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Abstract: Because the petroleum-based chemical synthesis of industrial products causes serious envi-
ronmental and societal issues, biotechnological production using microorganisms is an alternative
approach to achieve a more sustainable economy. In particular, the yeast Saccharomyces cerevisiae
is widely used as a microbial cell factory to produce biofuels and valuable biomaterials. However,
product profiles are often restricted due to the Crabtree-positive nature of S. cerevisiae, and ethanol
production from lignocellulose is possibly enhanced by developing alternative stress-resistant micro-
bial platforms. With desirable metabolic pathways and regulation in addition to strong resistance
to diverse stress factors, nonconventional yeasts (NCY) may be considered an alternative microbial
platform for industrial uses. Irrespective of their high industrial value, the lack of genetic information
and useful gene editing tools makes it challenging to develop metabolic engineering-guided scaled-up
applications using yeasts. The recently developed clustered regularly interspaced short palindromic
repeats (CRISPR)-associated protein (Cas) system is a powerful gene editing tool for NCYs. This
review describes the current status of and recent advances in promising NCYs in terms of industrial
and biotechnological applications, highlighting CRISPR-Cas9 system-based metabolic engineering
strategies. This will serve as a basis for the development of novel yeast applications.

Keywords: nonconventional yeast; genome editing; metabolic engineering; CRISPR-Cas9 system

1. Introduction

Petroleum-derived chemical production has detrimental effects on the environment
and exhibits industrial noncompatibility associated with cost-effectiveness due to multiple
labor-intensive processes [1]. To overcome this problem, biotransformation using microor-
ganisms can be considered an alternative approach [1,2], which has the advantage of rapid
growth rate and easy cultivation of microorganisms under laboratory conditions [3]. In
particular, eukaryotic yeasts represent robust microbial cell factories owing to their simple
structure and ability to grow on various substrates, as well as the relatively simple gene
editing techniques used to manipulate their genomes [4].

Saccharomyces cerevisiae is the most widely used eukaryotic platform in bioprocesses [5,6].
S. cerevisiae has long been a model organism for fundamental biological research and indus-
trial applications because of its ease of handling and safety as a generally recognized as safe
(GRAS) strain [7]. Moreover, its genetics are well understood, and tools for manipulating it
are well established; thus, numerous specialized strains and plasmids are available. However,
as a Crabtree-positive organism, the carbon flux in S. cerevisiae is mainly directed toward the
ethanol fermentation pathway. This preference for ethanol production often limits its uti-
lization as a host when nonethanol products are to be synthesized. Therefore, other suitable
yeasts, known as nonconventional yeasts (NCY), should be considered as alternative hosts.
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Approximately 1500 NCY species have been identified to date [8], each of which
exhibits unique genetics, physiology, and characteristics. They often have excellent potential
for industrial uses that are not feasible with S. cerevisiae. Thus, NCY can be considered as
promising eukaryotic hosts alternative to S. cerevisiae to overcome or improve its limitations.
Specifically, NCYs that are Crabtree-negative can diversify the profile of industrially useful
products. In addition, a much higher capacity of NCYs for pentose phosphate pathway
relative to S. cerevisiae is also advantageous feature when synthesizing products using
NCYs as the cell factory by increasing the available pool of cofactors and precursors [9].
Moreover, a high tolerance against multiple stress factors, such as heat, low pH, and salt,
can extend yeasts’ utility. Advancements in genetic and metabolic engineering technologies
will facilitate NCY-based scaled-up bioprocesses [8,10].

Despite their beneficial traits, genetic information and manipulation tools for many
NCYs are lacking compared with those for S. cerevisiae [11]. As most organisms have not
been thoroughly analyzed for safety and lack genome sequencing data with the limited
information on the exact gene loci and protein functions, it is challenging to develop and
apply suitable gene editing tools, together with establishing transformation protocols and
selectable marker genes [11].

The clustered regularly interspaced short palindromic repeats (CRISPR)-associated
protein (Cas) system is an adaptive immune system of bacteria and archaea that protects
them from invasion by foreign genetic elements [12]. As a gene editing tool, the CRISPR-
Cas system is based on a simple single guide RNA (sgRNA)/DNA hybrid that recognizes
specific target DNA, providing a simple-to-design methodology, which has more sophisti-
cated, accurate, and cheaper gene editing capabilities compared with traditional methods
like zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TAL-
ENs) [13]. Thus, this revolutionary CRISPR-Cas9 system has been applied to various yeast
strains, such as S. cerevisiae, Pichia pastoris, Kluyveromyces marxianus, and Yarrowia lipolytica;
among these, most studies have been conducted on S. cerevisiae [14,15]. Although numerous
studies have reported the CRISPR-guided metabolic engineering of S. cerevisiae, only few
studies have explored the applicability of this system in NCYs [16]. To achieve commercial
scale bioproduction using NCYs as cell factories, it is necessary to develop highly efficient
and convenient engineered strains [10,17].

In this review, we provide an overview of NCYs with excellent potential for industrial
applications. In particular, the biotechnological applications of engineered NCYs using
the CRISPR-Cas9 system are highlighted. The advances and challenges of CRISPR–Cas9-
mediated biotechnology for NCYs are also discussed.

2. Industrial Value of NCYs

NCYs have several advantages over S. cerevisiae from an industrial viewpoint [18].
S. cerevisiae is often directed toward ethanol synthesis (due to its Crabtree-positive effect),
restricting product diversification. In contrast, NCYs may have desired metabolic path-
ways, enabling product profile expansion. The ability to resist various stresses is a key
benefit in industrial bioprocesses. For example, ethanol production from lignocellulose
can be enhanced by developing alternative microbial platforms that are highly resistant to
inhibitors. NCYs often exhibit strong resistance to various stresses, such as heat, acid, and
high sugar concentrations, as environmental adaptations. Another key advantage of NCYs
is their ability to utilize a wide range of carbon sources [8,19]. Additionally, many NCYs can
exist in both haploid and diploid types like S. cerevisiae, and sexual reproduction is possible.
Therefore, NCY strains with a desired ploidy can be developed through mating depending
on the purpose. For example, diploid P. pastoris strains having a higher stability than its
haploid form were constructed through a well-designed mating process for production of
proteins [20], or various auxotrophic K. marxianus libraries were constructed using mating
and dissection [21]. In this section, the industrial potentials of five promising NCYs are
described (Figure 1).
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2.1. Pichia pastoris

P. pastoris is a methylotrophic yeast with a developed peroxisomal system responsible
for compartmentalized methanol metabolism [22]. Its gene expression system, together
with its secretory system, is well established, which enables easy genetic manipulation
using a publicly available commercial kit. P. pastoris is mainly used for the production of
pharmaceutical proteins and other industrial enzymes, because of simple post-translational
modifications process [23,24]. In fact, hyperglycosylation of proteins in S. cerevisiae often
causes an allergic reaction in human body; therefore, using it as an expression host for
producing pharmaceuticals and medicinal proteins is often undesirable. P. pastoris exhibits
superior growth rate and cell density compared to S. cerevisiae, and like S. cerevisiae, its
protein expression is controlled under strong and tightly regulated methanol inducible
promoters (AOX1). Thus, high cell density in addition to a high yield of recombinant
proteins, produced either intracellular or extracellular, can be achieved, which may lead to
increased biotransformation efficiency of whole cells [23,25].

2.2. Pichia kudriavzevii

P. kudriavzevii is a multi-stress tolerant yeast commonly found in fermented foods and
beverages, such as Nuruk, which is a starter used for making Korean traditional alcoholic
beverages and various sub-Saharan African indigenous foods [26–29]. Previous studies
have isolated robust strains of P. kudriavzevii that can withstand multiple stress factors, such
as high salt concentration, high temperature, and low pH. In particular, there are several
advantages of using thermotolerant strains as production hosts for the ethanol industry.
For S. cerevisiae, scaled-up ethanol production through simultaneous saccharification and
fermentation is normally performed at 30 ◦C, above which growth and fermentation are
repressed. Ethanol production at a high temperature is beneficial for reducing micro-
bial contamination, as well as energy and water costs required to cool the fermentation
system [30–32]. Indeed, thermotolerant P. kudriavzevii produce more ethanol at a higher
temperature (44 ◦C) compared with S. cerevisiae. Furthermore, considering the information
on genome sequence and genetic engineering tools, it is a potent host for various industrial
metabolites, such as organic acids (e.g., succinic acid) and bioethanol [30,32–34].

2.3. Yarrowia lipolytica

As an oleaginous microorganism that accumulates lipids up to 20% of dry cell
weight, Y. lipolytica is used for the industrial production of fatty acid-derived products [35].
Y. lipolytica is a GRAS organism and assimilates hydrophilic (e.g., glucose, glycerol, alcohols,
and acetate) and hydrophobic substrates (e.g., fatty acids, triacylglycerols, and alkanes) [36].
With its high protein secretory capacity and lipophilicity, the organism has also been used
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for the fermentation of waste cooking oil to achieve bioremediation and waste valoriza-
tion. During this fermentation process, Y. lipolytica produces extracellular lipase, which
subsequently generates free fatty acids, utilizable as a carbon source, from waste cooking
oil. With the development of metabolic engineering, Y. lipolytica can potentially produce
several other metabolites, such as organic acids [37], erythritol [38], and flavonoids [39].

2.4. Ogataea polymorpha

O. polymorpha is a methylotroph, an organism that utilizes C1 compounds, such as
methanol, as its sole carbon source, and is one of the most heat-resistant yeasts. Because
native S. cerevisiae, the most widely used workhorse for bioethanol production, is incapable
of xylose fermentation and engineered S. cerevisiae to possess heterologous xylose metabolic
pathway may suffer from high metabolic burden, a benefit of O. polymorpha is its innate
ability to metabolize xylose, the second most abundant sugar of lignocellulosic biomass [40].
Thus, high-temperature (i.e., 45–50 ◦C) ethanol fermentation of lignocellulose hydrolysate
mainly consisting of glucose and xylose is possible. As one of a few methylotrophic yeasts,
their key enzymes involved in methanol metabolism are strongly induced by methanol
present within membrane-bound peroxisomes, which enables a compartmentalized re-
action. Based on this expression machinery, O. polymorpha is a useful expression host
for producing heterologous and difficult-to-express proteins via establishing expression
systems induced by methanol under the control of strong and tightly regulated promoters.

2.5. Kluyveromyces marxianus

K. marxianus is a GRAS and thermotolerant ethanol-producing species that can grow
at temperatures up to 52 ◦C [41–43], enabling high-temperature ethanol fermentation. As
a Crabtree-negative yeast, this species is also advantageous for synthesizing non-ethanol
products. Like K. lactis [44], K. marxianus has the unique ability to assimilate lactose, which
is not feasible with S. cerevisiae and other yeasts [44,45]. Owing to its high capacity to
grow on a broad spectrum of cheap carbon sources, such as xylose, arabinose, galactose,
lactose, pectin, inulin, hemicellulose hydrolysate, cheese whey, and molasses, this species
is an excellent microbial source of enzymes, bioethanol, and food ingredients [46] for
commercial-scale applications [47–49]. Additionally, K. marxianus can produce fructose
and fructooligosaccharides, which are industrially pertinent foods and pharmaceutical
ingredients through inulinase secretion [50]. Recently, K. marxianus has been proposed as a
probiotic yeast due to its beneficial roles in the gut [46].

3. Genetic Engineering Tools for NCYs

Although the innate traits of NCYs are beneficial for industrial applications, the
productivity is low and must be increased through metabolic engineering techniques. One
basis for metabolic engineering is endogenous or heterologous gene expression using a
host strain [51]. This can be accomplished through two approaches. The first approach
is the development of an episomal plasmid expression system using a self-replicating
vector and the second is genome integration [52]. For S. cerevisiae, episomal vector systems
with high copy numbers have been highly developed through extensive optimization
and are widely utilized relative to NCYs [53]. Further, plasmid-based expression systems
have also been developed for NCYs [54,55]. For example, an autonomously replicating
sequence (ARS)-based episomal vector has been developed for P. pastoris, providing higher
transformation efficiency and lower interclonal variability compared with the classical
integrative plasmid [56]. The lower interclonal variability of transformants obtained from
ARS system could be highly related with the frequent occurring non-specific genome
integration caused by the integrative vector [51]. However, such an episomal plasmid
system suffers from a high cost and inefficiency arising from segregational instability,
which requires its maintenance under selective pressure for stable protein expression.
Moreover, a centromeric plasmid was engineered, in which various promoters were fused
upstream of the centromere sequence to control the function of centromere in Y. lipolytica.
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Such an approach successfully led to the significant improvement in the plasmid copy
number, and in turn, protein expression levels (80%) [54].

From an industrial viewpoint, genome integration is the preferred method because it
leads to more homogeneous expression levels and, upon integration, expression cassettes
are stably inherited with the respective chromosome. To achieve more sophisticated gene
editing and higher integration efficiency, the double-stranded sequence at the desired
site must be broken. Nuclease-based tools, such as ZFNs and TALENs, can be used for
the genetic engineering of NCYs [57,58]. However, these methods are outdated with the
emergence of CRISPR-Cas9 system. The Cre–lox system, which deletes the sequences
between direct repeats of two loxP sites by catalyzing their recombination, leaving a single
loxP site behind in the genome [59], is also a useful technology for producing knockout
mutants without leaving a marker; however, some scars are left in the genome, or unwanted
recombination may occur [10]. CRISPR-Cas9 system, established and predominantly used
over the past decade, is a powerful gene editing tool that overcomes the problems associated
with conventional tools [60].

Contrary to ZFN and TALEN-assisted approaches in which nucleases play a dual role
in recognition and cleavage, the CRISPR-Cas9 system relies on designed sgRNAs that are
specific to a target gene, and after the recognition, Cas9 cleaves the targeted site. This is an
advanced genetic engineering tool that allows a simple-to-design plasmid construction for
sgRNA expression, as well as rapid and precise cell programming [10].

4. CRISPR-Cas System-Guided Metabolic Engineering in NCYs
4.1. CRISPR-Cas System: Classification, Components, and Mechanism

The CRISPR-Cas system, comprising a DNA array and associated proteins, is a widely
distributed RNA-based adaptive defense mechanism against viruses in bacteria and ar-
chaea [61]. Based on the Cas protein effector, CRISPR-Cas systems are mainly categorized
into two classes: class I (type I, III, and IV) with a multi-subunit Cas complex and class II
(type II, V, and VI) with a single Cas protein [62,63]. Depending on the type and mechanism
of Cas endonucleases, each type can be further classified into several subtypes.

Among these, the type II CRISPR-Cas9 system uses a single Cas9 protein and is most
commonly used for genetic and metabolic engineering because of its simple structure. In
particular, the most widely used CRISPR system is composed of a Cas9 protein derived from
Streptococcus pyogenes [64]. The CRISPR-Cas9 system consists of two integral components,
Cas9 and sgRNA; Cas9 is divided into two domains: a recognition lobe (REC1 and REC2)
and nuclease lobe (NUC). Further, the sgRNA is a fusion construct composed of the two
RNA types, CRISPR RNA (crRNA) and transactivation crRNA (tracrRNA), connected by a
linker sequence (Figure 2) [65]. sgRNA is bound by the REC lobe of Cas9 and REC lobe
controls the conformational alteration of the catalytic core of Cas9 (i.e., HNH motif) [66].
The NUC lobe comprises the following three domains: (1) HNH, (2) RuvC cleaving target
and nontarget single-stranded DNAs, and (3) protospacer adjacent motif (PAM)-binding
domain that scans PAM sequence through weak or transient interactions before forming a
stable hybrid between target sequence-sgRNA to perform the specific cleavage.

The process of Cas9-mediated genome editing involves recognition, cleavage, and
repair [67]. First, the PAM sequence (i.e., 5′-NGG-3′) is scanned for probing the target
for cleavage and subsequently, the target sequence is recognized by the sgRNA bound to
REC lobe of Cas9 [64,67]. After the sgRNA forms a duplex with its complementary DNA,
the target and nontarget single-stranded DNA sequences located at 3-bp upstream of the
PAM sequence are cleaved by HNH and RuvC nucleases, respectively [65]. Finally, the
generated double-strand breaks (DSBs) undergo DNA repair; the nucleotide sequence of
the cleaved site can be modified through the endogenous DNA repair machinery. Two
main repair systems in eukaryotes are based on the homology-directed repair (HDR)
and non-homologous end joining (NHEJ) pathways [68]. The predominant pathway in
eukaryotes is NHEJ in which random insertions and deletions (indels) of a small number
of nucleotides are introduced at the broken ends. Without using template DNA, this
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process is prone to error and often causes undesirable genetic modifications. In contrast, the
HDR pathway uses a homologous DNA template for DSB repair that can be exogenously
provided as single- or double-stranded DNA carried as a plasmid or PCR product. The
designed nucleotide sequence is integrated into the genome of a host strain via homologous
recombination (HR) [69]. This template-based mechanism allows accurate genome editing,
modification, and replacement.
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4.2. Challenges and Strategies of CRISPR-Cas9-Guided Genome Editing in NCYs

As demonstrated in Section 4.1, the CRISPR-Cas9 system has emerged as the most
powerful tool for the gene editing of yeast species for biotechnological applications due
to its simple design, precise recognition and targeted generation of double strand breaks,
and no remnant of antibiotic selection markers [70]. Here, we summarize the CRISPR-Cas9
system applied to NCYs (Table 1).

Table 1. Comparison of CRISPR-Cas9 system for NCYs.

Strain sgRNA Promoter Plasmid
(Backbone)

Cas9
Promoter

Editing
Efficiency 1 (%) Reference

Y. lipolytica SCR1′-tRNA 2

TEFin (Pol II) 3

pCRISPRyl
pCASyl
pGGA

TEF1 0–68.9 [71–74]

O. polymorpha ScSNR52 (Pol III)
ScTDH3 (Pol III)

pCRCT
pYTK079

ScTEF1
AaTEF 1–75 [75,76]

P. pastoris
HTX1 (Pol II) 3

PFK300 (Pol II) 3

LAT1(Pol II) 3

pPpT4
p414

BB3cH

HTX1
GAP 75–93.8 [77–79]

K. marxianus ScTDH3 (Pol II) 3

RPR1′-tRNA (Pol III) 2
pYTK079
pIW601

AaTEF
1 ScTEF1 10–82 [76,80]

P. kudriavzevii RPR1 (Pol III)
RPR1′-tRNA (Pol III) 2

pRS416
pRS415
pCast

TEF1 64 [30,81,82]

1 Defined as transformation efficiency (i.e., positive colony number/total colony number); 2 synthetic hybrid
promoters; 3 self-cleaving ribozyme system was used.

In contrast to the homologous DNA template-based HDR system adopted by S. cere-
visiae, most NCYs rely on the NHEJ pathway. NHEJ-dominant DNA repair system is the
major challenge of CRISPR-Cas9-guided genome editing for NCYs. In particular, NHEJ is
an evolutionarily conserved pathway that directly rejoins the broken ends of DNA without



Fermentation 2022, 8, 656 7 of 16

a template [83–85]. This recovery system can cause unwanted frameshift indels, which
is an obstacle to integrating donor DNA into genomes [17]. To overcome this limitation,
a strategy to knockout NHEJ-related genes was devised that was capable of strongly re-
ducing NHEJ, causing remaining recombinants to have a higher percentage of the desired
HDR [86]. Through knockout of Ku70/Ku80, Dnl4/Lif1, Nej1, and Mre11/Rad50/Xrs2
(MRX), studies have shown that the NHEJ pathway was inhibited but gene targeting
efficiency was increased through the induced HDR pathway [87–89]. Although the stability
of strains associated with growth and ultraviolet sensitivity needs to be improved [89],
these NHEJ knockout approaches serve as a basis for CRISPR-guided genetic engineering
of NCYs. Conversely, there is a strategy to increase genome integration efficiency through
overexpression of genes involved in the HDR pathway [90]. For example, RAD51 or 52, a
recombinase involved in DSB repair, is the central enzyme of HDR process, and its overex-
pression is suggested as a methodology to induce HDR pathway. Such an approach has
either enhanced or inhibited HDR efficiency in earlier studies [91]. While a study revealed
that RAD51 overexpression inhibited HDR process of DSBs in yeast (i.e., S. cerevisiae) [91],
there are also examples with P. pastoris showing that heterologous or homologous expres-
sion of RAD52 increases HR efficiency [92]. A similar phenomenon was also observed with
Y. lipolytica [93].

The CRISPR-Cas9 system requires the optimal expression of sgRNA and Cas9 that
are tailored to the individual organism. sgRNA expression is another major challenge,
and its efficiency relies on the type of RNA promoter and polymerase. According to a
previous study, sgRNA expression was observed under the control of the standard RNA
polymerase III promoter in S. cerevisiae, but expression of gRNA using the same promoter
was at the low level in NCYs, including P. pastoris [94]. Furthermore, RNA polymerase
II, a polymerase responsible for most protein-coding mRNA synthesis, is not applicable
for sgRNA transcription because the transcripts synthesized by this RNA polymerase
cause significant alterations, such as polyadenylation, at the transcript termini, which
are undesirable for sgRNA expression [95]. To overcome these limitations, Gao et al.
developed a chimeric gene system known as ribozyme-sgRNA-ribozyme, through which
the RNA transcript is self-cleaved because of the ribozymal nuclease activity to release the
sgRNA [95,96]. This system functions well with appropriate promoters using the classical
RNA polymerase (e.g., RNA polymerase II), which serves as an efficient tool to increase
functional sgRNA expression, even in NCYs (Table 1).

Apart from those mentioned above, challenges, such as off-target effects causing
unwanted target cleavage [97] and restriction of NGG PAM motifs [98] remain, and further
improvements are needed for industrial application of NCYs. To be specific, variants of
Cas9 through protein engineering (for recognition of NAG and NGA PAMs) [99] and PAM
sequence can be generated to achieve the more specific target cleavage. Additionally, an
off-target effect could be solved by the well-designed sgRNA using in silico program [100].

4.3. Biotechnological Application of CRISPR-Cas9-Introduced NCYs
4.3.1. Secondary Plant Metabolites

Plant-derived secondary metabolites are organic compounds with complex molecular
structures that exhibit beneficial bioactivity. Flavonoids, terpenes, saponins, alkaloids, and
sterols are representative examples. These exhibit antiobesity, anticancer, antioxidant, and
antiaging effects [101,102] and can be used in various industries, such as pharmaceuticals,
foods, and cosmetics [103,104]. The classical production of these compounds mainly de-
pends on extractive and chemical methods, which are neither environmentally friendly nor
economically feasible [105]. Microbial biosynthesis is a promising alternative to overcome
the problems associated with current production methods [106]. Y. lipolytica is a favor-
able host strain for the biosynthesis of secondary plant metabolites, especially flavonoids,
as it produces large amounts of acetyl-CoA and other flavonoid precursors through the
mevalonate (MVA) pathway. With the application of CRISPR-Cas9 technology for genomic
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integration in Y. lipolytica, targeted and marker-free strains have been developed in an easy,
simple, and precise manner, thus contributing to the current research [107].

Flavonoids, such as naringenin and resveratrol, are a class of secondary plant metabo-
lites derived from phenylpropanoids [108]; they are biologically synthesized as follows
(Figure 3). From phenylalanine and tyrosine, 4-coumaric acid is produced through deamina-
tion, which is then converted into 4-coumaroyl CoA by 4-coumaroyl-CoA ligase (4CL) [103].
Next, it is combined with three molecules of malonyl-CoA via polyketide synthase to form
flavonoids. In yeasts lacking the aforementioned pathway, the heterologous expression
of tyrosine amino lyase (TAL), 4CL, and chalcone synthase (CHS) is used as the primary
strategy to produce flavonoid precursors [103,109]. In particular, an engineered Y. lipolytica
strain in which the xylose metabolism and naringenin biosynthesis pathways were intro-
duced produced 715.3 mg/L naringenin from a mixture of glucose and xylose as the carbon
source (Table 2) [109]. Additionally, the exogenous expression of the resveratrol biosynthetic
pathway and mutations in 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase
(ARO4) and chorismate mutase (ARO7) lowered the sensitivity to tyrosine-induced feed-
back inhibition, thereby increasing resveratrol production to 12.4 g/L [103].
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xylulose-5-phosphate; E4P, erythrose 4-phosphate; G3P, glyceraldehyde-3-phosphate; PEP, phospho-
enolpyruvic acid; acetyl-CoA, acetyl coenzyme A; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA;
MVAP, mevalonate-5-phosphate; MVAPP, mevalonate pyrophosphate; IPP, isopentenyl pyrophos-
phate; DMAPP, dimethylallyl pyrophosphate; GPP, geranyl pyrophosphate; FPP, farnesyl pyrophos-
phate; GGPP, geranylgeranyl pyrophosphate; TAL, tyrosine ammonia-lyase; 4CL, 4-coumarate-coA
ligase; STS, stilbene synthase; VST, resveratrol synthase; CHS, chalcone synthase; CHI, chalcone
isomerase; ERG10, acetyl-CoA C-acetyltransferase; ERG13, HMG-CoA synthase; HMG, HMG-CoA
reductase; ERG12, mevalonate kinase; ERG8, phosphomevalonate kinase; ERG19, mevalonate py-
rophosphate decarboxylase; IDI, isopentenyl diphosphate isomerase; LS, limonene synthase; ERG20,
farnesyl pyrophosphate synthase; BFS, β-farnesene synthase; GGS1, geranylgeranyl diphosphate syn-
thase; SQS, squalene synthase; ERG1, squalene monooxygenase; LUS, lupeol synthase; CarRP/CrtB,
phytoene synthase/lycopene cyclase; CarB/CrtI, phytoene dehydrogenase; CarS, multi-functional
carotene synthase; CCD1, carotenoid cleavage dioxygenase; XK, xylulokinase; XDH, xylitol dehydro-
genase; XR, xylose reductase; XT, xylose transporter.
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Carotenoids are tetraterpenes containing 40 carbon atoms and natural antioxidants.
Carotenoids derived from vegetable and fruits, called β-carotene, β-cryptoxanthin, and
α-carotene, are regarded as great dietary sources of provitamin A, which is converted in the
human intestine into vitamin A, demonstrating their high industrial value [110]. Y. lipolytica
natively produces geranylgeranyl pyrophosphate (GGPP) via the MVA pathway, which can
be transformed into carotenoids through the introduction of heterologous genes involved
in downstream pathways (Figure 3). In previous studies, lycopene and β-carotenoids were
generated from GGPP via the introduction of phytoene dehydrogenase and phytoene syn-
thase/lycopene cyclase from Mucor circinelloides or CrtYB and CrtI from Xanthophyllomyces
dendrorhous [111,112]. Additionally, the production of β-carotene was increased to 4.5 g/L
by enhancing the supply of precursors (i.e., GGPP) through the overexpression of MVA
metabolic pathway genes, such as 3-hydroxy-3-methylglutaryl-CoA reductase [73].

Industrially useful terpenes, such as monoterpene and sesquiterpene, which are uti-
lized in food, cosmetics, medicine, and next-generation jet fuel, have also been synthesized
via the metabolic engineering of NCYs [113].

Table 2. Production of secondary plant metabolites using CRISPR-Cas9 in NCYs.

Strain
Target Genes

Product ReferenceEndogenous Gene
Editing Heterologous Gene Editing

Y. lipolytica

HMG1, GGS1
crtE (Pantoea ananatis),

crtI (P. ananatis),
crtB (P. ananatis)

Lycopene
3.38 mg/g DCW 2 [71]

GGS1 carB (Mucor circinelloides),
carRP (M. circinelloides),

β-carotene
4.8 mg/g DCW [72]

GGS1, ERG13,
HMG

carB (M. circinelloides),
carRP (M. circinelloides)

β-carotene
4.5 g/L [73]

GGS1, HMG1,
ERG8, ERG10,

ERG12, ERG13,
ERG20, ERG19, IDI

carB (M. circinelloides),
carRP (M. circinelloides),
CCD1 (Petunia hybrid),

PK (Bifidobacterium bifidum),
PTA (Bacillus subtilis)

β-ionone
358.4 mg/L

0.98 g/L (fed-batch)
[112]

XK, HMG1 1,
ERG12 1

LS (Agastache rugosa) 1,
NDPS (Solanum lycopersicum) 1,

XR (Scheffersomyces stipitis),
XDH (S. stipitis)

Limonene
20.57 mg/L [113]

HMG, ERG12, IDI,
ERG20, SQS

BFS (Artemisia annua),
LS (Citrus limon),

LS (Perilla frutescens),
CnVS (Callitropsis nootkatensis),

crtI (Xanthophyllomyces dendrorhous),
crtYB (X. dendrohous),

acs (Salmonella enterica)

β-farnesene
955 mg/L
Limonene
35.9 mg/L
Valencene

113.9 mg/L
Squalene

402.4 mg/L
β-carotene
164 mg/L

2,3-oxidosqualene
22 mg/L

[111]

HMG1, ERG1,
ERG9, OLE1, PAH1,

DGK1
LUS (Ricinus communis) Lupeol

441.72 mg/L [114]

GGS1 carS (Schizochytrium sp.) β-carotene
0.41 mg/g DCW [74]

XT 1, XR 1, XDH 1,
XKS 1

TAL (Rhodotorula glutinis),
4CL (Arabidopsis thaliana),

CHS (A. thaliana),
CHI (A. thaliana)

Naringenin
715.3 mg/L [109]

ARO4, ARO7
TAL (Flavobacterium johnsoniae),

VST (Vitis vinifera),
4CL (A. thaliana)

Resveratrol
12.4 g/L [103]

O. polymorpha -
TAL (Herpetosiphon aurantiacus),

STS (V. vinifera),
4CL (A. thaliana)

Resveratrol
97.23 mg/L [75]

1 Plasmid-based engineering; 2 DCW: dry cell weight.
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4.3.2. Other Industrial Products

In addition to secondary plant metabolites, various industrially useful products have
been synthesized using NCYs engineered with the CRISPR-Cas9 system (Table 3).

For example, itaconic acid is a high value-added compound used to synthesize poly-
mers and chemical intermediates, such as styrene and 2-methyl-1,4-butanediol [115]. Cur-
rently, Aspergillus terreus is used as the microbial host for the production of itaconic acid
with a titer of 160 g/L; however, it has some disadvantages in terms of its pathogenic poten-
tial (biosafety level 2), heterogeneous fermentation (as the filamentous fungi), the resultant
increase in viscosity of broth, difficult genetic engineering, and high sensitivity to shear
stress, etc. [116]. Therefore, there is an increasing demand for an alternative host. Itaconic
acid can be produced via cis-aconic acid decarboxylase (CAD), an enzyme that decarbonizes
cis-carbonate, which is an intermediate of the tricarboxylic acid (TCA) cycle in yeasts [115].
Studies have focused on the heterologous expression of CAD from A. terreus [115,117]. The
biosynthesis of itaconic acid using Y. lipolytica and P. kudriavzevi with biosafety, which have
low pH resistance allowing for saving of downstream cost associated with neutralization,
fast growth rates, and shear stress resistance, has been conducted [30,116]. One strategy
to increase the amount of cis-aconitate secreted by mitochondria and transported into the
cytosol is overexpressing the mitochondrial tricarboxylate transporter, which produced up
to 22.03 g/L itaconic acid [116].

Lipid-derived oleochemicals have been increasingly synthesized by Y. lipolytica, a
microbial host with a high potential to produce microbial oils that can replace vegetable
oils to increase economic feasibility and reduce environmental pollution [118,119]. A
titer of 25 g/L lipids was produced by knocking out phospholipase, an acyl-binding
phospholipid hydrolase [119]. The rich malonyl-CoA pool in Y. lipolytica is also useful
for fatty alcohol production. The heterologous expression of fatty acyl-CoA (FAR) from
Marinobacter aquaeolei [98] in Y. lipolytica led to 5.75 g/L fatty alcohol [120].

K. marxianus can synthesize esters for industrial use as it contains a rich acetyl-CoA
pool owing to its high growth rate and relevant endogenous enzymes, such as alcohol
acetyltransferase and esterase [121–123]. With the development of CRISPR-based tools, it
has become feasible to edit multiple target genes involved in related metabolic pathways.
A previous study successfully increased the production of 2-phenylethanol to 850 mg/L in
K. marxianus by balancing the precursors of shikimate and phenylalanine biosyntheses [48].
Additionally, 150 mg/L ethyl acetate was produced via the TCA cycle and knockdown of
electron transport chain-related genes [123].

Table 3. Production of industrially useful products using CRISPR-Cas9 in NCYs.

Strain
Target Genes

Product Reference
Endogenous Gene Editing Heterologous Gene Editing

Y. lipolytica - CAD (Aspergillus terreus),
mttA (A. terreus) 1

Itaconic acid
22.03 g/L [116]

P. kudriavzevii ICD, mttA 1 CAD (A. terreus) 1 Itaconic acid
1.23 g/L [30]

Y. lipolytica SCT1, OLE1 FAR (M. aquaeolei) Fatty alcohol
5.75 g/L [120]

Y. lipolytica PLA2 - Lipid
25 g/L [119]

Y. lipolytica AXP celB (Pyrococcus furiosus) β-glycosidase
187.5 µkatoNPGal/L 2 [124]

K. marxianus
ARO1, ARO2, ARO3, ARO4, ARO7,
ARO8, ARO9, PHA2, TAL1, TKL1,

RPE1, RKI1, LAC4

xfpk (Bifidobacterium breve),
ppsA (Escherichia coli), pta

(Salmonella enterica)

2-penylethanol
850 mg/L [48]

Y. lipolytica - FAP (Chlorella variabilis) Hydrocarbons
58.7 mg/L [125]

K. marxianus ACO2b, SDH2, RIP1, MSS51 - Ethyl acetate
150 mg/L [123]

1 Plasmid-based engineering; 2 The amount of enzyme was measured as enzyme activity assayed against o-
nitrophenyl-β-galactopyranoside (oNPGal).
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5. Future Perspectives

The current petroleum-based economy can be replaced by a sustainable bioeconomy
with the increase in the development of modern biotechnology based on genetically and
metabolically engineered microorganisms. The recent approval of CRISPR-Cas system-
mediated genome editing for use in gene therapy clinical trials and relaxed regulation
of the commercialization of genetically modified crops by the United States government
will accelerate the expansion of applications of genome editing from bench to reality.
This can be demonstrated by NCYs with intrinsic commercial value applicable to various
industrial sectors. However, to overcome the technical difficulties associated with the
genetic engineering of NCYs, careful tailoring of CRISPR-Cas systems in a given organism
is required. The continual discovery of novel machinery and development of diverse
variants of the CRISPR-Cas system are expected to promote this process. Advances in
systems and synthetic biology approaches, in which predicted modeling data are combined
with experimental data (i.e., product yield and metabolic flux), will further aid in the
selection of suitable strains and optimize engineered pathways more efficiently for NCYs.

6. Conclusions

Each NCY possesses unique characteristics and a high potential for industrial use.
Compared with the model yeast S. cerevisiae, the genetic and physiological characteris-
tics of NCYs have not been fully elucidated, making it challenging to develop industrial
applications using NCYs as microbial hosts. Although the introduction of the revolution-
ary CRISPR-Cas9 system has accelerated the targeted metabolic engineering of NCYs,
error-prone genetic mutations emerging from native DNA repair machinery, depending
on the inaccurate NHEJ pathway, are the primary obstacle. To overcome this issue, edit-
ing efficiency can be improved using strategies for knocking out NHEJ-related genes or
overexpressing HR-related genes. Further improvement can be achieved by customized
optimization of CRISPR-Cas9 systems specific to individual organisms.
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