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Abstract: Corncobs of four different corn varieties were physically segregated into two different anatom-
ical portions, namely the corncob outer (CO) and corncob pith (CP). The biomass composition analysis
of both the CO and CP was performed by four different methods. The CP showed a higher carbohydrate
and lower lignin content (83.32% and 13.58%, respectively) compared with the CO (79.93% and 17.12%,
respectively) in all of the methods. The syringyl/guaiacyl (S/G) ratio was observed to be higher in
the CP (1.34) than in the CO (1.28). The comprehensive physical characterization of both samples
substantiated the lower crystallinity and lower thermal stability that was observed in the CP compared
to the CO. These properties make the CP more susceptible to glycanases, as evident from the enzymatic
saccharification of CP carried out with a commercial cellulase and xylanase in this work. The yields
obtained were 70.57% and 88.70% of the respective theoretical yields and were found to be equal to that
of pure cellulose and xylan substrates. These results support the feasibility of the tailored valorization of
corncob anatomical portions, such as enzymatic production of xylooligosaccharides from CP without
pretreatment combined with the bioethanol production from pretreated CO to achieve an economical
biorefinery output from corncob feedstock.

Keywords: corncob anatomical portions; differential biomass composition analysis; crystallinity
measurements; thermogravimetry; enzymatic saccharification without pretreatment; tailored biorefinery

1. Introduction

The increasing demand for biofuels has been the largest driving force for research and
development in the field of biomass valorization [1]. The ubiquitous and continuous supply of
agricultural waste has made it a promising biomass type for second-generation (2G) biofuels,
or cellulosic biofuels, which are made from cellulose available from non-food crops and
waste biomass such as corn stover, corncobs, straw, wood, and wood byproducts [2]. Maize
(Zea mays) is the second most important cereal crop cultivated globally, with production
reaching up to 1172.58 million metric tons (Mt) by the year 2022 [3]. This fact emphasizes
the ready availability of corncobs, a unique xylan-rich agricultural waste generated during
the processing of maize for its kernels. The anatomy of the corncob is constituted of diverse
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physical components that can be broadly partitioned into an outer portion and an inner portion.
The outer portion is a highly dense area comprising a woody ring, chaff, and beeswing. The
inner portion that is soft and less dense is known as the pith (Figure 1). Corncob is one of
the proven economical feedstocks for 2G biofuel production [1], with a comparatively high
glucan and xylan content and a lower lignin percentage than the other agriculture-generated
2G feedstocks [4].
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corncob-based products that have been reported, but are not limited to, are high-valued 
celluloses such as cellulose acetate [27], regenerated cellulose films [28], and the whole 
corncob pyrolysis-derived products [29]. In our recent review on corncob biorefineries, 
these products, their production routes, and the life cycle assessment studies of the corn-
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The average lignocellulose composition of the whole corncob reported by several re-
searchers is in the range of 33–43% cellulose, 26–36% hemicellulose, and 17–21% lignin [5,6].
These data invariably show the high hemicellulose composition of corncob compared with
other biomass types. Unlike other biomass types where only 2G bioethanol is the main
biorefinery product, the unique physicochemical construct of corncobs made it a feedstock
of choice for many other value-added products. The high xylan content of corncobs has
been used as a feedstock for the industrial-scale production of xylitol [7] and furfural [8].
A great deal of research has been reported for the production of xylooligosaccharides [9]
and furan-derived biorefinery platforms such as furfurylamine [10], and furoic acid [11].
Corncob-derived sugars have been reported as the carbon source for the fermentative
production of acids such as propionic acid [12], levulinic acid [13], lactic acid [14], acetic
acid [14], butyric acid [15], malic acid [16], and alcohols such as ethanol [17], butanol [18],
and 2,3-butanediol [19]. Further, the pretreated whole corncob meal was used as a carbon
source for solid state and submerged fermentations [20], for the production of biogas [21],
for the production of bio-hydrogen [22], and as a biosorbent to purify water by remov-
ing heavy metals [23,24], industrial dyes [25], and metal ions [26]. Other corncob-based
products that have been reported, but are not limited to, are high-valued celluloses such
as cellulose acetate [27], regenerated cellulose films [28], and the whole corncob pyrolysis-
derived products [29]. In our recent review on corncob biorefineries, these products, their
production routes, and the life cycle assessment studies of the corncob biorefinery were
discussed in detail [30].

Biomass pretreatment has been the bottleneck in determining the overall productivity,
economics, and life cycle energy consumption of any biorefinery [1,31]. A techno-economic
analysis of corncob biorefineries inferred that the major stake in operating costs is on
account of the biomass pretreatment process [1], which accounts for an average of 18% of
the overall cost of biorefinery [32]. In addition to its direct cost, pretreatment shows
a significant impact on both the upstream as well as downstream processes involved,
such as the type of biomass used, sugar content in liquid fraction generated, choice of
neutralization step, chosen organism to ferment the liquid fraction, ways to deal with
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oligomers generated, quantities of ash, lignin, and extractives in liquid fraction, and
their effect on enzymatic saccharification and fermentation, isolation of lignin and other
inhibitors, methods to process the solid fraction, and the processes to deal with the waste
and effluents. These manifestations are not only capital-intensive but also pose a significant
impact on the environment. Several approaches have been proposed to minimize the
overall operating cost of corncob biorefineries, such as further valorization of xylan or
cellulose-extracted industrial corncob residues, co-utilization of corncob-derived glucan
and xylan, and valorization of all three components of corncob-derived lignocellulose in a
biorefinery fashion. These approaches explain the importance of co-product credit to make
the overall process economically viable [1]. Majority of research on corncobs is focused
on native farm-collected whole corncobs. Considerable research has been reported for the
valorization of corncob waste residue (CCR) generated from corncob-derived industries
as well [30]. Except for a few CCR valorization approaches that utilized CCR without a
pretreatment [13,20], every other whole corncob biorefinery approach has been heavily
invested in optimizing suitable pretreatment approaches [28]. Nevertheless, none of these
approaches reported a scenario where tailored biochemical or thermochemical treatments
were applied to individual anatomical portions of the corncob to achieve a better outcome.

The very idea of this current work is based on the belief that the corncob pith can
be valorized with a mild pretreatment or without pretreatment, owing to its peculiar
morphological features, to improve the overall economics of the biorefinery. To establish
this, it is important to thoroughly understand the lignocellulosic construct and recalcitrance
of these corncob anatomical portions.

Lignocellulose biomass recalcitrance is typically influenced by several chemical and
physical factors. The chemical factors include composition (hemicellulose, cellulose, and
lignin content), acetyl groups, hydroxyl groups, and syringyl/syringyl + guaiacyl (S/G)
ratio. The physical parameters include crystallinity, degree of polymerization, accessible
surface area, and accessible volume [33]. Lignin is known to cause unproductive binding
with glycanases to prevent them from saccharifying the biomass [33]. This effect of lignin
on glycanases is varied as per the innate abundance of its three monomers (syringyl (S),
guaiacyl (G), and p-hydroxyl phenol (H)). Most research reports have claimed that a high
S/G ratio of lignin favors enzymatic saccharification due to the relatively high affinity of
G-subunits towards glycanases [34,35]. Enhanced syringyl content by genetically engi-
neered plant cell walls showed lesser recalcitrance and higher susceptibility to enzymatic
saccharification [36]. However, certain reports contradict the above assumption and state
an opposite or no effect of the S/G ratio on enzymatic saccharification [37].

Crystallinity is the extensively studied supramolecular physical parameter of ligno-
cellulose and pure cellulose materials, expressed as the ratio of the crystalline regions of
the biomass to its amorphous regions. The close association of crystalline cellulose fibers
with non-covalent interactions makes it around 3–30 times less susceptible to enzymatic
hydrolysis than its amorphous regions [38]; most studies have reported the impeding effect
of crystallinity on enzymatic saccharification [39]. However, again some reports have stated
that crystallinity is comparatively less critical than other physical parameters, such as the de-
gree of polymerization, particle size, pore volume, and accessible surface area, with respect
to affecting the biomass recalcitrance [40]. Pretreatments have often been proven to achieve
10% more lignocellulose deconstruction with smaller biomass particles (<1 mm) than larger
ones (1–4 mm) [41,42] and especially the highest lignin dissolution [43]. However, as the
particle size decreases, sugar and solid recovery tend to decrease after pretreatment, show-
ing a negative effect on downstream enzymatic saccharification and overall bioconversion.
On the other hand, for processes such as biomass torrefaction and palletization, micropar-
ticle sizes are preferred over larger ones [44]. In addition, the process of biomass size
reduction itself is an energy-intensive step; hence, a trade-off between the biomass particle
size and the overall process economics must be empirically considered [41]. Accessible
surface area or specific surface area (SA) is comparatively less studied but is a critical factor
that determines enzymatic saccharification. SA is essentially related to the particle size and
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pore volume of the biomass, where a reduction in the particle size or increase in the pore
volume enhances the SA [39]. Some reports have stated that there is a threshold for particle
size beyond which further comminution does not affect enzymatic saccharification, and
these threshold particle sizes were observed to be different for each biomass type [45]. A
typical cellulase molecular size is around 5.1 nm; hence, a lignocellulose pore volume large
enough to fit a cellulase could theoretically enhance the scarification efficiency due to the
percolation of the enzyme. A pore size range of 10–30 nm was reported to be effective for
different biomass types to undergo enzymatic saccharification, and there are also studies
that have reported a negative or no correlation at all for the SA of a biomass type to its
enzymatic susceptibility [46]. Moreover, the proper empirical measurement of SA is always
a difficult task [47].

All these findings invariably suggest that the recalcitrance of lignocellulosic biomass is
a collective phenomenon that depends on all of the above-mentioned chemical and physical
parameters put together rather than on any individual parameter. A great deal of the
physical characterization of whole corncob through techniques such as scanning electron
microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR),
Brunauer, Emmett, and Teller surface area analysis (BET) and thermogravimetric analysis
(TGA) have been reported. Most studies have reported using at least more than one of these
techniques to study the effect of corncob recalcitrance on its enzymatic saccharification, and
they have showed that the decrease in biomass recalcitrance upon pretreatment promotes
the enzymatic saccharification [48] in addition to all of the other types of biorefinery
objectives of corncob discussed above [49].

To fill the aforementioned research gap, in this work we tried to establish the advan-
tage and readiness of corncob anatomical portions for tailored biorefinery strategies by
performing comprehensive compositional analysis, physical characterization, and enzy-
matic saccharification of the separated outer (CO) and pith (CP) portions of the corncob.
We primarily focused on measuring crystalline and amorphous proportions and on estab-
lishing a detailed lignocellulosic composition of corncob anatomical portions to perceive
their effect on enzymatic saccharification. More than one method was used for this study
with the intent to make this work serve as a reference for future works, as the details had
not been reported so far with respect to the individual anatomical portions of the corncob.

2. Materials and Methods
2.1. Sample Selection and Preparation

Four different Zea mays varieties (https://iimr.icar.gov.in/cultivars-2/, accessed on 30
November 2022), KMH-2589 (Kaveri seed company limited, Secunderabad, India, 500003),
LTH 22 (Yaaganti Seeds Pvt. Ltd., Hyderabad, India, 500034), P3533 (Pioneer Hi-Bred Private
Ltd., Hyderabad, India, 500081), and BL 900 (Bisco biosciences, Hyderabad, India, 500003),
which were produced and cultivated around Telangana state, India (18.1124◦ N, 79.0193◦ E),
were chosen for the study. These were termed CC1, CC2, CC3, and CC4, respectively. Five
kilograms of shelled corncobs of each variety were directly collected from the fields, thoroughly
washed, and air-dried for several months as per the National Renewable Energy Laboratory,
USA-laboratory analytical procedure (NREL-LAP) [50]. The pith was separated from air-dried
corncobs by drilling it out using a homogenizer motor attached with a high-speed steel (HSS)
drill bit (twist bit) of a 6 mm size. The average weight ratio of the separated outer and inner
anatomical portions of the corncob was 49, with densities of 403.6 kg/m3 and 128 kg/m3,
respectively. These portions were separately milled to obtain a particle size in the range of
0.85–0.18 mm (−20/+80 sieve fraction) [51]. The woody ring of the corncob outer was more
resilient to milling, and it required a heavy-duty knife mill to comminute it to the desired
size. Two corncob-derived samples (−20/+80 fractions)—the corncob outer (CO), and corncob
pith (CP) were considered for further biomass composition analysis (Figure 1). The CP is
relatively homogenous, whereas the CO is a mix of chaff, glume, and woody ring. Hence,
for biomass composition analysis by the NREL and near-infrared (NIR) spectroscopy-based
rapid methods, sampling was performed by selecting 50 random 5 g selections from thoroughly
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mixed individual CO and CP fractions of each corncob variety to achieve a uniform distribution
of all anatomical variations among the samples. For physical characterization, single CO and
CP samples that were an equal mix of all the corncob varieties used were selected.

Commercial microcrystalline cellulose (Avicel® PH-101, Sigma Aldrich, Burlington, MA,
USA, 01805) and cellulose-cotton liters (Sigma Aldrich, Burlington, MA, USA, 01805) were taken
as pure cellulose references. Lignin alkali (Sigma Aldrich, Burlington, MA, USA, 01805) and
xylan from beech wood (Megazyme, Wicklow, Ireland, A98YV29) were used as pure lignin
and xylan references. These were termed AC, CL, LG, and XY, respectively. Unless otherwise
mentioned, all of the samples are processed in triplicates through all of the analytical procedures.

2.2. Scanning Electron Microscopy (SEM) Analysis

Morphological images of the samples were recorded with a scanning electron microscope
(VEGA3 TESCAN LMU). Small amounts of dry individual samples (moisture < 1%) were
fixed on to sample-holding stubs using carbon tape and were subjected to gold and palladium
sputtering under vacuum (Gold Sputter Coater-SPI-MODULE). The SEM instrument was
operated in secondary electrons detection mode with a 5–15 kV accelerating voltage and
working distance of around 10 mm. Each sample was scanned at three different levels of
magnification, ranging from 600× to 5000× [52].

2.3. NREL Method for Biomass Composition Analysis

The biomass composition analysis was carried out as per the NREL-LAPS (https://www.
nrel.gov/bioenergy/biomass-compositional-analysis.html, accessed on 30 November 2022).
The monosaccharides analysis was carried out using high-performance liquid chromatography
(HPLC) (Prominence UFLC, Shimadzu, Kyoto, Japan, 604-8442) equipped with Rezex-RPM-
monosaccharide-Lead (II) ion column (Phenomenex, Torrance, CA, USA, 90501-1430) and a
suitable guard column. The HPLC analysis of acetate was performed using a Repromer-H (Dr.
Maisch GmbH, Beim Brückle, Germany, 1472119) column along with an appropriate guard
column. We ran 50 µL of the samples through the respective columns maintained at 80 ◦C
in isocratic mode using HPLC-grade water as the mobile phase. The retention data were
collected using a refractive index detector with flow cell temperature of 50 ◦C. Analysis of
sucrose was carried out using a biochemistry analyzer (YSI-2950-D, Xylem, Washington, DC,
USA, 20003) equipped with an immobilized enzyme membrane (YSI-2703). The standards
used for all analytical procedures were HPLC-grade chemicals purchased from Sigma Aldrich,
Burlington, MA, USA, 01805.

2.4. Van Soest Method for Fiber Analysis

Detergent partitioning of the fiber fraction of the lignocellulose materials followed by
gravimetric analysis, which was proposed by Van Soest et al. [53], was used to determine
the composition of the CO, CP, AC, and CL. Initially, neutral detergent fiber (NDF) (hemi-
cellulose + cellulose + lignin + ash), acid detergent fiber (ADF) (cellulose + lignin + ash),
and acid detergent lignin (ADL) (lignin) were determined among the samples. Further,
the respective percentages of cellulose, hemicellulose, and lignin were gravimetrically
calculated using Equations (1)–(3) [53]. The respective digestions were carried in 250 mL
round bottom flasks in a heating mantle. And the filtration followed by drying and ashing
was carried out in borosilicate filtration crucibles with grade-2 porosity.

Hemicellulose = NDF − ADF (1)

Cellulose = ADF − ADL (2)

Lignin = ADL (3)

2.5. NIR Spectroscopy Method for Rapid Biomass Composition Analysis

The NIR spectra of the CO and CP samples were collected in the diffuse reflection
mode using a Cary Varian 5000-UV-Visible-NIR spectrophotometer, Agilent, Santa Clara, CA,

https://www.nrel.gov/bioenergy/biomass-compositional-analysis.html
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USA. The spectra were acquired by placing around 1 g of the sample in the powder cell at
ambient temperature. Each sample was scanned in triplicates in the range of 1000 nm to
2500 nm, with 64 scans per spectrum. The average of the triplicate spectrum was considered
for further analysis. Reflectance (R) data was converted to absorbance (A) using the equation
A = log (1/R) [54]. An NIR calibration model with partial least squares regression (PLS) was
built using the Unscrambler®-X software, version 10.4 (Aspen Technology, Inc., Bedford,
MA, USA, 01730). Preprocessing of the spectral data was carried out using Savitzky-Golay
smoothing and multiplicative scatter correction techniques. The PLS calibration models
were built based on the full range of the spectrum, where two-thirds of the sample scans
were taken as a reference set and the remaining scans were taken as the test set. Both sets
were carefully selected to have equal representation from all four samples. The coefficient
of multiple determination for calibration (R2(C)), coefficient of multiple determination for
validation (R2(V)), coefficient of multiple determination for prediction (R2(P)), standard error
of calibration (SEC), standard error of prediction (SEP), and residual predictive deviation
(RPD) are the important indicators used for the NIR-PLS model evaluation [54].

2.6. Thermogravimetric Analysis (TGA)

TGA (TGA 4000, Perkin Elmer, Waltham, MA, USA, 02451) of the samples was separately
carried out in isothermal mode under an inert atmosphere (N2 flow around 19.8 mL/min), and
oxidative atmosphere (air). The temperature range used was 30–800 ◦C at a constant heating
rate of 200 ◦C/min. The TGA curve with mass percentage remaining against temperature was
plotted using OriginPro2018 software, Ver.b9.5.1.195 (OriginLab Corporation, Northamton,
MA, USA, 01060). The instrument-generated first derivative data was smoothened with the
adjacent averaging method at 70-point smoothing, and the mass loss percentage per minute
against temperature was plotted. This curve was used as an alternative to the derivative
thermogram (DTG); hence, hereafter it is referred to as the DTG curve. The lignocellulosic
composition of the samples was calculated using Equations (4)–(6). Their relative thermal
degradation percentages were obtained from the respective TGA curves, where the inflection
points were selected based on the corresponding superimposed DTG curve [55]. Additionally,
the DTG curve is normalized and inverted by integrating the sample weight percentage at each
time fraction of the derivative data (mi) to the initial (m0) and end (m∞) mass% of the sample
using Equation (7) [56]. The peak deconvolution was separately performed on normalized
DTG curves of both CO and CP by manually selecting the peaks at each devolatilization stage,
and a multiple peak fit was performed using the Gaussian function. Peaks were manually
marked and iterations were performed until the fit converged and a chi-square tolerance value
of 1 × 10−9 was reached. All the converged peaks have shown R2 and adjusted R2 values
above 0.99. Moisture, hemicellulose, cellulose, and lignin peaks were assumed as pseudo-
components [57], and their compositions were calculated based on the respective areas of the
peaks using Equation (8).

% Hemicellulose = (W − H) (4)

% Celulose = (A − C) (5)

% Lignin = (C − L) (6)

Xi =
mi − m∞

m0 − m∞
(7)

% PC = (a/A)× 100 (8)

where: W = % mass after dehydration; H = % mass measured after hemicellulose removal;
C = % mass measured after cellulose removed; L = % mass measured after lignin removed
(% Ash content); PC = pseudo-component; a = area of a peak; A = total area under the curve.

2.7. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

FTIR spectra were measured using a BRUKER Alpha II compact FTIR spectrometer. Both
the CO and CP samples were milled to pass through an 80-mesh sieve, and the commercial
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control samples AC, CL, and LG were used in their manufactured form without any additional
milling. The samples were prepared as per the standard KBr pelleting method [58]. Spectra
were collected in the absorbance mode with 32 scans per spectrum at a resolution of 4 cm−1,
within a wavenumber range of 4000–400 cm−1 [59]. Each sample was pelleted in triplicates and
an average spectrum was considered. Processing, mathematical analysis, and deconvolution of
the obtained spectra were performed using OriginPro2018 software. The total crystallinity index
(TCI) was calculated as the height ratio of the absorption peaks at 1372 cm−1 and 2900 cm−1 [60].
The lateral order index (LOI) or empirical crystallinity index was calculated as the area ratio
of the peaks at 1430 cm−1 and 893 cm−1 [61]. Hydrogen bond intensity (HBI) was calculated
as the area ratio of the peaks around 3340–3330 cm−1 and 1320 cm−1 [62]. Additionally, two
different S/G ratios 1462 cm−1/1510 cm−1 [63] and 1595 cm−1/1509 cm−1 [64], lignin to total
carbohydrate ratios 1515 cm−1/1374 cm−1, 1515 cm−1/1162 cm−1, and 1515 cm−1/898 cm−1,
and hemicellulose to total carbohydrate ratio 1734 cm−1/1374 cm−1 [65] were calculated. Unless
otherwise mentioned, the areas of the respective peaks were used to calculate all of the above-
mentioned ratios.

2.8. X-ray Diffraction (XRD) Analysis

XRD data of the samples were recorded with X’Pert Powder XRD (Malvern Panalytical
Ltd., Malvern, U.K, WR141XZ). The scans were performed at a step size of 0.0167113 in the
2θ angle range of 6–80◦ with 5 s of exposure at each step using Ni-filtered Cu Kα radiation
at wavelengths of 1.540598 (Kα1) and 1.544426 (Kα2). The operating generator voltage and
tube currents were 45 kV and 30 mA, respectively. Smoothing, baseline subtraction, peak
integration, and peak deconvolution of the digitally obtained diffraction data between the
2θ angles from 10◦ to 40◦ were performed using OriginPro2018 software. The crystallinity
of the samples was calculated by four different methods. The percent crystallinity index
(CrI%) was calculated by the peak height method using Equation (9) [66]. Percent crys-
tallinity (Crd) was calculated by the peak deconvolution method using Equation (10). This
method assumes that the peak broadening is contributed by the amorphous content [67].
The percent crystallinity of the sample (Cra1) was calculated by the amorphous contribu-
tion subtraction method using the ball-milled AC as the amorphous standard for all of
the samples using Equation (11) [68]. This method needs an additional normalization step
to bring the diffractogram of the amorphous standard below the sample diffractogram
to avoid negative values making the process prone to errors or bias [68]. To overcome
this problem, we reported a modified version of the amorphous contribution subtraction
method where the percent crystallinity (Cra2%) was measured using the ball-milled form
of the sample itself as an amorphous standard instead of a common standard. The crys-
tallite sizes of the (002) lattice of each sample were calculated using the Scherr equation
(Equation (12)) [69], and the interplanar distances between the crystal lattices, known as
d-spacing, were calculated using Bragg’s law (Equation (13)) [70].

CrI% =

(
I002− Iam

I002

)
× 100 (9)

Crd% =

(
Acr

At

)
× 10 (10)

Cra1% =

(
ACra1

As

)
× 100 (11)

L = kλ/β cos θ (12)

d = n λ/(2sin θ) (13)

where I002 = Intensity at about 2θ = 22.6◦ (represents the diffraction from both crystalline
and amorphous materials) Iam = Intensity at the “valley” between the two peaks at about
2θ = 18◦ (represents the diffraction contributed by amorphous material), Acr is the area of
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all the crystalline peaks ((101), (10Ī), (021), (002), (040)) together, and At is the total area
of the diffractogram. ACra1 is the area of all the crystalline peaks of the sample obtained
by peak integration after subtracting the diffraction intensity of the ball-milled AC and
As is the total area of the sample before amorphous subtraction. L is the crystallite size in
nm, k is the dimensionless shape factor (0.89), λ is the wavelength of the incident X-ray
(0.1540 nm), β is the full width at the half maximum (FWHM) of the (002) lattice expressed
in radians, θ is the peak position in radians (Bragg angle), and n is a positive integer.

2.9. Enzymatic Saccharification of Untreated Corncob Samples

Both the CO and CP were separately saccharified with cellulase (Trichoderma reesei
ATCC 26921, Sigma-C2730, initial activity around 650 filter paper units (FPU)/g), and
xylanase (endo-1,4-β-Xylanase M1 from Trichoderma viride, Megazyme, E-XYTR1, initial
activity around 1650 units (U)/mL), without any pretreatment. The CL and XY were also
saccharified as the substrate controls with the respective enzymes. A typical enzymatic
reaction process involved a 5 g dry weight of the substrate, taken in 250 mL Erlenmeyer
flasks along with 50 mM of sodium citrate buffer, pH 4.8 (cellulase reaction), and pH 4.5
(xylanase reaction). Each enzyme was appropriately diluted in their respective buffers
to achieve 20 FPU of cellulase and 30 U of xylanase per 1 g of dry mass of the substrate,
achieving a liquid-to-solid ratio of 20 at a total reaction volume of 100 mL. A set of substrate
blanks were incubated along with the test flasks by including all the ingredients mentioned
above except the respective enzymes. The reactions were carried at 50 ◦C with shaking
at 130 RPM for 50 h. Sample aliquots of 0.05 mL were collected at every 5 h interval.
All the aliquots were appropriately diluted with respective buffer solutions to measure
the total reducing sugars released using a micro-DNS assay, where the total reaction
volume was minimized to 1.5 mL while maintaining the sample-to-reagent ratio mentioned
in the original macro-DNS assay, as proposed by T.K. Ghose [71]. The absorbance of
substrate blanks was subtracted from that of the corresponding test sample of the same time
interval, and the resulting spectral data were plotted against time to visualize the enzymatic
saccharification effect on each substrate. Enzyme activity (saccharification) was measured
as per the procedure reported by Asmarani et al. [72]. The obtained saccharification
yield was expressed as the percent of the total theoretical yield (TY), calculated using the
equation of Mandels and Sternberg [73]. Anhydro correction factors of 0.9 and 0.88 were
used for the cellulase and xylanase activities, respectively [73], and the total glucan and
xylan concentrations obtained from the NREL analysis were taken as the respective initial
substrate concentrations [74].

3. Results and Discussion
3.1. SEM Analysis

The SEM images revealed the varied morphological features of the samples (Figure 2).
The CO is compact and tightly packed in contrast to the loosely packed foam-like CP.
The pores observed in the CP explain its soft airy features. A huge contrast in physical
recalcitrance can be observed between the CO and CP at every magnification (50 µm, 20 µm,
and 5 µm). Several previously reported studies described the morphology of whole corncob
particles as a sheet-like bulky structure [75], solid-tight structure [48], highly ordered rigid
structure [76], and agglomerated unbroken surface [77], and those findings exactly coincide
with the morphology of the CO of this study. In addition, these reports also presented an
increase in corncob porosity upon pretreatment.
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3.2. NREL Method for Biomass Composition Analysis

The compositional differences among all four different corncob varieties of the study
were tabulated (Table 1). None of the CO and CP samples showed mannose, while a
small percentage of mannose was found in both the CL and AC references. Both cellulose
and hemicellulose percentages of all the CP samples were slightly greater than that of
CO samples due to the comparatively lower total lignin percentage in the CP. Overall
hemicellulose percentage among both the CO and CP samples was greater than the cellulose
percentage (Table 1). The total water and ethanol extractives and the sucrose concentration
in all CP samples were greater than that of the CO samples. The total protein was less
in the CP than that of CO (Table 1). Many works reported biomass composition analysis
of the whole corncob by the NREL method. However, most of these works reported just
the cellulose, hemicellulose, and total lignin concentrations rather than the particulars
of individual monosaccharide concentrations, the information about extractives, and the
protein content. The lignocellulose composition of CO reported in this work is closer to
that of the whole corncob composition reported in the literature [78], which could be due
to the higher percentage of CO in the whole corncob.

The chromatograms related to calibration standards and the sample analysis are
provided in the Supplementary Materials (Figures S1–S12).

3.3. Van Soest Method for Fiber Analysis

The NDF value of all CP samples was higher than that of CO and was similar to that
of the pure cellulose references CL and AC. Although ADF values of CP were slightly
higher than CO, they were almost half that of CL and AC. The composition analysis shows
that the hemicellulose percentages of both the CO and CP samples were higher than their
respective cellulose percentages. In addition, the CP samples showed comparatively higher
cellulose and hemicellulose as well as lower lignin percentages compared with CO samples
(Table 2). These results are consistent with the NREL method results reported in this work.
Whole corncob fiber analysis results reported by many previous works [79] were closer to
that of the CO in this work.
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Table 1. Biomass composition of samples by the NREL method.

Corn
Variety/
Reference

Sample %AIL %ASL %Glucan %Xylan %Galactan %Arabinan %Mannan %Protein
(Structural)

%Water
Extractives

%Ethanol
Extractives %Sucrose %Acetate

CC1 CO 14.52 ± 0.23 1.85 ± 0.13 36.68 ± 0.13 25.42 ± 0.26 10.1 ± 0.04 5.29 ± 0.26 0 ± 0.38 0.62 ± 0.1 2.26 ± 0.15 1.17 ± 0.22 2.58 ± 0.2 5.24 ± 0.38
CP 11.11 ± 0.16 1.72 ± 0.12 39.13 ± 0.37 24.39 ± 0.34 11.14 ± 0.05 6.28 ± 0.28 0 ± 0.29 0.39 ± 0.13 3.49 ± 0.05 1.58 ± 0.04 3.84 ± 0.31 5.21 ± 0.07

CC2 CO 15.44 ± 0.33 2.04 ± 0.31 37.04 ± 0.36 25.77 ± 0.19 11.45 ± 0.24 5.77 ± 0.06 0 ± 0.31 0.79 ± 0.05 2.46 ± 0.37 1.55 ± 0.15 2.89 ± 0.27 5.84 ± 0.2
CP 11.18 ± 0.24 2.11 ± 0.35 39.66 ± 0.35 25.39 ± 0.1 11.52 ± 0.39 7.39 ± 0.12 0 ± 0.25 0.48 ± 0.13 3.59 ± 0.07 1.96 ± 0.25 4 ± 0.29 5.73 ± 0.19

CC3 CO 14.52 ± 0.15 2.51 ± 0.12 37.22 ± 0.26 25.86 ± 0.1 10.63 ± 0.16 6.55 ± 0.12 0 ± 0.34 0.69 ± 0.37 2.28 ± 0.36 1.77 ± 0.39 2.87 ± 0.08 5.57 ± 0.2
CP 11.42 ± 0.14 2.49 ± 0.37 40.44 ± 0.06 24.89 ± 0.17 11.26 ± 0.16 7.16 ± 0.05 0 ± 0.2 0.49 ± 0.32 3.35 ± 0.36 1.68 ± 0.28 4.19 ± 0.1 5.56 ± 0.13

CC4 CO 15.52 ± 0.14 2.1 ± 0.26 37.71 ± 0.21 26.66 ± 0.09 11.65 ± 0.17 5.93 ± 0.03 0 ± 0.04 0.7 ± 0.14 2.85 ± 0.19 1.64 ± 0.29 2.76 ± 0.16 5.87 ± 0.33
CP 12.04 ± 0.17 2.25 ± 0.11 39.64 ± 0.18 25.14 ± 0.34 12.15 ± 0.1 7.72 ± 0.33 0 ± 0.23 0.52 ± 0.07 3.37 ± 0.07 1.9 ± 0.27 4.21 ± 0.25 5.25 ± 0.3

Reference CL 0.33 ± 0.27 0.35 ± 0.07 66.66 ± 0.24 15.47 ± 0.26 N.D N.D 10.8 ± 0.2 0 ± 0.26 0.34 ± 0.07 0.25 ± 0.14 0 ± 0.15 0 ± 0.3
AC 0 ± 0.04 0.32 ± 0.1 71.88 ± 0.11 15.83 ± 0.13 N.D N.D 9.77 ± 0.36 0 ± 0.16 0.09 ± 0.34 0.07 ± 0.3 0 ± 0.25 0 ± 0.36

AIL: acid-insoluble lignin; ASL: acid-soluble lignin; N.D: not detected.



Fermentation 2022, 8, 704 11 of 24

Table 2. Fiber analysis and lignocellulose composition analysis by the Van Soest method.

Corn Variety/
Reference Sample % NDF % ADF % ADL % Hemicellulose % Cellulose % Lignin

CC1 CO 87.17 ± 0.3 45.25 ± 0.14 6.75 ± 0.07 41.92 ± 0.07 38.5 ± 0.15 6.75 ± 0.1
CP 92.76 ± 0.1 49.35 ± 0.16 1.7 ± 0.32 43.41 ± 0.16 47.65 ± 0.32 1.7 ± 0.12

CC2 CO 85.56 ± 0.08 47.88 ± 0.1 9.47 ± 0.31 37.68 ± 0.3 38.41 ± 0.17 9.47 ± 0.15
CP 95.62 ± 0.25 51.77 ± 0.22 4.12 ± 0.31 43.85 ± 0.13 47.65 ± 0.18 4.12 ± 0.11

CC3 CO 88.02 ± 0.28 46.91 ± 0.3 9.34 ± 0.13 41.11 ± 0.24 37.57 ± 0.28 9.34 ± 0.09
CP 94.43 ± 0.15 49.64 ± 0.24 2.36 ± 0.32 44.79 ± 0.24 47.28 ± 0.1 2.36 ± 0.11

CC4 CO 86.21 ± 0.09 46.31 ± 0.19 8.3 ± 0.25 39.9 ± 0.27 38.01 ± 0.3 8.3 ± 0.1
CP 95.1 ± 0.24 50.62 ± 0.21 1.8 ± 0.16 44.48 ± 0.12 48.82 ± 0.17 1.8 ± 0.19

Reference CL 98.1 ± 0.31 95.51 ± 0.13 0 2.59 ± 0.28 95.51 ± 0.21 0
AC 98.62 ± 0.17 97.31 ± 0.22 0 1.31 ± 0.11 97.31 ± 0.11 0

3.4. NIR Method for Rapid Biomass Composition Analysis

The NIR spectra of both the CO and CP were analogous to that of other biomass
types reported [54], with all the characteristic peaks of lignocellulose. The results of
PLS calibration, validation, and prediction performances of the individual models as per
their full spectral pretreatment are presented in Figure 3. All the statistical parameters of
both calibration and validation sets were similar. Among the models generated with the
unprocessed spectra of CO, the glucan model achieved the highest prediction, followed by
the models of sucrose and protein. Meanwhile, the highest predictive models of CP were
obtained for xylan and protein, followed by sucrose, glucan, and lignin.
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Figure 3. NIR-PLS calibration models. Note: (a1–c1) are calibration and validation models of the
glucose, xylose, and lignin of CO, respectively; (a2–c2) are prediction performances of the models
(a1–c1), respectively; (a3–c3) are calibration and validation models of the glucose, xylose, and lignin
of CP, respectively; (a4–c4) are prediction performances of the models (a3–c3), respectively. Savitzky-
Golay smoothing was used for the respective NIR spectra of all above models; R2(C): coefficient
of multiple determination for the calibration; R2(V): coefficient of multiple determination for the
validation; R2(P): coefficient of multiple determination for the prediction; SEC: standard error of the
calibration; SEP: standard error of the prediction; RPD: residual predictive deviation.

R2(C)/R2(P) ratios close to one, lower SEC and SEP values, and higher RPD values (>2)
indicate a better fit of the models. The performances of all the models were significantly
improved by the spectral pretreatments, decreasing the differences among calibration and
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validation sets. Savitzky-Golay smoothing of both the CO and CP spectra achieved models
with the highest predictive performance.

3.5. TGA Analysis

Under an inert environment, devolatilization started at 30 ◦C and maximum dehydra-
tion occurred between 50.5 and 67 ◦C. The end of the dehydration stage, denoted by the
start of the first mass loss plateau, was observed in the range of 90.8–240 ◦C. An abrupt
weight loss due to hemicellulose decomposition was observed at 298 ◦C for both the CO
and CP [57], while the cellulose degradation peaks of the CO, CP, AC, and CL were in
the range of 340–352 ◦C; the complete degradation of the same samples was in the range
of 381–400 ◦C. No additional peaks were observed after 400 ◦C for all samples except
for LG. In contrast, the thermal decomposition curve of all samples under the oxidative
environment was comparatively complex, with additional devolatilization peaks observed
at 423–472 ◦C for CO and CP, and around 591–598 ◦C for AC and CL. Maximum decompo-
sition under the oxidative environment for CO and CP was achieved at 539 ◦C and 494 ◦C,
respectively. The absence of a hemicellulose degradation peak in both AC and CL indicates
their purity. The pyrolytic profile of LG under both inert and oxidative environments was
quite complex with multiple decomposition steps, spanning a wide range of temperatures.
Evidently, LG needs a temperature beyond 800 ◦C for complete decomposition. Both CO
and CP achieved a higher mass loss under the oxidative environment. On the contrary
AC, CL, and LG attained maximum weight loss under the inert environment (Figure 4).
Despite showing similar degradation temperatures, the extent of pyrolysis among CO and
CP is different, with CP showing a higher mass loss percentage at each inflection point. The
three-stage thermal degradation profile of whole-native corncob reported by Yao et al. [80]
is quite similar to that of the CO in this study, the starting, peak, and final temperatures of
the TGA profile, including the maximum weight loss reported, were similar. The same is
the case with the TGA of the whole corncob reported by Zheng et al. [81]. The alteration
of the TGA profile reported for dilute sulfuric acid-pretreated corncob with that of native
corncob showed the exact thermal decomposition temperature range of hemicellulose [81].
The lignocellulose composition of CO and CP calculated by the TGA analysis under both
inert and oxidative environments clearly showed lower lignin and residue content along
with a higher hemicellulose percentage in CP. The lignocellulose composition calculated
as pseudo-components by the peak deconvolution method revealed a similar difference
between CO and CP (Table 3, Figure 5). AC and CL have shown a pure cellulose de-
volatilization peak without traces of hemicellulose or lignin. These results are consistent
with the compositions determined by the other methods reported in this work.
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Table 3. Mass (%) of the lignocellulose components in thermally degraded samples.

CO-i CO-o CO-dc CP-i CP-o CP-dc AC-i AC-o CL-i CL-o

HC 24.23 24.97 25.31 29.93 32.83 45.09 0 0 0 0
CE 51.85 45.88 18.03 48.64 49.1 31.20 94.76 86.58 100 87.95
LG 12.15 24.99 16.58 10.09 13.91 13.16 5.24 12.01 0 9.09

A and C 11.35 4 N.A 10.9 4 0 1.37 0 2.9
TC 76.09 70.86 43.34 78.57 81.93 76.29 94.76 86.58 100 87.95

HC/TC 0.32 0.35 0.58 0.38 0.40 0.59 0 0 0 0
LG/TC 0.16 0.35 0.38 0.13 0.17 0.17 0.06 0.14 0 0.1

i: inert environment; o: oxidative environment; dc: peak deconvolution; HC: Hemicellulose; CE: cellulose; LG:
lignin; TC: total carbohydrate; A and C: ash and residual carbon at 800 ◦C.
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DTG peak deconvolutions of (i) CO and (j) CP.
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3.6. FTIR Analysis

The characteristic FTIR peaks of lignocellulose observed among all of the samples were
tabulated (Table 4). The unprocessed spectra of all samples showed the characteristic -OH
stretch in the range of 3700–3000 cm−1, specifically at 3350 cm−1 for both AC and CL and in
the higher wavenumber region in the case of CO, CP, and LG. The -OH stretching peak of CP
was much sharper and showed higher absorption than that of CO (Figure 5). Deconvolution of
the broad stretching region between 3800 and 2800 cm−1 showed around five different peaks
for each sample (Figure 5). The relative peak intensities of the characteristic intramolecular
hydrogen bonds (3586–3559 cm−1, 3475–3448 cm−1, and 3358–3351 cm−1) were in the order
of AC > CP > CO > CL, AC > CL > CO > CP, and AC > CP > CL, respectively. Furthermore,
the intensities of intermolecular hydrogen bond peaks (3179–3112 cm−1) were in the order
of AC > CO > CL > CP. CP clearly showed an increased carbohydrate percentage compared
with CO in both crystalline (1428 cm−1, 1162 cm−1) and amorphous regions (1335 cm−1,
897 cm−1, 668 cm−1, 527 cm−1, 993 cm−1). In addition, CP showed an increased hemicellulose
percentage (1734 cm−1, 1248 cm−1), and total carbohydrate percentage (1205 cm−1, 1111 cm−1)
than the CO. The abundance of guaiacyl-type lignin was detected in CO (862 cm−1, 1516 cm−1)
with an overall increase in lignin content (1459 cm−1), while CP showed more syringyl lignin
and less total lignin compared with CO.

Table 4. FTIR peaks obtained and their assignments.

Wave Number
Range (cm−1)

Samples and Their Obtained Peaks
(cm−1) Generic Functional Group Assignment,

Reference
Lignocellulose

Specific
AssignmentCO CP AC CL LG

3650–3600 Non-bonded free -OH stretching. [82]
3400–3200 Bonded -OH stretching. [82]

3584 3559 3571 3586 Intramolecular hydrogen bond O(2)H-O(6). [83] Cellulose
3475 3453 3448 3465 Intramolecular hydrogen bond O(2)H-O(6). [83] Cellulose

3430 -OH (bonded) stretching. [84] Lignin *
3358 3351 3355 Intramolecular hydrogen bond O(3)H-O(5), [83] Cellulose

3179 3124 3112 3123 Intermolecular hydrogen bond O(6)H-O(3), [83] Cellulose

3000–2850 C-H stretching: Alkanes/O-H stretching
carboxylic acid/Aldehyde. [85]

2970–2860 CH—stretching region (saturated aliphatic
group frequencies). [86]

2937 C-H stretch methyl and methylene groups (2942
HW lignin, 2938 SW lignin). [87] SW.Lignin

2886 2898 2904 2902 Symmetric C-H stretching. [84] Cellulose *
2842 C-H stretch O-CH3 group. [87] Lignin

1780–1640
C=O stretching:

Ester/Aldehyde/Ketone/Carboxylic acid; C=C
stretching: Alkene [85]

1731 1733 Ketone/Aldehyde C=O stretching
(unconjugated) [88]

Hemicellulose
*

1711 Non–conjugated carbonyl [89] Lignin

1643 1635 1639 1641 1643 Intramolecular hydrogen bond/absorbed
water/Aromatic ketones stretching [84]
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Table 4. Cont.

Wave Number
Range (cm−1)

Samples and Their Obtained Peaks
(cm−1) Generic Functional Group Assignment,

Reference
Lignocellulose

Specific
AssignmentCO CP AC CL LG

1600–1475 C=C stretching–skeletal vibration of phenolic
compounds such as lignin, -CH2 bend. [85]

1606 1604 Aromatic skeleton vibration [87]
Lignin * (S > G;

G-con. >
G-eth.)

1598 The aromatic ring (C=C), C=O stretching
vibrations [64].

Lignin * (S > G;
G-con. >
G-eth.)

1516 1516 1510 Aromatic ring (C=C) stretching [64]. Lignin * (G > S)

1456 1462 1458 1464 Asymmetric bending of CH3 in methoxy
groups//CH2 bending vibration [88]

Lignin * (S >
G), Cellulose,
Hemicellulose

1425 1427 1429 1431 Scissoring motion of -CH2 [60]
Cellulose-I *
Crystallinity

peak
O-CH3 C-H deformation symmetric [87] Lignin

1372 1374 1372 1372 1376 Symmetric and asymmetric C-H deformation
[85]

Cellulose,
Hemicellulose,

Lignin

1335 1337 1337 C-H, -OH in-plane bending/weak C-O
stretching [90]

Cellulose
amorphous

1327 Stretching of C-O in syringyl ring [91] Lignin-S *
1318 1316 1314 -CH2 wagging [92] Cellulose I

crystalline

1300–1000 C=O/C-O-C/C-O-H; Alcohols, ethers, esters,
carboxylic acids, anhydrides [93]

1281 1281 C-H bending [91] Cellulose
crystalline *

1269 Aromatic ring vibration [85] Lignin-G
1248 1251 C-O-C and C-O Stretching [94] Hemicellulose

*
1220 C=O stretching of guaiacyl ring [95] Lignin G

1205 1203 1201 1203 O-H in-plane bending [89] Carbohydrates
*

1158 1162 1164 1166 C-O-C stretching, Asymmetric stretching of C-O,
C-C, O-H stretching of C-OH group [94]

Crystalline
cellulose,

β-glycosidic
bond

1137 C-H (aromatic) in-plane deformation, secondary
alcohols, C-O stretch [59], Lignin G

1111 1113 1113 1115 Asymmetric stretching of C-O-C; Cellulose
characteristic peak [84] Cellulose *

1082 C-O deformation, secondary alcohol, an
aliphatic ether [87] Lignin

993 993 987 986 C-O and C-C, C-H bending or CH2 (amorphous
band) stretching [96] Cellulose

1000–650 Out-of-plane bend Alkenes/Aromatics, aromatic
C-H stretching [85]

899 899 897 895 C-O-C stretching at β-1,4 glycosidic link [84] Amorphous
band *

862 858 C-H out of the plane in positions 2, 5, and 6 of
G-ring [97] Lignin-G

814 817 The vibration of mannan. CH out-of-plane
bending in phenyl rings [98]

Glucomannan,
Lignin G

714 714 Alcohol, OH out-of-plane bend. [99] Cellulose Iβ *
668 668 668 668 -OH out-of-plane-bending [100] Cellulose

amorphous

607 617 619 617 617 Alkyne C–H bend, Alcohol, OH out-of-plane
bend [95] Carbohydrates/Lignin

524 527 520 518 520 C-O-C bending, C-C-C ring deform [101]
Cellulose,

β-glycosidic
bond

SW: softwood; HW: hardwood; * characteristic peaks; G: guaiacyl; S: syringyl; G-con: condensed guaiacyl ring;
G-eth: etherified guaiacyl ring.
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In addition, the adsorbed water content was less in the case of equally dried CP
compared with CO. These findings showed an overall increase in the carbohydrate to lignin
ratio, hemicellulose to total carbohydrate ratio, and hemicellulose to lignin ratios in CP
compared with that of CO (Table 5). The absence of lignin and hemicellulose peaks in the
spectrum of AV and CL indicates their purity. The FTIR spectrum previously reported for
the whole corncob was quite similar to that of both the CO and CP of this study [75]. The
lignin to carbohydrate ratios previously reported were the same as that of CO, and these
values were shown to get closer to that of CP when the corncob was pretreated with dilute
acids and alkalis, proving the lignocellulosic construct of CP reported in this work [81].
The HBI value previously reported for the whole corncob is quite similar to that of the CO
of this study and is reportedly decreased upon pretreatment [48]. The TCI, LOI, and CrI%
values of a xylose-extracted corncob residue reported by Chi et al. [102] were slightly more
than that of the CO in this work, indicating the decreased crystallinity of the biomass due
to the presence of relatively amorphous constituents such as hemicellulose and lignin. On
the other hand, the TCI and LOI values of the pure cellulose reference AC reported in the
literature [103] are consistent with this work. All of the FTIR peaks of a whole corncob as
reported by Zheng et al. [81] were also observed in the case of the CO. The S/G ratios of CO
reported in this work are consistent with that of the whole corncob reported by HPLC [104]
and NMR methods [105].

Table 5. Lignocellulose composition ratios measured by FTIR data.

Ratio Wave Number
Range (cm−1) CO CP LG

S/G 1462/1510–1508 1.34 1.38 0.52
S/G 1595/1510–1508 1.28 1.34 2.54

LG/TC 1510–1508/1374 1.03 0.71 8.75
LG/TC 1510–1508/1162 0.45 0.34 N.A1
LG/TC 1510–1508/898 2.89 1.93 N.A1
XY/TC 1734/1374 1.16 1.88 N.A2
XY/TC 1734/1162 0.50 0.90 N.A2
LG/XY 1510–1508/1734 0.88 0.37 N.A1

S/G: syringyl/syringyl + guaiacyl ratio; LG/TC: lignin/total carbohydrate ratio; XY/TC: xylan/total carbohydrate
ratio; LG/XY: lignin/xylan ratio; N.A1: lignin-related peaks are present but carbohydrate peaks are absent; N.A2:
carbohydrate-related peaks are absent.

3.7. XRD Analysis

Diffractograms of the CO, CP, AC, and CL showed the lignocellulose characteristics of
crystal lattice peaks with different intensities [106], such as (101) in the 2θ angle range of 14–15◦,
(10Ī) in the 16.5–17◦ range, (021) around 20.8◦, (002) around 22.6◦, and (040) around 34.3◦. An
amorphous characteristic plateau spanning between the peaks (10Ī) and (002) with its center
around 18◦ was also observed. The results of crystallinity measurements by all four of the
methods used were consistent (Table 6). The measured crystallinity of the samples was in the
order of AC > CL > CO > CP. The results of Cra1% and Cra2% were similar for all samples. The
method followed for the analysis of Cra2% was found to be advantageous to that of Cra1%,
as the former can achieve the result without an additional step of normalization that could
otherwise misinterpret the data (Figure 6, Table 6). The d-spacing of all samples was comparable
(Table 6), whereas the crystallite sizes of the 002 lattice (L) of CO were the highest, and those
of CP were the smallest. All results of AC and CL were similar. The observed differences
between CO and CP strongly reflect the differences in their lignocellulosic construct (Table 6).
The crystallinity (CrI%) and crystallite size (L) values reported for AC are consistent with the
reported values in the literature [107]. Moreover, the difference between the values of CrI%
and Crd% is consistent with the values reported in the literature for different types of cellulosic
compounds [108]. The CrI values of the whole corncob previously reported were in the range
of 35.19–39.2%; these values are almost half of that shown by CO in this work, proving the
effect of separating amorphous CP from the whole corncob. Additionally, these works reported
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the increase in the CrI of the corncob residue after removing its amorphous content (xylose or
lignin) by the pretreatments employed [52]. Both the XRD (CrI%, Crd%, Cra1%, Cra2%) and
FTIR (TCI, LOI, HBI) methods used for crystallinity measurement showed a lower crystallinity
of CP compared with that of CO, AC, and CL, explaining the amorphous nature of CP due
to its higher hemicellulose and syringyl lignin (Table 5). However, the CO showed slightly
higher crystallinity than AC and CL in the FTIR measurement and a lower crystallinity in the
XRD measurement. This observed difference in crystallinity among two different methods can
be explained by two reasons: crystallinity measurement by FTIR methods is not absolute but
is relative, and the readings are greatly influenced by the amorphous content (hemicellulose
and lignin) of the sample [109]; and the XRD readings are dependent on crystallite size rather
than particle size, thus the AC and CL having pure cellulose crystallite provided much sharper
peaks than CO. The patterns of the FTIR, XRD, and TGA curves were consistent with that of
the whole corncob reported [110]. The XRD plots of all the samples analyzed are given in the
Supplementary Materials (Figure S13).

Table 6. Crystallinity measurements of samples by both the XRD and FTIR-based indices.

XRD Analysis FTIR Analysis

Sample CrI% Crd% Cra1% Cra2% L d TCI LOI HBI

CO 70.0 93.0 26.48 25.20 5.75 0.34 2.82 2.35 2.46
CP 31.0 73.0 20.06 23.84 2.94 0.41 1.47 0.87 2.03
AC 93.0 78.0 48.04 48.04 4.67 0.40 1.72 1.29 2.15
CL 91.0 77.0 44.28 36.01 4.73 0.39 1.8 0.96 1.89
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creased and achieved a maximum yield close to that of controls, which was 70.57% of its 
TY at 50 h with cellulase and 88.70% of its TY at 50 h with xylanase. CO showed compar-
atively poor enzymatic saccharification susceptibility, showing no significant improve-
ment from a minute saccharification yield of 15–18% of its TY obtained at the 10 h interval 
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Figure 6. Amorphous contribution subtraction of XRD diffraction. Note: ACB, CLB, COB, and
CPB are the diffraction patterns of the ball-milled AC, CL, CO, and CP, respectively; the negative
sign indicates the diffraction of the sample after subtracting the diffraction of amorphous standards
from it. For example, CO-ACB: diffraction of CO after subtracting amorphous contribution using
diffraction of ACB; (a–d): Decrease in diffraction of around 18◦ and sharpening of the crystalline
lattice by around 22◦ indicate the amorphous subtraction; (a,c): Diffraction patterns of CO and CP are
significantly different, suggesting their varied crystallinities. Both COB- and CPB-subtracted samples
showed slightly sharper patterns than that of ACB-subtracted samples; (d) CLB achieved a better
amorphous subtraction than ACB.
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3.8. Enzymatic Saccharification of Untreated Corncob Samples

A saccharification yield of 50–60% of the theoretical yield (TY) of CL and XY was
obtained during the first 5 h of the incubation, which later gradually increased to 72.8%
and 90.13%, respectively, after 40 h and 30 h. The saccharification of CP gradually increased
and achieved a maximum yield close to that of controls, which was 70.57% of its TY at
50 h with cellulase and 88.70% of its TY at 50 h with xylanase. CO showed comparatively
poor enzymatic saccharification susceptibility, showing no significant improvement from a
minute saccharification yield of 15–18% of its TY obtained at the 10 h interval with both
enzymes (Figure 7).
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The maximum TY of CO with xylanase was around 26% of the reference XY, where CP
achieved 98.4% of it. The maximum TY of CO with cellulase was around 35% of reference
CL, where CP has achieved 98.8% of it. These results are perfectly correlated with the
chemical and physical characterization of the respective corncob anatomical portions. As
per the NREL method of composition analysis, CP on average showed a 20.7% lower lignin
percentage along with a higher percentage of cellulose, hemicellulose, and extractives (6.8%,
1.9%, and 21.4%, respectively). A similar difference was observed from other composition
analysis methods reported in this work. In addition, the S/G and XY/TC ratios of CP were
3.8%, which was 67.4% higher; the LG/TC and LG/XY ratios of CP were 31.8% and 57.9%
lower than that of CO, respectively. The crystallinity values of the CP measured by both
the XRD (CrI%, Crd%, Cra1%, and Cra2%) and FTIR (TCI, LOI, and HBI) methods were
55.7%, 21.5%, 24.2%, 5.3%, 47.8%, 62.9%, and 17.4% lower than that of CO, respectively. A
huge contrast observed in enzymatic saccharification susceptibility of untreated CO and
CP can be essentially attributed to their chemical compositional differences, especially to
their lignin to carbohydrate ratios and to their differences in crystallinity. Although CP has
a slightly higher syringyl percentage than CO, the S/G ratio appears to be a comparatively
minor deciding factor for their saccharification susceptibilities.

The saccharification profile of CO in this study is similar to that of the whole corncob
without pretreatment as previously reported by many other researchers as a control in
their respective studies [5,111]. Whole corncob ground to a similar mesh as that of the
CO in this study reportedly achieved a similar saccharification yield by the first 10 h in-
terval and was unchanged thereafter using cellulase of the same make as that used in this
study [112] and when using cellulase procured from a different manufacturer [113]. Similar
yields and patterns were reported even when the cellulase activity was complimented with
β-glucosidase [5,114]. On the other hand, many works reported enzymatic production
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of xylooligosaccharides from pretreated whole corncob, either by in-house-produced xy-
lanases [115], or with commercial xylanases [116]; however, none of these studies showed
the effect of xylanases on an untreated corncob. Nevertheless, we found a report where
the whole corncob without any chemical pretreatment was used as a control for an in-
house-produced T. viride-derived xylanase; the enzyme activity profile reported for the
untreated whole corncob was similar to that of the CO in this study, but the peak activity
was achieved at 48 h of incubation. [117]. However, we did not find any work reporting
the saccharification of individual anatomical portions of corncob to date.

4. Conclusions

The comprehensive characterization of the corncob anatomical portions revealed the
striking morphological, structural, and chemical differences among the outer (CO) and
pith (CP) sections of each corn variety studied; at the same time, there are no significant
differences among the same anatomical portion in different corn varieties. Most of the char-
acteristics of the CO were similar to that of whole corncob characteristics vividly reported in
the literature, whereas CP showed unique characteristics, such as lower lignin, protein, and
ash contents with an improved xylan and cellulose content. NIR-PLS calibration models
along with Savitzky-Golay smoothing of the spectra are proven to be the fittest for the rapid
composition analysis of all the biomass components. Both the FTIR and XRD analyses
showed that CO is more crystalline than CP, and the thermal stability of CP was found
to be lower than that of CO. All of these compositional and physical differences led to
enhanced enzymatic saccharification of CP by both cellulase and xylanases, which was
equal to that of the pure cellulose (AC), and xylan (XY) references. Thus, we propose a
tailored enzymatic production of xylooligosaccharides from CPs without pretreatment
along with a separate valorization of CO to achieve an economical biorefinery output from
the corncob feedstock. However, the techno-economic evaluation of the proposed process
must be carried out to assess the viability of the process given the newly included step of
biomass anatomical segregation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation8120704/s1, Figure S1: Carbohydrate calibration-1;
Figure S2: Carbohydrate calibration-2; Figure S3: Carbohydrate calibration-3; Figure S4: Acetate
calibration; Figure S5: Structural carbohydrates-CO; Figure S6: Structural carbohydrates-CP; Figure
S7: Structural carbohydrates-AC; Figure S8: Structural carbohydrates-CL; Figure S9: Acetate-CO;
Figure S10: Acetate-CP; Figure S11: Acetate-AC; Figure S12: Acetate-CL; Figure S13: XRD profiles of
the samples.
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