• For the aerobic fermentation process (SGlc > 0.10–0.15 g/L), all stoichiometric coeffi-
cients were determined experimentally, with the exception of the oxygen stoichiomet-
ric coefficient determined by inverse analysis. The inverse analysis was required due
to the impossibility of performing mass balances caused by the lack of information
about the specific form of nitrogen assimilated by the biomass as supplied by the
YPD medium. Some kinetics parameters such as oxygen and glucose half-saturation
coefficients under aerobic conditions were taken from Sonnleitner and Käppeli [36]
and Thierie [33], respectively (Figure 4), while the maximum growth rate and half-
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saturation coefficient for ethanol inhibition under aerobic conditions were determined
by inverse analysis.

• As the glucose respiration process (SGlc < 0.10–0.15 g/L) has a short duration in-
volving low values of glucose concentration, it is sometimes difficult to estimate its
stoichiometry and kinetics experimentally. Therefore, these parameters were taken
entirely from Thierie [33] (step 3, Figure 4).

• The stoichiometry of the ethanol respiration process was also experimentally deter-
mined during the last stages of these three experiments, once glucose was entirely
depleted. The oxygen stoichiometric coefficient is also difficult to determine exper-
imentally; this coefficient was taken from Scheiblauer et al. [27], as was the half-
saturation coefficient for ethanol [36]. The maximum growth rate was obtained by
inverse analysis (step 3, Figure 4).

The inverse analysis was performed by means of an optimization procedure using the
mean relative error as the objective function between the experimental data (yeast, ethanol,
glycerol, and glucose concentrations) and the model prediction

MRE =
1

lmn

`

∑
i=1

m

∑
j=1

n

∑
k=1

∣∣∣∣∣∣
y(i)e(k,j) − y(i)m(k,j)

y(i)e(k,j)

∣∣∣∣∣∣, (9)

where y(i)e(j,k) is the experimental data value k of the variable j in experiment i, and y(i)m(j,k) is
the model output data value k of the variable j in experiment i.

The model was implemented in Python, where the ODE system was numerically
solved using the solve_ivp method from the integrate SciPy package. The LSODA integration
method was used for solving the ODE system; this method is a wrapper of the Fortran
solver from ODEPACK that consists of an Adams/BDF method with automatic stiffness
detection and switching [41,42].

The calibration process was carried out using the particle swarm optimization (PSO)
method from the PySwarm package. The PSO algorithm is based on a simplified social
model that is closely tied to swarming theory. A physical analogy for the PSO algorithm
might be a swarm of birds searching for a food source. In this analogy, each bird (referred
to as the particle) makes use of its own memory as well as knowledge gained by the swarm
as a whole to find the best available food source [43]. This algorithm is mainly described
by the relative weights of three different mechanisms (interia, memory and socialization),
which in this case, were set to 0.6, 0.5, and 0.5, respectively, leading to fast convergence.
The calibration parameter ranges were defined using the values reported in the literature.

The quality of the model in terms of experimental data fitting was also evaluated by
estimating Pearson’s correlation. This correlation was computed using the pearsonr method
from the stats SciPy package in Python.

4. Results and Discussion
4.1. Modeling Yeast Activity under Completely Anaerobic Conditions

Table 3 summarizes the stoichiometry and kinetics parameters of the biological model
under completely anaerobic conditions (anaerobic sub-model), which were obtained from
the calibration procedure. As explained above, stoichiometry was obtained experimentally
under completely anaerobic conditions, while kinetics were determined by inverse analysis.
The inverse analysis combined experimental data and modeling using three experimental
data sets obtained for different glucose, ethanol and yeast concentrations (experiments A,
B, and C).
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Table 3. Stoichiometry and kinetics parameters of the biological model under complete anaero-
bic conditions.

Parameter Name Symbol Value Source

Yeast stoichiometric coefficient in
anaerobic fermentation process (mol) d1 1.05 ± 0.04 Experimental

Ethanol stoichiometric coefficient in
anaerobic fermentation process (mol) e1 1.70 ± 0.01 Experimental

Glycerol stoichiometric coefficient in
anaerobic fermentation process (mol) f1 0.10 ± 0.00 Experimental

Half-saturation coefficient for glucose
under anaerobic conditions (g/L) KGlc,Ax 1.72 ± 0.01 Calibrated

Half-saturation coefficient for ethanol
inhibition under anaerobic
conditions (g/L)

Kinh
E,Ax 202.83 ± 0.97 Calibrated

Maximum growth rate for anaerobic
fermentation process (h−1) µmax1 0.31 ± 0.00 Calibrated

The optimization process using the PSO method converged to a unique minimum,
which is demonstrated by the low standard deviation values obtained for each parameter
during the optimization process (below 0.5 %, as can be seen in Table 3). Using the optimal
parameters, the model was able to reproduce all the experiments, reporting a global mean
relative error for all variables of 7 % and with a unique set of parameters (Table 4).

Table 4. Mean relative errors reported between model output and experimental data under completely
anaerobic conditions.

No. Experiment SGlc(%) SE(%) SGly(%) XY(%) Mean Value (%)

1 A 21.37 1.14 0.96 2.65 6.53

2 B 9.76 3.55 5.19 7.94 6.61

3 C 17.44 3.74 4.07 4.32 7.39

Mean value (%) 16.19 2.81 3.41 4.97 6.84

Interestingly, the maximum growth rate obtained during the calibration process is
the same reported by Verduyn et al. [44] (0.31 h−1), which validates the quality of the
calibration process. On the other hand, the value of the half-saturation coefficient obtained
for glucose (1.72 g/L) reveals a larger need for this source of carbon in relation to what
is reported in the literature (1 × 10−3 to 0.5 g/L) [26,27,31–36]. Similarly, the high value
obtained for the half-saturation coefficient for ethanol inhibition (202.83 g/L) indicates that
S. cerevisiae has a high tolerance to ethanol under anaerobic conditions, significantly higher
than those reported in the literature (10–26.97 g/L) [26,27].

The model provides very good results in the prediction of the variables’ behavior
(Table 4, Figure 5); however, the half-saturation coefficient for ethanol inhibition obtained
in this model might not be adequate to simulate anaerobic fermentation processes when
dealing with higher ethanol concentrations. According to the inhibition function used in
the model and the value of the half-saturation coefficient found for ethanol inhibition, the
growth rate would be divided by a factor of two for an ethanol concentration of 202.83 g/L.
However, according to Arroyo-López et al. [45], no yeast activity should be observed at
this concentration.

The high value of the half-saturation coefficient for ethanol inhibition results from the
combination of both the experimental range of ethanol tested here and the shape of the
inhibition function, which is too loose to account for toxicity. This problem could be solved
with a recalibration process using a wider ethanol concentration range and a different
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mathematical expression for the inhibition function. For example, applying the λr function
(Equation (7)) would involve a critical value (the ethanol concentration value above which
no yeast activity is observed) and the range of inhibitory effect (α). This approach could be
useful for future modeling research.
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Figure 5. Yeast activity simulation under complete anaerobic conditions. Comparison between model
output and experimental data.

In general, the values obtained for the half-saturation coefficients for glucose and
ethanol inhibition through the inverse analysis are outside the ranges reported in the
literature. Yet these values describe very well the behavior of the main variables of the
model. This is an interesting result since it is the first time, to our knowledge, that these
parameters have been differentiated in yeast metabolic models for aerobic and anaerobic
conditions. The model is consequently more accurate in describing the phenomena since it
uses different substrate affinities and inhibitions for each operating condition.

The accuracy of the model for predicting the experimental data was quite good,
reporting the highest MRE in predicting glucose concentration and satisfying the adequate
description of the trends of all variables in the experimental data (Table 4, Figure 5).

In addition, the correlation analysis between the experimental data and the output
variables of the model performed in this study is statistically significant, as its p-values
are less than 1 × 10−3%, which is well below what is expected to achieve acceptable
quality (p ≤ 5%). Figure 5 confirms that the model is able to reproduce the behavior of the
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main experimental variables very well, thus validating the description of the phenomena
considered in the model. Even the lowest MRE value obtained for ethanol, the worst
variable trend of the model reporting the lowest R-squared value, is still good (Figure 5).

In general, the agreement between the three sets of experimental data and the model
outputs is very strong, reporting an overall MRE value in the prediction of all the variables
studied of less than 7 %. In addition, the model is able to predict yeast metabolism under
fully anaerobic conditions at different concentrations of glucose, ethanol, and yeast. These
results confirm the robustness of the model and the quality of the calibration method.

4.2. Modeling Yeast Activity under Aerobic Conditions

Modeling the fermentation process under aerobic conditions is more complex, since
it involves different metabolic pathways, such as aerobic fermentation and respiration
processes, typical of a Crabtree effect positive yeast. The anaerobic fermentation pathway
could be also included: even under aerobic conditions, the oxygen uptake can be larger than
the rate of dissolved oxygen, partially triggering the anaerobic pathway. This metabolic
pathway is verified by the data concerning glycerol production. The dissolved oxygen
deficiency also worsens with time due to the decreased oxygen solubility in the medium,
which is caused by an increased temperature resulting from metabolic heat release and the
increase in the yeast population. Fortunately, the model accounts for these two effects of
the anaerobic pathway and the influence of temperature on dissolved oxygen. Different
glucose affinity and ethanol inhibition coefficients under aerobic and anaerobic conditions
were established in the model, assuming that yeast tolerance to ethanol and affinity for
glucose is different under aerobic and anaerobic conditions.

Three test combinations with different initial concentrations of glucose, ethanol, and
yeast were performed to consider their influence on yeast kinetics (experiments D, E, and
F). Most of the model parameters were taken from the literature, so only four parameters
had to be calibrated, considerably simplifying the model calibration process. This simpli-
fied calibration process demonstrates the phenomenological character of the model, its
universality, and its versatility for use in production.

The optimization process used the PSO method converged to a single minimum
(Table 5), reporting a standard deviation in parameter optimization of less than 0.25%.

The model was able to reproduce all experiments, reporting a global mean relative
error for all variables of less than 11% (Table 6). In this case, a half-saturation coefficient for
ethanol inhibition (19.70 g/L) was obtained under aerobic conditions, which was lower
than the same value of the half-saturation coefficient for ethanol inhibition under anaerobic
conditions. The differences between these values supports this work’s assumption, i.e.,
that yeast tolerance to ethanol is different under anaerobic and aerobic conditions (10-fold
more tolerant under anaerobic conditions). Arroyo-López et al. [45] studied the inhibitory
effect of ethanol using the Lambert and Pearson [46]’s methodology for the estimation of
the minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) of
a compound using optical density (OD) measurements. The MIC is related to the resistance
or tolerance of the microorganism to the compound and is the lowest concentration that
results in the maintenance or reduction of an inoculum’s viability (marks the concentration
above which no growth is observed). In contrast, the NIC is related to the susceptibility of
the microorganism to the compound, and it is the concentration above which the inhibitor
begins to have a progressive and negative effect on growth [46]. The authors studied some
yeast strains, and in the particular case of S. cerevisiae, they obtained values for the NIC and
MIC in the ranges of (36.7–73.9 g/L) and (95.6–141.4 g/L), respectively. In our experiments,
the ethanol inhibition effect was only observed in the data set in which an initial ethanol
concentration over 50 g/L concentration was used, which lies well within the inhibitory
concentration ranges reported by Arroyo-López et al. [45].
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Table 5. Stoichiometry and kinetics parameters of the biological model under aerobic conditions.

Parameter Name Symbol Value Source

Oxygen stoichiometric coefficient in aerobic
fermentation process (mol) b2 0.37 ± 0.00 Calibrated

Yeast stoichiometric coefficient in aerobic
fermentation process (mol) d2 1.40 ± 0.25 Experimental

Ethanol stoichiometric coefficient in aerobic
fermentation process (mol) e2 1.26 ± 0.20 Experimental

Oxygen stoichiometric coefficient in glucose
respiration process (mol) b3 2.50 ± 0.06 [33]

Yeast stoichiometric coefficient in glucose
respiration process d3 3.33 ± 0.06 [33]

Oxygen stoichiometric coefficient in ethanol
respiration process (mol) b4 1.61 ± 0.10 [27]

Yeast stoichiometric coefficient in ethanol
respiration process (mol) d4 1.17 ± 0.29 Experimental

Half-saturation coefficient for oxygen (mg/L) KO2 0.10 [36]

Half-saturation coefficient for glucose under
aerobic conditions (g/L) KGlc,Ox 1 × 10−3 [33]

Half-saturation coefficient for ethanol (g/L) KE 0.10 [36]

Half-saturation coefficient for ethanol
inhibition under aerobic conditions (g/L) Kinh

E,Ox 19.70 ± 0.01 Calibrated

Maximum growth rate for aerobic
fermentation process (h−1) µmax2 0.51 ± 0.00 Calibrated

Maximum growth rate for glucose respiration
process (h−1) µmax3 0.20 [33]

Maximum growth rate for ethanol respiration
process (h−1) µmax4 0.11 ± 0.00 Calibrated

Overall oxygen transfer rate (h−1) kLa 27.27 ± 0.42 Experimental
Stoichiometric parameters for the respiration process were taken as the mean values reported by [33] using three
glucose concentrations values (5, 15 and 30 g/L) for the respiration process at the maximum growth rate of
0.20 h−1.

According to the stoichiometry and kinetics obtained in the present study, the aerobic
fermentation process has a lower ethanol production yield, a higher yeast yield, and
a higher growth rate than the anaerobic fermentation process. According to Thierie [33],
stoichiometry varies as a function of the specific growth rate of the yeast. In contrast, our
work uses constant stoichiometric parameters corresponding to the mean values of the
experiments performed for the individual metabolic pathways under aerobic and anaerobic
conditions (Tables 3 and 5). However, in all batch fermentation processes carried out in
this study, the apparent stoichiometry varies due to the varying partition of the metabolic
pathways. Accounting for the varying metabolic pathways partition confers a much better
predictive capability on the model. Our model thus has the potential to increase ethanol
yield with reduced consumption of time and resources, which would be useful for all
ethanol producers.
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Table 6. Mean relative errors reported between model output and experimental data under aero-
bic conditions.

No. Experiment SGlc(%) SO2 (%) SE(%) SGly(%) XY (%) Mean Value (%)

1 D 7.77 9.95 0.83 24.19 4.56 9.46

2 E 11.13 17.19 3.87 10.96 7.36 10.10

3 F 9.23 14.27 4.70 22.70 7.09 11.60

Mean value (%) 9.38 13.80 3.13 19.28 6.34 10.39

Figure 6 summarizes the results obtained with the final set of parameters.
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Figure 6. Yeast activity simulation under aerobic conditions. Comparison between model output and
experimental data.

In most cases, the model is able to predict the concentrations over time with accuracy.
The highest MRE values and the lowest R-squared values were found for glycerol (an
MRE of 24.19 % and an R-squared of 93.30 % for the worse cases, experiment D and E,
respectively) (Table 6, Figure 6). Once again, the correlation analysis between the experi-
mental data and the output variables of the model performed in this study is statistically
significant, as its p-values are less than 1 × 10−6%. S. cerevisiae has already been shown to
grow by using glycerol as a carbon source under aerobic conditions at low specific growth
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rates (0.01–0.20 h−1) [47]. Interestingly, glycerol consumption was observed in experiments
E and F beyond 6 h. Yeast growth based on glycerol under aerobic conditions was not
included in the model, which might significantly affect the model balance. Improving this
yeast model by including this metabolic pathway would be a novel approach and would
require the identification of its main metabolites, their stoichiometry, and kinetics.

Individual Metabolic Pathway Contributions under Aerobic Conditions

As stated in Section 4.2, all metabolic pathways are always kept in the model. However,
their relative importance is triggered during the culture as a function of growth conditions.
The rates of all these pathways can then be obtained from the simulation. The relative
rates of each metabolic pathway as integrated over time during the process are depicted
in Figure 7 for glucose and ethanol consumption. In the model, ethanol production and
utilization are expressed with positive and negative rate values, respectively, because
ethanol is a fermentation product that becomes a carbon source for yeast when glucose
is depleted. In all cases, the aerobic alcoholic fermentation process is the predominant
metabolic pathway.

The highest glucose consumption rates were predicted by the model for experiment F,
in which the maximum initial concentrations of glucose and yeast were used. Indeed, an
increase in the initial yeast concentration with a constant air supply rate favors the anaerobic
fermentation pathway because it increases oxygen consumption rates above the oxygen
supply rate, generating anaerobic conditions. However, although a higher initial yeast
concentration was used in experiment D than in experiment E, the anaerobic fermentation
pathway was activated to a lesser extent in experiment D. These differences are explained
by the higher initial ethanol concentration, which inhibits the aerobic fermentation pathway
and thus reduces the rate of oxygen consumption. The glucose respiration process in our
experiments was almost negligible compared to the other metabolic pathways.

0 2 4 6 8 10

-1.50

-1.00

-0.50

0.00

CONTRIBUTION OF METABOLIC PATHWAYS ON GLUCOSE UTILIZATION

Temporal evolution

Exp. D

Respiration based on glucose Aerobic fermentation Anaerobic fermentation Respiration based on ethanol

1.2%95.8%
3.0%

Average ratios

0 2 4 6 8 10

0.00

0.20

0.40

0.60

CONTRIBUTION OF METABOLIC PATHWAYS ON ETHANOL PRODUCTION

Temporal evolution

Exp. D

95.9%
4.1%

Average ratios

0 2 4 6 8 10
-3.00

-2.00

-1.00

0.00

G
lu

co
se

 u
ti

liz
at

io
n 

ra
te

 (
g/

l/h
)

Exp. E

0.6%

86.0%

13.3%

0 2 4 6 8 10

0.00

0.50

1.00

Et
ha

no
l p

ro
du

ct
io

n 
an

d 
ut

ili
za

ti
on

 r
at

es
 (

g/
l/h

)

Exp. E
82.7%

17.3%

0 2 4 6 8 10
Time (h)

-4.00

-2.00

0.00

Exp. F

0.3%

56.7%

43.0%
0 2 4 6 8 10

Time (h)

0.00

1.00

2.00 Exp. F
49.4%

50.6%

Figure 7. Contribution of individual metabolic pathways to glucose utilization and ethanol produc-
tion: temporal evolution during fermentation (line graphs) and time−average of the stoichiometric
ratios (pie graphs). Ethanol consumption by respiration once glucose is depleted is not considered in
the time−average of the stoichiometric ratios for ethanol production.

4.3. Model Validation: Yeast Culture without Gas Injection

Our model was validated using a batch fermentation process without gas injection
(experiment G) instead of the experiments from the learning database. In this experiment,
the gas headspace of the bioreactor was maintained at a constant atmospheric pressure.
Even without air injection, oxygen is still transferred from the bioreactor gas headspace
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to the liquid volume through the agitation process. This oxygen transfer occurs through
the oxygen concentration gradient maintained by the biological oxygen consumption in
the liquid phase. Consequently, both anaerobic and aerobic metabolic pathways take place
simultaneously. In the simulation, the kLa value was replaced by the oxygen transfer mass
from the gas headspace, taking the value already estimated by La et al. [35] for the same
installation and operation conditions (2× 10−4 s−1).

As can be seen in Table 7 and Figure 8, the model performs very nicely for this
validation test. It allows all variables’ evolution to be predicted with an MRE of less than
11 %, reporting a global MRE for all variables of 7 %. The trends of all variables were well
described, showing a very good correlation coefficient value above 99 % (Figure 8), results
that are statistically significant as their p-values are less than 1 × 10−6%. The model also
provides an excellent prediction of glycerol production. These results validate the quality,
applicability, and accuracy of the model, even under different operating conditions.

Table 7. Model validation: mean relative errors reported between model output and experimental
data for fermentation without gas injection.

No. Experiment SGlc(%) SE (%) SGly(%) XY(%) Mean Value (%)

1 G 10.69 5.19 8.60 3.65 7.03
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Figure 8. Model validation: yeast activity simulation without gas injection. Comparison between
model output and experimental data.

Figure 9 depicts the individual metabolic pathway contributions during glucose
consumption and ethanol production without gas injection.

Even without gas injection, the aerobic metabolic pathway was partly activated thanks
to the oxygen transfer from the gas headspace. This limited mass transfer explains the
low activation of the aerobic metabolic pathway compared to the dominant metabolism
of the anaerobic pathway. Most of the glucose consumption and ethanol production were
associated with the anaerobic metabolic pathway (94.5 % and 95.9 %, respectively). No
ethanol consumption was observed during the experiment, as Figure 9 confirms.
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Figure 9. Contribution of individual metabolic pathways to glucose utilization and ethanol pro-
duction: temporal evolution during fermentation in the absence of gas injection (line graphs) and
time−average of the stoichiometric ratios (pie graphs). Ethanol consumption by respiration once
glucose is depleted is not considered in the time−average of the stoichiometric ratios for ethanol
production (dSGlc/dt and dSE/dt are the glucose utilization and ethanol production and utilization
rates, respectively).

Indeed, this particular case of yeast culture without gas injection more closely re-
sembles real-world scenarios, where alcoholic fermentation processes are partially carried
out under anaerobic conditions. Certain designs of bioreactors can allow the oxygen
in the gas headspace to be continuously renewed if atmospheric air is allowed to enter,
for example, through filters. The line graphs in Figure 9 prove that the model is able
to activate/deactivate the corresponding metabolic pathways according to the medium
conditions and, more importantly, under different operating conditions than those used for
model calibration. The results obtained allow a better understanding of the phenomena
occurring in partial anaerobic systems in order to improve process control and optimize
operating conditions according to the conditions of the medium.

4.4. Potential Application of This Model

Producers and scientists currently consider modeling to be a promising tool for en-
hancing bio-production. To this end, databases, mechanistic models, and machine learning
need to work in synergy for online process monitoring. This approach is known as hy-
brid modeling and offers a promising route in the general quest of the digital twin in
bio-production [1–3]. For this approach to be efficient, the mechanistic model needs to be
as predictive as possible. The mechanistic model could be improved either inline by the
real-time tuning of some key parameters or online using a dynamic learning database.

Even though the mechanistic model was applied to a specific commercial strain of
Saccharomyces cerevisiae, the general modeling approach proposed in this study is a perfect
brick for hybrid modeling for any application of bio-production. Our model is constructed
for this commercial strain by including the main metabolic pathways of mutant and wild-
type yeast strains used for ethanol or yeast production reported in the literature. The model
was successfully calibrated and validated for the commercial yeast strain provided by the
Institut Oenologique de Champagne under the name IOC Fizz+, thus demonstrating its
applicability and universality in ethanol or yeast production systems. It is important to
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note that, for predicting the metabolism of other yeast strains, model calibration alone may
be sufficient if the mutated yeast strain exhibits the same metabolic pathways described
in the model. The structural basis of the model can allow other metabolic pathways to be
easily included or removed when describing the metabolism of the microorganisms that do
not exhibit the same metabolic pathways more accurately.

The predictive model proposed in this paper is valuable not only for alcoholic fermen-
tation but also for other processes, such as the production of chemicals, fuels, foods, and
pharmaceuticals, as yeast is one of the most widely used hosts for synthetic biology [48].
One of the disadvantages of the Crabtree effect is the carbon loss due to the ethanol produc-
tion under aerobic conditions, which leads to a lower biomass formation and consequently
a lower production of recombinant proteins [49]. Therefore, the structural base of the
developed model could be adapted or serve as a basis for the modeling of other Crabtree-
positive yeasts used for the production of therapeutic proteins. The model could then
be used as a tool for achieving a better understanding, control, and optimization of the
production process.

Beyond the huge domain of engineered yeast strains, the formulation proposed in
this work can also be applied to other strains. In particular, the proposed functions that
account for the activation or inhibition of pathways and sudden shifts of pathways are
universal. For example, our team is currently using this framework to model the Chinese
hamster ovary (CHO) cell metabolism to produce antibodies. CHO cells are analogous
with the Crabtree effect in that they exhibit a phenomenon known as the Warburg effect,
where glucose is fermented to produce lactate even in the presence of oxygen [50]. Even
in the presence of oxygen, this first stage of lactic fermentation corresponds to a peak of
exponential cell growth, followed by a metabolic shift from the net production to the net
consumption of lactate (known as the stationary phase) during which proteins are produced.
The similarity between the systems mentioned above suggests that our mechanistic models
have the potential to predict the metabolic shift observed for CHO cells, which has the
possibility of considerably improving the current state of CHO cell modeling.

Finally, bringing together mechanistic modeling and machine learning can better
explain system phenomena that are traditionally difficult to describe. For instance, well-
established theoretical knowledge can be formulated as explicit equations, while parameters
that cannot be derived from first principles or space-time-varying (latent) states are esti-
mated via a machine learning approach [51]. The development of online sensors using the
Raman spectroscopy mechanistic and machine learning models and their hybridization
variants have considerably increased their application in bioprocess retro-control, allowing
maximum productivity with lower resource consumption.

5. Conclusions

In this study, a robust and predictive yeast model was developed and successfully
validated with experimental data from experiments with a commercial yeast strain used
for wine production. The model includes a comprehensive set of metabolic pathways that
are always present in the model but are more or less activated depending on the growth
conditions. A general framework is proposed for the formulation, including functions that
account for the activation, inhibition, and shift of metabolic pathways.

Known parameters were taken from the literature, and the remaining parameters were
estimated by inverse analysis using the particle swarm optimization method. In all cases,
the optimization process using the PSO method converged to a single minimum, reporting
a standard deviation in parameter optimization of less than 0.5 %. The evaluation of the
optimized set of stoichiometric and kinetic parameters on the model allows for the accurate
prediction of concentrations over time, reporting global mean relative errors for all variables
of less than 7 and 11% under completely anaerobic and aerobic conditions, respectively.

The obtained model is able to switch between aerobic fermentation and glucose-based
respiration when the glucose reaches values below 0.10-0.15 g/L. It is also able to activate
the anaerobic fermentation metabolic pathway even under aerobic conditions when the
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rate of oxygen uptake is higher than the rate of dissolved oxygen, as supplied by aeration.
Once glucose is depleted under aerobic conditions, the model automatically switches to
ethanol degradation.

The model quality and robustness were confirmed with an additional experiment
performed without gas injection, and the model describes the main process variables with
an overall mean relative error of 7%. The complete formulation and set of parameters are
provided in the document so that the reader can implement them for their own needs.

The results provided in this work give new insights towards the behavior of S. cerevisiae.
For example, the model better informs the emerging nature of the global stoichiometry and
differences in ethanol tolerances, which depend on the evolution of yeast growth conditions
over time and the active metabolic pathway. Beyond the application to the yeast strain
studied here, this work gives a general framework of mechanistic modeling able to predict
the coexistence of several metabolic pathways and their shift along the growth conditions.
This framework can be used as a building block of a digital twin of any bio-production.
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Nomenclature

b(i)
Oxygen stoichiometric coefficient for biological process—i in the matrix model
representation (mol)

c(i)
Ammonia stoichiometric coefficient for biological process—i in the matrix model
representation (mol)

d(i)
Yeast stoichiometric coefficient for biological process—i in the matrix model
representation (mol)

e(i)
Ethanol stoichiometric coefficient for biological process—i in the matrix model
representation (mol)

f(i)
Glycerol stoichiometric coefficient for biological process—i in the matrix model
representation (mol)

g(i)
Carbon dioxide stoichiometric coefficient for biological process—i in the matrix
model representation (mol)

h(i)
Water stoichiometric coefficient for biological process—i in the matrix model
representation (mol)

S Substrate concentration (g/L)
KS Half-saturation coefficient for substrate S (g/L)
S∗O2

Saturation oxygen concentration (g/L)
SO2 Dissolved oxygen concentration (g/L)
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SGlc Glucose concentration (g/L)
SE Ethanol concentration (g/L)
SGly Glycerol concentration (g/L)
XY Yeast concentration (g/L)
kLa Overall oxygen transfer rate (h−1)
KGlc,Ax Half-saturation coefficient for glucose under anaerobic conditions (g/L)
KGlc,Ox Half-saturation coefficient for glucose under aerobic conditions (g/L)
Kinh

E,Ax Half-saturation coefficient for ethanol inhibition under anaerobic conditions (g/L)
Kinh

E,Ox Half-saturation coefficient for ethanol inhibition under aerobic conditions (g/L)
KE Half-saturation coefficient for ethanol (g/L)
KO2 Half-saturation coefficient for oxygen (mg/L)
C(j) Concentration of the component j in the matrix model representation (g/L)

R(i)
Specific growth rate of the biological process i in the matrix model representation
(g/L/h)

PO2 Oxygen partial pressure in the air (atm)
H(T) Henry constant at temperature T (mol/L/atm)
µmax(i) Maximum growth rate for process i in the matrix model representation (h−1)
S(j) Limiting substrate j in the matrix model representation (g/L)

KS(j)
Half-saturation coefficient for the limiting substrate S(j) in the matrix model
representation (g/L)

Sinh
(j) Inhibiting by-product j in the matrix model representation (g/L)

Kinh
S(j)

Half-saturation coefficient for the inhibiting by-product S(j) in the matrix model
representation (g/L)

SGlc,c
Critical glucose concentration for switching from aerobic fermentation to
respiration (g/L)

µmax(i) Maximum growth rate for process i in the matrix model representation (h−1)
ρ(T) Water density at temperature T (mol/L)
δ Safety factor of switching function for the ethanol respiration process activation

y(i)e(j,k)
Experimental data value −k of variable j in experiment i

y(i)m(j,k)
Model output data value −k of variable j in experiment i

υ(i,j) Stoichiometric coefficient corresponding to the biological process i and the component j
MGlc Glucose molar mass (g/mol)
MO2 Oxygen molar mass (g/mol)
ME Ethanol molar mass (g/mol)
MGly Glycerol molar mass (g/mol)
MXY Yeast molar mass (g/mol)

Appendix A. Biological Rate Expressions

Anaerobic fermentation based on glucose:

R1 = µmax1
SGlc

KGlc,Ax + SGlc

KO2

KO2 + SO2

Kinh
E,Ax

Kinh
E,Ax + SE

XY (A1)

Aerobic fermentation based on glucose:

R2 = µmax2λr
SGlc

KGlc,Ox + SGlc

SO2

KO2 + SO2

Kinh
E,Ox

Kinh
E,Ox + SE

XY (A2)

Respiration based on glucose:

R3 = µmax3(1− λr)
SGlc

KGlc,Ox + SGlc

SO2

KO2 + SO2

Kinh
E,Ox

Kinh
E,Ox + SE

XY (A3)
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Respiration based on ethanol:

R4 = µmax4
δKGlc,Ox

δKGlc,Ox + SGlc

SE
KE + SE

SO2

KO2 + SO2

Kinh
E,Ox

Kinh
E,Ox + SE

XY, (A4)

where δ is a safety coefficient to guarantee low values of the mean saturation coefficient
in the switching function for the activation of the ethanol respiration process without
conditioning the value of the glucose saturation coefficient with a value of 1 × 10−3.

Aeration

R5 = kLa(MO2 H(T)PO2 − SO2) (A5)

The constant Henry’s value as a function of temperature is estimated using Equation (A6):

H(T) = X(T)ρw(T), (A6)

where X is the mole fraction of the oxygen dissolved in water when the oxygen partial
pressure is 1 atm and where X was estimated using a correlation (Equation (A7)) for the
temperature range of 273 to 333 K taken from [52]:

lnX(T) = −171.2542 + 8391.24/T + 23.24323lnT (A7)

The water density ρw(T) in (mol/L) was estimated using a correlation (Equation (A8))
for water over the entire temperature range of 273.16 to 647.096 K taken from [52]:

ρw(T) = 17.863 + 58.606τ0.35 − 95.396τ2/3 + 213.89τ − 141.26τ4/3 (A8)

τ = 1− T/647.096 (A9)
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