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Abstract: Gallic acid (GA) is a naturally occurring phenolic acid that can be found in the leaves, roots,
flowers, or stems of a wide variety of plant species. It has a broad range of uses in the food and
pharmaceutical industries. The objective of this research is to investigate the GA reactive extraction
process employing dichloromethane and n-heptane as solvents, 1-octanol as a phase-modifier, and
Amberlite LA-2 as an amine extractant dissolved in the organic phase. The separation yield and
distribution coefficient data were discussed, along with the analysis of the extraction conditions
and the extraction mechanism. Dichloromethane employed as the solvent, 80 g/L Amberlite LA2
used as the extractant, and 10% phase modifier were determined to be the ideal conditions for the
reactive extraction onto a biphasic organic-aqueous system. Statistical regression and artificial neural
networks (ANNs) established with the differential evolution (DE) algorithm were also used to model
and optimize the process.
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1. Introduction

Gallic acid (3,4,5-trihydroxybenzoic acid, Figure 1) (GA) is a phenolic acid of natural
origin, found in the leaves, roots, flowers, or stem of a large number of plant species
(Bergia suffruticosa, Ceratonia siliqua, Tectonagrandis, and Casuarina equisetifolia) with numer-
ous applications in the food and pharmaceutical industries [1].
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Figure 1. Chemical structure of gallic acid.

GA is a white or pale-yellow crystalline compound, with the structural formula
presented in Figure 1 and the main physicochemical properties in Table 1.
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Table 1. Main characteristics of gallic acid [2].

Characteristic Value

Molar mass 170.12 g/mol (anhydrous)
Density 1.694 g/cm3

Solubility in water 1.19 g/100 mL (anhydrous, 20 ◦C)
Melting point 260 ◦C

Acidity constant 3.94 (COOH)
8.45, 11.4, and 13 (phenolics OH)

From the pharmacological point of view, GA has antimicrobial, anti-inflammatory and
antioxidant action [1,3]. In addition, GA inhibits the adhesion and development of microor-
ganisms from the species Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans,
Chromobacterium violaceum, Listeria monocytogenes, and Shigella flexneri [4–9]. Moreover, it is
able to exhibit degradative action on the cell wall of some Gram-negative microorganisms
and an inhibitory effect on the activity of some enzymes (HIV-1 integrase, HIV-1 transcrip-
tase, HCV serine protease, etc.) [10–12]. Additionally, a few studies present models for the
use of GA and its derivatives in various diseases, including cancer [13]. The cytotoxic and
antitumoral effect of GA results from modulating pro- and anti-oxidant activities [3].

Conventionally, GA can be obtained by acid hydrolysis of tannic acid. However,
it implies high cost, low yield, low purity, and generation of toxic effluents. A more
efficient process involves microbial hydrolysis of tannic acid (Table 2) using tannase (tannin-
acyl-hydrolase, EC 3.1. 1.20, an enzyme that catalyzes the breakdown of ester bonds in
gallotannins) produced by fungal and bacterial strains.

Table 2. Production of gallic acid using tannase-producing microorganisms [14–18].

Microorganism Process Culture Media GA Produced

B. subtilis AM1 Anaerobic batch fermentation,
30 ◦C, 48 h

FeSO4 × 7H2O, 0.01; NaNO3, 3; K2HPO4, 1;
MgSO4 × 7H2O, 0.5; KCl, 0.5; and tannic acid 1%. 24.16 g/L

L. plantarum CIR1 Anaerobic batch fermentation,
30 ◦C, 48 h

FeSO4 × 7H2O, 0.01; NaNO3, 3; K2HPO4, 1;
MgSO4 × 7H2O, 0.5; KCl, 0.5; and tannic acid 1%. 23.73 g/L

Sporidiobolus ruineniae A45.2

Aerobic batch fermentation, 1L
stirred tank fermenter, 250 rpm,

aeration rate of 0.2 vvm
30 ◦C for 48 h

3 g/L yeast extract, 3 g/L malt extract, 5 g/L
peptone, 10 g/L glucose, 5 g/L tannic acid 11.2 g/L

Bacillus sphaericus Batch fermentation, pH 6.0,
37 ◦C, 100 rpm, 48 h

2.0% tannic acid, 2.5% galactose, 0.25% ammonium
chloride, and 0.1% MgSO4

90.8%

Rhizopus oryzae NRRL 21498,
Aspergillus foetidus

MTCC 3557

Modified solid-state
fermentation, 30 ◦C and 80%

relative humidity, pH 5

Powdered fruits of Terminalia chebula and
powdered pod cover of Caesalpinia digyna 94.8%

Aspergillus fischeri MTCC 150 Batch fermentation 35 ◦C, pH:
4.0 to 3.5, agitation: 250 rpm

NH4NO3, 1.65 g/L, KNO3, 1.9 g/L, MgSO4 ×
7H2O, 0.371.65 g/L, CaCl2 × 2H2O, 0.44 g/L,

KH2PO4, 0.17 g/L, H3BO3, 6.2 mg/mL, MnSO4 ×
H2O, 16.9 mg/mL, ZnSO4 × 7H2O, 8.6 mg/mL,

Na2MoO4 × 2H2O, 0.25 mg/mL, CuSO4 × 5H2O,
0.025 mg/mL, CoCl2 × 6H2O, 0.025 mg/mL,

FeSO4 × 7H2O, 5.6 mg/mL, and Na2EDTA, 7.6
mg/mL, tannic acid 5.0 g/L

7.35 g GA/g biomass;
23% conversion

obtained at 50 g/L
tannic acid

Penicillium rolfsii (CCMB 714) Submerged fermentation, 30 ◦C 10% tannic acid 21.51 g/L

Several studies have analyzed reactive extraction for the GA separation [19–22], show-
ing its potential. Rewatkar et al. [19] obtained-under optimum conditions of 2.34 g/L GA,
65.65% v/v tri-n-butyl phosphate in hexanol, 19 ◦C, and pH 1.8-an extraction efficiency
of 99.43% for gallic acid from an aqueous stream. Joshi et al. [20] obtained the following
distributions coefficient of GA 1.94–27.57 for 2-octanone: 1.12–8.83 for lauryl alcohol, and
0.20–22.07 for n-heptane, increased values being obtained by adding 0.3652 mol/L TBP
(tri-butyl phosphate) as an extractant. Pandey et al. [21,22] obtained the maximum GA ex-
traction of 90.1%, at an initial acid concentration of 0.0588 mol/L, initial TOA concentration
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of 0.2762 mol/L, pH 2, and temperature of 25.0 ◦C. However, none of these studies have
analyzed GA back extraction from organic solvents.

This study aims to provide a complete analysis (extraction, stripping, and optimization)
of the GA reactive extraction process using Amberlite LA2 dissolved into two solvents
with different dielectric constants: dichloromethane and n-heptane and a phase modifier
(1-octanol). For reactive extraction of carboxylic acids during the intense mixture necessary
for a good mass transfer, a third phase is formed—a stable emulsion very difficult to
separate. The addition of a phase modifier, 1-octanol, prevents its formation, facilitating
the organic and aqueous phase separation, and, it also increases the solvent polarity
increasing the reactive extraction efficiency [23–25]. The results were discussed from the
viewpoint of the extraction mechanism, separation yield and distribution coefficient, for
different extraction conditions. Back extraction was successfully performed using NaOH
solutions. In addition, the process was modeled and optimized using statistical regression
and Artificial Neural Networks (ANNs) determined with the Differential Evolution (DE)
algorithm. The objective is to rapidly identify the extraction efficiency without additional
experiments and determine the optimal conditions that lead to maximum efficiency.

2. Materials and Methods
2.1. Chemicals

All chemicals, including gallic acid (98.0%), dichloromethane (99%), 1-octanol (99%),
heptane (99%), sulfuric acid (95.0–98.0%), sodium hydroxide (>97%), lauryl tri-alkylmethyl-
amine—Amberlite LA2 (99%), and acetonitrile (99.99%), were purchased by Sigma Aldrich
(Burlington, VT, USA) and used as received without further processing.

2.2. Reactive Extraction Experiments

Reactive extraction and stripping experiments for GA separation were carried out
using equal volumes of aqueous and organic phases (20 mL) in an extraction column with
vibratory mixing (50 s−1 frequency and 5 mm amplitude, the stirrer being maintained at the
initial interface between the two phases), consisting in a glass column with a diameter of
36 mm and 250 mm height, provided with a thermostatic jacket that allowed temperature
control: 25 ± 0.02 ◦C for all the reactive extraction experiments and 50 ± 0.02 ◦C for the
back extraction. The reactive extraction experiments were performed using two solvents
with different polarities: dichloromethane (dielectric constant 9.08 [26]) and n-heptane
(dielectric constant 1.9 [26]). The first solvent, suitable for polar compounds, was chosen
based on efficient reactive extraction obtained for other carboxylic acids (2-ketogluconic
acid, formic acid, pseudomonic acid, acetic acid, etc. [23–25,27]), while the second one was
chosen due to its green classification [28]. As a phase modifier, 1-octanol (dielectric constant
10.3 at 25 ◦C [26]) was added to the organic solution to increase the polarity of the solvent
and to facilitate the phases separations (1-octanol prevents the formation of a third phase—a
stable emulsion between the two phases). Solvent selection is an essential parameter since
it influences the extraction efficiency and the design of a continuous extraction process and
solvent regeneration cycle.

After the extraction and the stripping (each process having a duration of 1 min),
phases were separated in a centrifugal separator at 4000 rpm. GA initial concentration
in the aqueous phase was 5 g/L (2.29 × 10−2 M), and the concentrations of the amine
extractant, Amberlite LA-2, in the organic phase varied between 0 and 80 g/L (0.215 M). The
pH value of the aqueous phase was between 2 and 5 for the extraction and 8 for the stripping
experiments, modified using solutions of 3% sulfuric acid or 3% sodium hydroxide, by
means of the indications of the digital pH meter (CONSORT C 836) (Turnhout, Belgium).

2.3. Analytical Procedures

The processes were analyzed on the basis of distribution coefficients and extraction
efficiency, calculated using the mass balance based on the GA concentration in the aqueous
phases measured by the high-performance liquid chromatography technique (HPLC) as
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described in the literature [19]. For this purpose, an HPLC system, UltiMate 3000 Dionex
(Sunnyvale, CA, USA), provided with an Acclaim C18 (150 mm × 4.1 mm, 5 µm) column
(Sunnyvale, CA, USA), 90% water, and 10% acetonitrile solution were used as mobile phase,
with detection by UV absorbance at 264 nm wavelength, and the flow rate of 0.8 mL/min.

2.4. Modelling and Optimization

In order to model and optimize the considered process, two strategies were considered.
One is based on the classical approaches that use statistical methods, and the other uses
artificial intelligence techniques: ANNs and bio-inspired metaheuristics.

2.4.1. Statistic Approaches

The statistical analysis of the process was performed using Minitab (Coventry, UK), with
a regression model with interactions through order 2 and terms through order 2, with
a 95% confidence level for all intervals, and a forward selection strategy for parameter
optimization. For process optimization, the Response Optimizer option was used.

2.4.2. Artificial Neural Networks and Differential Evolution

In this case, the process modeling was performed using ANNs. Although ANNs are
relatively easy to use, their optimal configuration and hyper-parameters are a problem
in themselves. Thus, a Keras sequential model was considered in this work, with an
Adam optimizer and ReLU activation function for the hidden layers and a linear activation
function for the output layer. Consequently, the training of the ANN is performed using the
Keras framework. However, before training, an optimal architecture must be selected. This
step is performed by DE, a population-based bio-inspired metaheuristic that showed a good
capability to solve various problems from different areas. For example, in simple or different
combinations, it was applied for: the prediction of polycyclic aromatic hydrocarbons
formation in grilled meats [29] prediction of reactive extraction of pseudomonic acids [23],
modeling the biogas production from anaerobic wastewater treatment plant [30], and
optimization of biogas power plant feedstock [31].

Except for the determination of the ANN model architecture, in this work, DE is also
applied to optimize the process. Since this step cannot be performed without a model, in
this work, the ANN model was used in combination with DE.

Since DE is a population-based algorithm that uses vectors of real numbers, each
of the two optimization problems is individually solved. In each case, a direct encoding
transforms the problem into a structure that DE can work with. In the case of ANN
optimization, the parameters considered are strictly related to the architecture: the number
of hidden layers and neurons in each hidden layer. In the case of process optimization, the
parameters considered are related to the process parameters: solvent, octanol addition, pH,
and ALA-2 concentration.

Compared with the standard DE algorithm [32], the variant used in this work uses a
self-adaptive procedure for the control parameters. This strategy is applied to eliminate the
need for manually tuning the F and CR parameters that influence the algorithm’s perfor-
mance. The F parameter controls the mutation rate of the individuals in the population.
CR is the crossover rate that influences how the trial individuals are generated from the
current and mutated population. Overall, the DE algorithm has fewer steps: initialization,
mutation, crossover, and selection. In the initialization phase, the population is randomly
generated using the limits of the considered problem. The limits are previously set for the
ANN problem depending on how large a model is allowed. For process optimization, the
limits are the ones used in the experimental phase. The mutation and the crossover phases
are the ones responsible for generating new individuals. The mutation introduces changes
in the individuals, and the crossover combines the characteristics of two parents to create
children. Finally, in the selection phase, the best individuals are selected to participate in
the next generation. The steps mutation, crossover, and selection are repeated until a stop
criterion is reached (maximum number of generations).
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The general schema of the workflow of the steps performed in this work is presented
in Figure 2.
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3. Results
3.1. Reactive Extraction

Reactive extraction is a separating technique that implies a chemical reaction between
one or more components from a liquid mixture and a selective extractant dissolved in
an organic solvent. The efficiency of the reactive extraction depends on the physical and
chemical characteristics of the solute (hydrophobicity, acid-base properties), on properties
of the extractant (reactivity, ability to form hydrophobic compounds with the solute) and
on separation conditions (pH, mixing intensity, concentration level, etc.). Due to these
conditions, the mechanism of interaction between solute and extractant, the optimal extrac-
tion conditions in correlation with the separation factors, and the extraction mechanism
constitute the main study directions in reactive extraction.

3.1.1. Influence of Aqueous Phase pH on the Extraction Efficiency

The pH-value of aqueous solutions is an important parameter that influences the
reactive extraction process, as it controls the form in which the acid is found in aqueous
solutions: undissociated at pH value lower than pKa (3.94 for the carboxylic group), and
dissociated at pH value superior to pKa. GA contains in his molecule a carboxylic group
and three hydroxyl groups and the dissociation of these functional groups is represented
in Figure 3:

However, due to polarizable hydroxyl from phenolic groups, GA can form hydrogen
bonds, generating dimers [33].

Due to GA insolubility in both chosen solvents, the extraction is based on forming a
complex between the extractant (Amberlite LA2) and the carboxylic group from the acid
structure. The pH influence on the extraction efficiency (E, %—the ratio of GA concentration
in the extracted phase and its initial concentration), depicted in Figure 4, suggest hydrogen
bond formation between the un-dissociated acid and the extractant (for pH < pKa1, the
acid dissociation in the aqueous phase can be considered negligible).

Adding 1-octanol increased the extraction efficiency for both solvents (Table 3), with a
more significative influence at pH over 4. The organic phase consists either of two (diluent
and extractant) or three components (diluent, extractant, and modifier). The extractant
reacts with gallic acid, forming an amine–acid complex that is soluble only in the diluent
(used primarily for decreasing extractant viscosity), solubility being improved by the
modifier addition. The most important influence of 1-octanol is observed in the case of
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n-heptane, by improving its low transfer capabilities of the acid–amine complex in the
organic phase.
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Table 3. The amplification factor values corresponding to 1-octanol addition (CALA2 = 40 g/L).

Solvent/pH 2 3 4 5

n-Heptane 1.47 1.50 1.84 1.92
Dichloromethane 1.19 1.26 1.47 1.55

The most important increase in the values of amplification factors has been reached for
pH over 4, in the domain corresponding to the higher extent of carboxyl group dissociation.

3.1.2. Influence of Amine Concentration on the Extraction Efficiency

The reactive extraction of carboxylic acids, which are usually present in low concen-
trations in the fermentation broth, with an aminic extractant occurs, at equilibrium, at
the organic-aqueous interface, with the formation of a strong hydrophobic compound.
Solvation of this compound by the diluent is a critical factor in the extraction of most acids.

The experimental results regarding the influence of Amberlite LA2 concentration on
the extraction efficiency are illustrated in Figure 5, for pH = 2 (pH value corresponding to
the maximum extraction efficiency).

Physical extraction was found to be very poor in both used solvents. An increase in
ALA2 concentration in the organic phase from 0 to 0.226 M, over the stoichiometric ratio
(GA concentration was 2.935 × 10−2 M), induces the continuous increase of the extraction
degrees. These high extraction yield values suggest improved solvation by extractant
molecules by increasing interfacial compounds hydrophobicity. Similar trends can be
observed for other acid-extraction systems [23–25,27].
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Adding 1-octanol improves the solvation power of the acid–amine complex, as shown
by the amplification factors values presented in Table 4. In the case of the solvent with the
lower polarity, the 1-octanol addition generates the lowest influence at low amine concen-
tration in the organic phase. This proves that the modifier presence is more important for
increased extractant quantities in the solvent, probably due to the formation of gallic acid
dimers through intermolecular hydrogen bonds, resulting in carboxylic groups blocked and
requiring higher amounts of extractant to make the interfacial reaction possible. The octanol
provides a good solvation media for the interfacial product (acid–amine complex), but it
can also form hydrogen bonds with gallic acid, due to the alcohol functional group. In the
dichloromethane case, the highest influence can be observed at low amine concentrations,
but the values are comparable with those obtained for n-heptane. At higher extractant con-
centrations in dichloromethane, the phase modifier influence is diminished, the extraction
degree being high even in the absence of 1-octanol, due to increased solvent polarity.

Table 4. The amplification factors values corresponding to 1-octanol addition (pH = 2).

Solvent/A LA2 Concentration 10 20 40 80

n-Heptane 1.23 1.27 1.47 1.45
Dichloromethane 1.30 1.25 1.19 1.08

3.1.3. Study of the Reactive Extraction Mechanism

To analyze the reactive extraction mechanism with and without 1-octanol as the phase
modifier, the following interfacial equilibrium is considered (gallic acid is insoluble in
n-heptane and in dichloromethane and Amberlite LA2 is insoluble in the aqueous phase).
The purpose is to determine the extraction equilibrium constant (KE) and the number of
extractant molecules (n), using the law of mass action. As concluded from the pH influence,
Amberlite LA2 extracts the non-dissociated form of GA when the pH < pKa:

Gal−COOH(aq) + nQ(o) ↔ Gal−COOHQn(o) (1)

For this system, the distribution coefficient, D, is determined using Equation (2), the
ratio of gallic acid concentration in the solvent phase and in the aqueous phase at equilibrium:

D =

[
Gal−COOH Qn(o)

]
[
Gal−COOH(aq)

] (2)

According to the interfacial reaction proposed, the equilibrium constant can be deter-
mined with Equation (3):
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KE =

[
Gal−COOH Qn(o)

]
[
Gal−COOH(aq)

] [
Q(o)

]n →
[
Gal−COOH Qn(o)

]
= KE·

[
Gal−COOH(aq)

]
·
[
Q(o)

]n
(3)

The concentration of un-dissociated gallic acid in the aqueous solution is calcu-
lated through Equation (4), by using its total concentration, Gal−COOHaq and Ka, the
dissociation constant:

[
Gal−COOH(aq)

]
=

[Gal−COOH(aq)]

1 + Ka
[H+ ]

(4)

Using these three Equations (2)–(4) the equation for distribution coefficient D becomes:

D = KE·

[
Q(o)

]n

1 + Ka
[H+ ]

(5)

By applying the logarithm to relation Equation (5), the following equation (straight
line) can be obtained:

ln D + ln
(

1 +
Ka

[H+]

)
= ln KE + n ln

[
Q(o)

]
(6)

Using the graphical representation of Equation (6), in Figure 6, it is possible to deter-
mine the number of Amberlite LA-2 molecules, n, which participate in the formation of
the interfacial adduct (from the slope), and the value of the extraction constant, KE, (from
its intercept).
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The results presented in Table 5, demonstrate that in the absence of the phase modifier,
the reactive extraction occurs through the formation of an aminic adduct that contains two
molecules of extractant for n-heptane, while for dichloromethane it occurs by forming an
equimolecular complex between Amberlite LA2 and GA. The addition of 1-octanol changes
the mechanism for the inert solvent n-heptane, for both solvents the interfacial complex
containing one molecule of each reactant.

As can be observed from Table 5, the increase of organic phase polarity leads to the
increase of the extraction constant KE, thus suggesting the moving of the interfacial equilib-
rium towards the formation of extraction compounds. In order to confirm these results, the
loading factor, Z, [Gal-COOH(o)]/[Q(o)] was calculated, the values being presented in Figure 7.
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Table 5. Values of n and KE for extraction systems with 1-octanol and Amberlite LA2.

Solvent n KE,

n-Heptane 1.86 56.56, L2/ mol2

Dichloromethane 1.18 358.31, L/mol
n-Heptane + octanol 1.08 82.43, L/mol

Dichloromethane + octanol 1.16 947.97, L/mol
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The decrease in the loading ratio, with Amberlite LA2 increasing concentration
cumulated with values smaller than 0.5, confirms that only acid—extractant 1:1 (for
dichloromethane with or without 1-octanol and n-heptane with 1-octanol) or 1:2 (for
n-heptane)—complex is formed in the organic phase. The values of Z superiors to 0.5,
obtained for dichloromethane at low Amberlite LA-2 concentrations (with or without the
phase modifier) assume the formation of an acid: extractant complexes of 2:1 and 3:1 [22].

3.1.4. Study of Stripping Efficiency

Stripping is a necessary step for the recovery of GA from the interfacial complex, which
can be attained by the reaction with NaOH that will convert the acid into its salt, regenerat-
ing the extractant in the same time. The results obtained for GA are presented in Figure 8.
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The study was performed at an initial phase pH equal to 2, corresponding to the maxi-
mum efficiency of the reactive extraction process and different extractant concentrations.
The maximum recovery yield was obtained at low amine concentrations in the organic
phase corresponding to smaller equilibrium concentration of gallic acid in organic phase.
The increase in temperature for the re-extraction at 50 ◦C facilitates the back extraction as
the formation of the complex between gallic acid and Amberlite LA2 through hydrogen
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bonds is exothermic and decreases the system entropy. Increasing the system temperature
diminishes the amount of gallic acid extracted, thus increasing the stripping efficiency.

3.2. Modelling and Optimization
3.2.1. Statistical Approaches

The regression model was determined based on the process parameters: solvent types
(described by the dielectric constant), the octanol addition (0 if no octanol is added and 1 if
octanol is added), pH, and ALA-2 concentration. The software used was MINITAB 17.1.0,
and a forward selection was applied for parameter selection. The resulting model had an
R2 of 91.63% and an adjusted R2 of 89.15%. The analysis of variance for the resulting model
is presented in Table 6, where DF indicates the degrees of freedom, Adj_SS is the adjusted
sum of squares, Adj_MS is the measure of the adjusted mean of squares, and F-value
indicates if the term is associated with the response. Finally, p-value is the probability that
indicates the evidence against the null hypothesis.

Table 6. ANOVA analysis.

Source DF Adj_SS Adj_MS F-Value p-Value

Regression 8 25,395.6 3174.45 36.94 0
pH 1 133.2 133.2 1.55 0.224

ALA_2 1 9175 9175.02 106.78 0
Solvent 1 1537.4 1537.36 17.89 0
Octanol 1 140.3 140.26 1.63 0.212

pH × pH 1 0.2 0.17 0 0.964
ALA_2 × ALA_2 1 6947.4 6947.38 80.86 0

pH × Octanol 1 209.7 209.69 2.44 0.13
ALA_2 × Octanol 1 828.8 828.79 9.65 0.004

The resulting models are indicated by Equations (7)–(10). The main explanation for
the fact that there are four equations for the process is related to the fact that in the model,
there are two categorical predictors: the solvent type and the octanol addition. Equation (7)
corresponds to the case where the solvent used is n-heptane, and no octanol is added.
Equation (8) corresponds to the case where n-heptane with octanol is used. Equation (9)
corresponds to the case where the solvent used is dichloromethane, and Equation (10)
describes the dichloromethane and octanol case.

E f f = 42.6− 18.2× pH + 2.558× ALA_2 + 0.1× pH2 − 0.02516× ALA_22 (7)

E f f = 54.4− 22.8× pH + 3.007× ALA_2 + 0.1× pH2 − 0.02516× ALA_22 (8)

E f f = 55.7− 18.2× pH + 2.558× ALA_2 + 0.1× pH2 − 0.02516× ALA_22 (9)

E f f = 67.4− 22.8× pH + 3.007× ALA_2 + 0.1× pH2 − 0.02516× ALA_22 (10)

The next step was determining the optimal conditions that lead to a maximization of
efficiency. In MINITAB, this was performed using the Response Optimizer option. The
solutions that resulted are presented in Table 7, where Fit indicates the efficiency of the
process, and Desirability is a measure that indicates the effectiveness of the response to the
desired conditions.

Table 7. Optimization solutions obtained in MINITAB.

Solution Solvent Octanol pH ALA-2 Fit Desirability

1 9.08 1 2.07477 80 100 1
2 1.9 1 2 59.7469 96.929 0.98891
3 9.08 0 2 50.8301 84.727 0.84183
4 9.08 1 3.5 59.7273 78.556 0.77792
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3.2.2. Artificial Intelligence

In order to determine the optimal ANN model for the considered process, the DE
algorithm in combination with the classical BackPropagation training technique optimized
with Adam (a combination implemented in Python and using the Tensorflow library) was
applied. As previously mentioned, two DE control parameters were included in a self-
adaptive approach to eliminate the need for manual tuning. However, DE does not have
only two parameters. It is also controlled by the number of individuals in the population
and the number of generations. However, following the classical DE idea, these parameters
are fixed through the run and, thus, can be easier to set up manually. Thus, based on a
preliminary test series, the generations were set to 50 and the number of individuals to 25.
These settings were used in all the optimization cases.

Regarding the ANN optimization problem, due to the direct encoding of the pa-
rameters, a set of limits were set to the ANN topology not to complicate the model too
much. Thus, the maximum number of hidden layers was set to 5, with 50, 50, 30, 30,
and 15 maximum number of neurons, respectively. After all the parameters were set,
the experimental data were pre-processed (randomized, split into training and testing,
and normalized) and fed to the DE procedure. Since the DE is a high stochastic algo-
rithm, 10 runs were performed, and the best ANN was chosen from the pool of gener-
ated solutions based on the mean squared error (MSE) computed in the training phase.
Due to the relatively low number of experimental points and the high number of hyper-
parameters that need to be determined during the architecture determination and training,
the best ANN determined—although it had a better performance than the regression mod-
els in a few cases—had an unacceptable low performance. This indicated that the ANN
did not efficiently capture the process’s dynamic in all cases due to the low number of
experimental data.

To solve this problem, the number of points was enlarged using a procedure that
generates synthetic data based on actual data. First, the process’s dynamic was graphically
determined for each type of solvent (with or without octanol), and intermediary points
were obtained using the Digitizer tool from Origin. After that, the new extended dataset
underwent the same procedure to determine the process model as in the original experi-
mental data. The best model obtained had a single hidden layer with 50 neurons. Table 8
presents the main statistic indicators for this ANN model, which will be further referred
as ANN (4:50:1).

Table 8. Statistical indicators for the best ANN obtained.

Training Testing

Explained variance score 0.996 0.996
Mean absolute error 1.141 1.212
Mean squared error 2.552 2.794

Mean absolute percentage error 0.0401 0.032
Coefficient of determination 0.995 0.994

A comparison between the experimental data, the statistical regression model’s pre-
dictions, and the ANN (4:50:1) model for a concentration of ALA-2 of 40 is presented in
Figure 9. As observed, the regression model does not efficiently capture the efficiency
dynamic and tends to be linear. On the other hand, the ANN predictions are closer to the
experimental data. Moreover, there is a single ANN that models all the cases, and there
is no need to change the relation based on the initial conditions. However, in terms of
predicted values, especially at low pH, for n-heptane, the predicted values for the regression
are far from the experimental data.

After that, the ANN model was applied for process optimization using the DE opti-
mizer. The best results obtained are presented in Table 9.

As it can be observed, the DE algorithm provided various solutions for each combina-
tion of solvents with or without octanol.
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Figure 9. Comparison between experimental, regression, and ANN model predictions for (A) n-
heptane without octanol addition; (B) n-heptane with octanol; (C) dichloromethane without octanol
addition; and (D) dichloromethane with octanol.

Table 9. Process optimization using DE with ANN (4:50:1).

Solvent Octanol pH ALA-2 Fit

9.8 1 2.018 46.518 100.000
9.8 1 2.005 25.699 99.621
9.8 1 2.145 56.867 97.834
9.8 1 2.310 42.744 93.193
9.8 1 2.310 28.929 92.596
9.8 1 2.409 56.697 90.889
1.9 1 2.047 67.956 89.606
9.8 1 2.477 56.784 89.105
9.8 1 2.477 44.331 88.840
9.8 1 2.537 32.539 86.787
9.8 1 2.560 37.518 86.524
9.8 1 2.560 35.597 86.397
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Table 9. Cont.

Solvent Octanol pH ALA-2 Fit

9.8 0 2.060 39.118 83.427
1.9 1 2.253 47.333 82.726
9.8 0 2.129 35.986 80.973
1.9 1 2.643 78.369 78.558
1.9 1 2.495 52.322 78.328
9.8 0 2.060 31.291 77.855
1.9 1 2.344 37.328 75.971
9.8 1 3.285 68.010 74.854
9.8 0 2.129 52.254 74.464
9.8 1 3.467 53.442 73.858
9.8 0 2.060 24.065 70.132
1.9 0 2.000 80.000 63.486
1.9 0 2.000 76.601 63.481
1.9 0 2.040 77.793 63.003
1.9 0 2.000 66.550 61.763

4. Conclusions

This article reports a comprehensive study on gallic acid separation including: reactive
extraction, stripping, and modeling. The optimum conditions for the reactive extraction
onto a biphasic organic-aqueous system were: pH of aqueous phase 2, dichloromethane
used as solvent, 80 g/L Amberlite LA2 used as extractant, and 10% phase modifier
(1-octanol). The extraction mechanism analysis confirmed the formation of complexes in-
volving hydrogen bonds between 1 molecule of GA and 1 of extractant, for dichloromethane
(with or without 1-octanol) and n-heptane with 10% 1-octanol, and 1:2 (acid:extractant)
complexes for n-heptane. The organic phase is regenerated at a high temperature (323 K)
with sodium hydroxide, allowing its simultaneous regeneration. Moreover, the process was
modeled and optimized with statistical approaches and artificial intelligence tools (ANNs
and DE). The results indicated that an effective model process could be further used to
generate predictions and eliminate the need for additional experimental work.
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