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Abstract: Kefir is a popular traditional fermented dairy product in many countries. It has a complex
and symbiotic culture made up of species of the genera Leuconostoc, Lactococcus, and Acetobacter, as
well as Lactobacillus kefiranofaciens and Lentilactobacillus kefiri. Though kefir has been commercialized
in some countries, people are still traditionally preparing kefir at the household level. Kefir is known
to have many nutritious values, where its consistent microbiota has been identified as the main
valuable components of the product. Type 2 diabetes mellitus (T2DM) is a common diet-related
disease and has been one of the main concerns in the world’s growing population. Kefir has been
shown to have promising activities in T2DM, mostly via hypoglycemic properties. This review aims
to explain the microbial composition of commercial and home-made kefir and its possible effects on
T2DM. Some studies on animal models and human clinical trials have been reviewed to validate
the hypoglycemic properties of kefir. Based on animal and human studies, it has been shown that
consumption of kefir reduces blood glucose, improves insulin signaling, controls oxidative stress,
and decreases progression of diabetic nephropathy. Moreover, probiotic bacteria such as lactic-acid
bacteria and Bifidobacterium spp. and their end-metabolites in turn directly or indirectly help in
controlling many gut disorders, which are also the main biomarkers in the T2DM condition and its
possible treatment.

Keywords: Kefir; T2DM; hypoglycemic; probiotics; Lactobacillus; animal studies; human studies;
metagenomics

1. Introduction

Kefir is a viscous and slightly fizzy beverage obtained by the fermentation of milk
and kefir grains comprising lactic acid, acetic-acid bacteria, and yeasts [1] and is defined
as a “natural complex probiotic” due to its rich microbial community structures [2]. Kefir
might have originated in the Balkan–Caucasian regions and is probably the most widely
studied fermented milk product in the world [3]. Kefir is consumed in many countries,
including Russia, Turkey, Bosnia and Herzegovina, Belgium, Czech Republic, Estonia,
Greece, Hungary, Ireland, Italy, Latvia, Norway, Poland, Romania, Slovakia, Ukraine,
China, Taiwan, Malaysia, South Africa, Mexico, Argentina, and Brazil [4]. Though it is
still commonly prepared at home, in some countries commercial kefir is also available.
Besides the milk, the microbial and nutritional composition of kefir are influenced by starter
cultures/kefir grains, the kefir grain to milk ratio, the source of inoculum, additives such
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as fruits and inulin, the duration and temperature of its fermentation, and its storage
conditions (Figure 1) [5,6].
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Kefir microbiota and its metabolites have been known to confer health benefits and 
gut immunomodulatory effects by stimulating, regulating, and enhancing the gut 
intestinal microbiota and functions [7,8]. Many microorganisms isolated from kefir have 
desirable probiotic properties such as high resistance to the low pH and bile salts in the 
gastrointestinal tract; bile salt hydrolase activity; non-cytotoxicity; and high adhesion to 
Caco-2 cells [9]. One of the commonest diet-orientated diseases is diabetes, which has 
affected around 10% of the world’s population [10]. Traditionally, the ethnic people of the 
Balkans have believed that the consumption of home-made kefir has several therapeutic 
values [11], including its hypoglycemic properties [12,13]. Although in recent years some 
clinical studies have shown the hypoglycemic effects of kefir, according to our best 
knowledge, there is no such comprehensive review on the hypoglycemic effects of kefir. 
Therefore, this review aims to highlight the microbial communities in both homemade 
and commercial kefir and validate their hypoglycemic properties through animal studies 
and human clinical trials. 
2. Microbial Composition of Home-Made and Commercial Kefir 

The microbial diversity of kefir has been thoroughly studied using culture-
dependent techniques; however, in recent times, due to the application of sequence-based 
taxonomical tools, its microbial diversity has revealed more interesting findings among 
the homemade and the commercial varieties of kefir [14]. The widely reported microbiota 
present in kefir includes bacteria (lactic-acid bacteria, acetic-acid bacteria) and eukaryota 
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Kefir microbiota and its metabolites have been known to confer health benefits and gut
immunomodulatory effects by stimulating, regulating, and enhancing the gut intestinal
microbiota and functions [7,8]. Many microorganisms isolated from kefir have desirable
probiotic properties such as high resistance to the low pH and bile salts in the gastrointesti-
nal tract; bile salt hydrolase activity; non-cytotoxicity; and high adhesion to Caco-2 cells [9].
One of the commonest diet-orientated diseases is diabetes, which has affected around 10%
of the world’s population [10]. Traditionally, the ethnic people of the Balkans have believed
that the consumption of home-made kefir has several therapeutic values [11], including
its hypoglycemic properties [12,13]. Although in recent years some clinical studies have
shown the hypoglycemic effects of kefir, according to our best knowledge, there is no such
comprehensive review on the hypoglycemic effects of kefir. Therefore, this review aims to
highlight the microbial communities in both homemade and commercial kefir and validate
their hypoglycemic properties through animal studies and human clinical trials.

2. Microbial Composition of Home-Made and Commercial Kefir

The microbial diversity of kefir has been thoroughly studied using culture-dependent
techniques; however, in recent times, due to the application of sequence-based taxonomical
tools, its microbial diversity has revealed more interesting findings among the homemade
and the commercial varieties of kefir [14]. The widely reported microbiota present in
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kefir includes bacteria (lactic-acid bacteria, acetic-acid bacteria) and eukaryota (yeast and
fungi) [7] make it a probiotic food product with a good source of probiotic microorganisms.
Overall, the predominance of Bacillota (basonym: Firmicutes) [15] has been reported through
various studies in both home-made and commercial kefir products [16], whereas the pre-
dominance of phylum Actinomycetota (basonym: Actinobacteria) [15] in the traditionally
prepared kefir of Mexico has also been reported [17]. Metagenomics-based studies of kefir
microbiota have been mostly studied using targeted amplicon sequencing and shotgun
metagenomics [18–22]. So far, about 23 species (bacteria and eukaryota) have been reported
from commercial kefir samples, among which Streptococcus thermophilus, Lactococcus lactis,
and Leuconostoc mesenteroides are the main predominant species [21]. Among eukaryota,
Debaryomyces hansenii and Kluyveromyces marxianus are the only two yeast species to have
been reported [22]. Similarly, among the home-made kefir samples, the main predominant
species belong to the lactic-acid bacterial group, where Lactobacillus kefiranofaciens and
Lentilactobacillus kefiri have been reported as the most abundant species through metage-
nomics (both amplicon and shotgun) studies [23]. Interestingly, in some varieties of kefir
of Turkey, the predominance of Bifidobacterium longum is also reported [24]. To date, about
66 species (bacteria and eukaryota) have been reported from metagenomics studies from
home-made kefir samples (Figure 2), among which lactic-acid bacteria and acetic-acid
bacteria are predominant [17–19,21–31]. Eukaryota (yeast and fungi) is also present to a
significant degree in the home-made kefir, as compared to that of commercial kefir (Figure 2).
However, homemade kefir shows the presence of many unwanted contaminants that would
hamper the quality of the samples. From the above research studies, only the species viz.,
Lactococcus lactis, Leuconostoc mesenteroides, Streptococcus thermophilus, and Acinetobacter sp.
are found to be shared among the homemade and commercial kefir, and only one yeast
Kluyveromyces marxianus has been reported from both the kefir varieties (Figure 2).

2.1. Hypoglycemic Properties of Kefir

Type 2 diabetes mellitus (T2DM) is a serious long-term disorder [32] that is primarily
caused due to defective insulin secretion by pancreatic β-cells and the inability of insulin-
sensitive tissues to respond to insulin [33], preventing the proper circulation of glucose
for cell uptake [34]. It has been reported that some fermented milk products have hypo-
glycemic properties [35,36]. Biochemically, T2DM is mainly associated with glucose and
lipid absorption in the human gut and is one of the main therapeutic measures to control
the enzymes associated with these phenomena, such as lipid and carbohydrate hydrolyzing
enzymes viz., lipases, and α-amylases [37]. Subsequently, it has also been shown that upon
kefir administration, the reduction of α-amylase and lipases was significant [38]. Kefir
exhibits a negative effect on α-amylase, one of the important enzymes that is regulated
in the type two diabetes pathway [38], and reduces insulin resistance [39]. The intake of
kefir has been demonstrated to have a great impact in the treatment of type 2 diabetes and
increases the life span in treated rats [12,13] via the mechanisms that will be mentioned in
following sections. Many probiotic bacteria have been shown to help ameliorate type 2
diabetes disorder through various means such as reducing insulin resistance and improving
glucose homeostasis [40]. Short-chain fatty acids (SCFAs) such as acetate, propionate, and
butyrate have been shown to be important targets in the treatment of type 2 diabetes [41],
which has also been reported in kefir [31], showing positive colonic and immune modula-
tion [42]. The MK-9 variant of menaquinone (Vitamin K2) has been detected in kefir [43],
which plays a role in improving insulin resistance and reducing type 2 diabetes by means
of its anti-inflammatory and lipid-lowering effects [44]. Some studies on animal models
and human clinical trials have been conducted to validate the hypoglycemic properties of
both homemade and commercial kefir, which are reviewed below.
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Figure 2. A Sankey diagram represented the total microbiota reported from both commercial and
home-made kefir as reported through metagenomics studies. A total of 23 genus/species have
been reported from commercial varieties, whereas about 66 have been reported form home-made
kefir, which consists of lactic-acid bacteria (LAB), acetic-acid bacteria (AAB), non-AAB/LAB, yeasts,
and fungi. Bacillota-associated lactic-acid bacterial species viz., Lactococcus lactis, Leuconostoc mesen-
teroides, and Streptococcus thermophilus; Pseudomonadota-associated species, Acinetobacter sp., and yeast-
Kluyveromyces marxianus are the five most commonly shared microbes reported from the two varieties
of kefir [16–31].
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2.2. Animal Studies

Few animal models were investigated to validate the hypoglycemic properties of
kefir. The blood glucose level of group 4 of rats was found to be lower than that of group
3 (p < 0.001) after feeding with kefir, indicating better control of oxidative stress and a
decrease in the progression of diabetic nephropathy [45]. In another study, rats were
divided into three different groups (the control group, fructose group, and fructose and
kefir group), and fructose was given for 15 weeks, while kefir (1 mL/100 g/day) was given
only for the last 6 weeks of the duration [46]. Kefir treatment improved insulin signaling
in the liver via insulin receptor substrate 1 (IRS-1) and phospho-endothelial nitric oxide
synthase (peNOS) [46]. The effect of kefir on metabolic syndrome was investigated [47]. Rats
were divided into three different groups (negative control, without metabolic syndrome),
positive control (with metabolic syndrome), and kefir group (with metabolic syndrome) in a
study. The fasting insulin, glucose, and HOMA-β values of the kefir group were found to
be lower than in the positive control group. When compared before and after the study,
the highest decrease in the AUC value was observed in the group fed with kefir [47]. The
effects of kefir on oxidative stress in diabetic animals were studied, and it was observed
that kefir may contribute to the better control of glycemia and oxidative stress, indicating its
consumption to delay the progression of diabetic complications [48].

Based on an animal study, the effect of the combination of goat and soy milk on
lipid profile, plasma glucose, glutathione peroxidase (GPx) activity, and the improvement
of pancreatic β-cell in diabetic rats was noted [49]. It was found that kefir combination
can maintain the serum triglyceride, decrease plasma glucose, increase GPx activity, and
improve pancreatic β-cells [49]. The effects of the consumption of a prebiotic (catechin-rich
wine grapeseed flour, GSF) and a probiotic (Lactobacillus kefiri DH5) by obese mice on
their hepatic steatosis were studied, and it was observed that the amelioration of high
fat-induced hepatic steatosis after the consumption of GSF and Lentilactobacillus kefiri was
partially mediated via the alteration of cecum propionate and intestinal permeability [50].
Nurliyani et al. (2022) conducted another experiment to determine the effect of goat milk
kefir supplemented with synbiotic kefir and goat milk kefir without probiotic kefir on blood
glucose, haemoglobin A1c (HbA1c), and insulin-producing cells in rats fed a high-fat and
high-fructose (HFHF) diet. There was a decrease in the HbA1c level of the group receiving
symbiotic kefir, which improved the health of rats fed an HFHF diet [51].

2.3. Human Studies

Recently, few human studies on the effect of kefir consumption have been reported.
The glycaemic index, known as the effect of raising blood sugar, of foods containing
carbohydrates is quite significant for patients with diabetes [52]. The study was conducted
on 30 adult individuals aged 18 and 45 to determine the glycemic, insulinemic, and satiety
indices of 3 types of kefir in three phases [53]. In phase I, low-fat strawberry kefir or orange
kefir (containing 50 g carbohydrate) were given. In phase II, low-fat plain kefir (containing
25 g CHO) was given, and the glycaemic index was checked with equivalent glucose. In
phase III, the insulinemic index and satiety index of 3 kefir samples were determined by
comparing 1000 kJ portions of each 3 kefir samples with white bread with the same energy
content. It was determined that while low-fat strawberry kefir, orange kefir, and low-fat
plain kefir values of the area under the curve (AUC) were lower than the AUC value of the
glucose solution given in equal amounts, they had similar values with the AUC value of
the bread [53]. Judiono et al. (2014) conducted human studies on the effects of clear kefir on
the biomolecular nature of the glycemic status of T2DM patients. One hundred and sixty
individuals with diabetes were divided into 3 different groups: group 1 (T2DM, HbA1c
<7) was given a standard diet and 200 mL of kefir, group 2 (T2DM, HbA1c >7) was given
a standard diet and 200 mL of kefir, and group 3 was given a standard diet for 30 days.
It was concluded that clear kefir reduced blood glucose levels (HbA1c, FBG, and PBG) in
the individuals and also increased c-peptide [54]. In a study of 42 adult men with T2DM,
the participants were divided into 2 groups. The men in the first group received only
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metformin, while the second group consumed metformin and 1 cup of kefir for 10 weeks.
At the end of the study, it was determined that kefir intervention decreased the fasting
blood glucose level and the HbA1c value (p < 0.05) [55].

In addition to medical treatment for diabetes, the effect of probiotic kefir on glucose
and lipid profile control has also been investigated in 60 diabetic patients aged between
30 and 65 [12]. For 8 weeks, the probiotic group (n:30) consumed 600 mL/day of probi-
otic fermented milk (kefir) containing Lacticaseibacillus casei, Lactobacillus acidophilus, and
Bifidobacteria, while the control group (n:30) consumed 600 mL/day of conventional fer-
mented milk. At the end of 8 weeks, the blood glucose level of the kefir group decreased
from 161.63 ± 57.71 mg/dL to 139.22 ± 46.66 mg/dL, suggesting that probiotic kefir can
be useful as adjuvant therapy in the treatment of diabetes [12]. In another similar study,
60 mL/day of kefir (Streptococcus thermophilus) or 600 mL/g of conventional fermented
milk (S. thermophilus and Lb. bulgaricus) was given to 60 diabetic patients for 8 weeks to
investigate the effect of probiotic kefir on the serum level of insulin and homocysteine
in the type 2 diabetes patients [40]. The level of homocysteine decreased significantly in
patients with probiotic fermented milk and conventional fermented milk consumption [40].
Similarly, a study on the effects of regular kefir consumption on gut microbiota composition,
and their relation to the components of metabolic syndrome, was conducted [56]. In a
randomized controlled trial, 180 mL/day of kefir (Lactococcus lactis subsp. lactis, Lc. lactis
subsp. cremoris, Lc. lactis subsp. diacetylactis, Leuconostoc mesenteroides subsp. cremoris,
Lentilactobacillus kefiri, Kluyveromyces marxianus, and Saccharomyces unisporus) were given
to 11 metabolic syndrome patients and 180 mL/day of unfermented milk to 11 metabolic
syndrome patients. At the end of 12 weeks, the fasting HOMA-IR and insulin level de-
creased in the kefir group (p < 0.05) [56]. In another study conducted on patients with
metabolic syndrome, 24 patients (group 1) were given kefir and 24 patients (group 2) curd
for 12 weeks. The HbA1c value was found to be similar between the two groups, whereas
the fasting blood glucose level decreased from 95 ± 9 mg/dL to 83 ± 8 mg/dL in the kefir
group (p < 0.05) [57]. In a case study, a 58-year-old individual whose diabetes could not be
controlled for 15 years was given probiotic kefir for 90 days. At the end of the study, the
body weight of the patient decreased from 88 kg to 84 kg and HbA1c decreased from 7.9%
to 7.1% [58].

Bellikci-Koyu et al. (2022) divided 62 individuals into two different groups. The
first group (n:31) was given 180 mL/day of probiotic kefir (Lactococcus lactis subsp. lactis,
Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. diacetylactis, Leuconostoc mesen-
teroides subsp. cremoris, Lentilactobacillus kefiri, Kluyveromyces marxianus, and Saccharomyces
unisporus), while the second group (n:31) consumed 180 mL/day of unfermented milk
for 12 weeks. At the end, insulin, Homa-IR, HbA1c, and blood glucose were found to be
similar in both groups because milk itself contains many bioactive components. It can be
concluded that the regular consumption of probiotic kefir can provide favourable effects in
the management of metabolic syndrome [59].

When the effect of kefir fermented by lactic acid, acetic-acid bacteria, and yeasts on
diabetes was examined, it was observed that it regulated glucose hemostasis and insulin
in human and animal models (Farag et al. 2020), but some studies did not find the same
effects. Moreover, some studies have shown that synbiotic foods may be more effective on
diabetes [60].

3. Future Directions and Prospective

Kefir is widely produced and consumed in many countries, mainly because of its
biological activities such as antidiabetic properties. Many human and animal studies have
shown that kefir may be beneficial for the management of T2DM, even though there are
still some research gaps. Firstly, many human clinical trials use dairy products as control
groups to understand the effects of fermentation. However, the studies that use non-dairy
products as control groups also face problems regarding fermentation factors. Secondly,
while planning the controlled and blinded studies, it is important to match populations in
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terms of age, gender, education, health status, socioeconomic level, and other factors that
may affect nutritional behaviors. With the current data, it is possible to recommend further
studies, especially randomized controlled trials, to clarify the hypoglycemic property
activities of both commercial and homemade kefir.

Though metagenomics has its own flaws, metatranscriptomics may be carried out to
determine the actual expressed gene profile that could provide a clearer picture of kefir
fermentation, its microbial role in health-beneficial functions, and its mechanism of action
in many diseases/disorders such as type 2 diabetes mellitus. From many metagenomics
analyses, the presence of uncultured and unknown microbes is being reported, and recently
new novel microbial candidates have been reported from kefir. However, little knowledge
is present of their culturability, which is an important aspect to be focused on as this could
enrich the value-added property of kefir and its product improvement. Integrative multi-
omics studies, such as metagenomics, proteomics, and metabolomics, may be initiated by
researchers working on kefir.

4. Conclusions

Kefir is a nutritious fermented milk product that is rich in health-positive properties
and probiotic bacteria. Unlike many other fermented milk products, kefir is a well-studied
fermented product that has been also commercialized in many countries. Though bacteria
are found in more abundance in kefir, yeasts have also been detected in both varieties.
Furthermore, even though there is a difference in the microbial composition between the
home-made and the commercial varieties, kefir generally still possesses consistent health-
promoting bacteria. The predominance of naturally occurring potential health-beneficial
microorganisms, as reported by metagenomics studies, in this food product has paved the
ways for many studies investigating alternative means to control many health disorders,
including T2DM. As many other fermented foods have been focused on as a potential
measure to control T2DM, kefir intake has demonstrated, through much experimental
evidence (animal and human studies), the positive effects on the T2DM. The presence of
much predominant microbiota specific to kefir has also been correlated to gut function, in
which they may directly or indirectly help alleviate the disease, thereby making this product
an important dietary food. Though the fact that the presence of unwanted contaminants
has been detected in many home-made varieties is a concern, there is a need to improve
this product by using kefir-specific strains/species with health benefits. The regulation of
commercial kefir is still not clear in many countries; it needs to be standardized as per the
food safety and standards policy of each country.
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