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Abstract: Fossil fuel depletion, climate change, and increased global energy demands are the driving
forces to find alternative sources of energy. Marine-based biorefinery has been recently discussed as a
promising route to mitigate the environmental challenges, enhance the energy recovery, and provide
a potential source for value-added products. Anaerobic digestion is a promising technology that can
convert the organic compounds of marine ecosystems into biogas. To date, a comprehensive review
incorporating integrated biogas potential and effective approaches to enhance seaweed digestibility
for biogas production from marine resources has not been reported. Thus, the present review aims
to explore and comprehensively present seaweed and other marine resources for potential biogas
production. The basics and challenges of biogas production from seaweed are elucidated. The impact
of biochemical composition on biogas and the microbial communities involved in anaerobic digestion
of seaweed are discussed. Utilization of different techniques such as pretreatment, co-digestion, and
sequential extraction of seaweed biomass to enhance the biogas yield and to mitigate the effect of
inhibitors are presented. Specifically, this article evaluates the co-digestion of seaweed with other
biomass feedstocks or liquid biowastes. Integration of marine microalgae cultivation on anaerobic
digestate for value-added compound production, biogas upgrading, and bioenergy recovery provides
a promising approach towards a zero-waste marine-based system.

Keywords: anaerobic microbes; seawater; seaweed; biogas; marine energy

1. Introduction

In recent years, intensive studies have focused on the evaluation of rampant increases
in emissions of greenhouse gases (GHGs) and the negative impacts of the global warming [1–
3]. Man-made inputs have severely influenced the climate, with severe impacts on human
health, the whole environment, and economic growth [4]. Currently, climate change is
garnering much attention as it is posing serious threats. For example, it is currently reported
that Europe’s major rivers are shrinking under the most severe climate-driven drought in
decades. The current situation puts humanity at a crossroads, motivating the global effort to
achieve sustainable development goals. Energy consumption is a crucial factor for economic
growth, which is one of the main causes of increased GHGs levels [5,6]. The estimated
annual global energy consumption is 580 million terajoules, i.e., about 13,865 million tons
of oil equivalents (mtoe) [7]. Since 2000, it has increased by about one-third and is expected
to reach 740 million terajoules equivalent by 2040, representing a total increase of 77%.
Therefore, the increased energy demand in the next 50 years cannot be met by the major oil
exporters [8], which threatens the world economy and life on the planet. On the other hand,
reliance on fossil fuel threatens the environment due to GHG emissions, which increase
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climate change [9]. Therefore, replacing fossil fuels with alternative clean and renewable
energy sources is an utmost priority.

Solar, biomass, wind, geothermal, and hydropower are the most common renewable
energy sources [10]. Renewable energy consumption increased by 3% in 2020, and bioen-
ergy use also increased by 3% among many other renewable energy resources [11,12]. Bioen-
ergy offers a promising alternative to fossil fuel. Biomass can be converted to bioenergy
through two major technologies, namely thermochemical and biochemical processes [13,14].
Thermochemical processes mainly include pyrolysis, gasification, liquefaction, hydrother-
mal carbonization, and supercritical fluid extraction [15,16]. However, biochemical pro-
cesses include alcoholic fermentation, anaerobic digestion, photobiological hydrogen pro-
duction, and microbial fuel cells for energy production [14,16]. Many previous studies
highlighted the pros and cons of each conversion method [17,18].

Currently, anaerobic digestion for biogas production is proposed as a promising re-
newable energy technology for mitigation of climate change by reducing the reliance on
fossil-based fuels [19,20]. A wide range of wastes, including municipal and industrial
wastewater, energy crops by-products, livestock waste, and food wastes, can be treated
using this technology with triple purposes of energy recovery, soil improvement, and waste
management. Compared to many other waste treatment processes, anaerobic digestion
technology offers significant advantages (Figure 1). Biogas is the main product of this
process as an energy product, while digestate is a by-product rich in nutrients and can be
utilized as a soil fertilizer [21]. Among different biogas feedstocks, lignocellulosic biomass
represents exciting characteristics for biofuels and other interesting products through a
lignocellulosic biorefinery concept. It offers waste reuse, increases process efficiency, and
reduces the environmental damage by integration of waste management, energy recov-
ery, and valuable products generation [22,23]. Anaerobic digestion of lignocelluloses has
received increasing attention in recent years. However, lignocellulosic biomass is com-
posed mainly of hemicellulose, cellulose, and lignin, having many challenges for direct
anaerobic digestion due to crystallinity, heterogeneity, and high polymerization degree
of the biomass [24–26]. Efficiency of hemicellulose and cellulose de-polymerization to
form sugars and lignin degradation are the main challenges for successful anaerobic diges-
tion of lignocellulosic materials [27,28]. Therefore, biomass pretreatment could improve
biodegradability and biomethane production of lignocellulosic biomass. It is essentially
needed to remove lignin, expanding the fibers, and increase the accessible surface area of
anaerobic microorganisms [28,29]. However, this step is energy intensive and highly costly,
compromising the feasibility and sustainability of the process [30,31]. In addition to the
aforementioned challenges, collateral flows such as excessive use of arable land, chemicals,
or fresh water result in severe impacts on the environment [32]. Therefore, exploring new
feedstocks to avoid competition for the available resources is of great importance. In this
context, the estimated biomass productivity of seaweed is relatively higher (≈26 tons dry
weight per hectare per year, compared to 2.3 tons for soya and 5.1 tons for corn). Seaweed
also has high adsorption capacity that can be used for preservation of a healthy marine
ecosystem and wastewater treatment through phycoremediation [28,33,34]. It can be used
for anaerobic digestion, where seawater/wastewater is utilized instead of fresh water.

Recent studies discussed the marine biorefinery system through fermentation and
bioethanol production [35,36], while there is a gap in the literature for evaluation of biogas
production using marine resources. Therefore, intensive investigation for designing a feasi-
ble biorefinery approach for biogas production using marine resources is a timely topic. The
present review article aims to provide an overview of the recent research on anaerobic di-
gestion of marine biomass (seaweed) using seawater and marine microorganisms for biogas
production. The strategies to enhance biomethane production from seaweed through liquid
co-substrates, and the addition of external additives to the digestion system to promote
the microbial communities are discussed. In addition, the potential of introducing marine
microalgae to the system for achieving a zero-waste integrated approach is highlighted.
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Figure 1. Comparing anaerobic digestion to other waste management routes using commonly used
organic waste steams [28], copyright permission number 5345730119827.

A systematic search in several databases (ScienceDirect, Scopus, and PubMed) and
free-access repositories (Google Scholar) was carried out based on the keywords “seaweed
and marine energy” and “seaweed for biogas”, and “anaerobic digestion of seaweed”. This
extensive information was further sub-classified into different sections as presented in this
review, namely, anaerobic digestion (conventional and marine-based anaerobic digestion),
potential of marine resources, availability, and co-digestion of seaweed. According to the
ScienceDirect database (consulted in July 2022), 2034 articles with the keyword ‘seaweed’
in all kinds of energy have been published. Among such documents, 1466 research articles
have been published, followed by 416 reviews, 36 short communications, 5 book reviews,
and 2 conference papers. Further screening by keywords “seaweed anaerobic digestion”
yielded a total of l553 articles of which 224 were research articles, 149 were review articles,
104 were book chapters, and the remainder were minor short communications and editorials.
The studies used in the present review included all of those that discussed seaweed biomass
conversion, specifically the integration of seaweed with other biomass such as microalgae.
This clearly indicates the potential of seaweed for bioenergy production and the necessity
to explore a marine-based biorefinery system for high efficiency.

2. Conventional Versus Marine-Based Anaerobic Digestion
2.1. Conventional Anaerobic Digestion

During anaerobic digestion, a number of synergistic reactions between microbial
consortia degrade and convert organic feedstocks into biogas. The process includes four
main phases, namely hydrolysis, acidogenesis, acetogenesis, and methanogenesis (Figure 2),
with specific microbial communities belonging to acidogenic, acetogenic, and methanogenic
microbes. During the hydrolysis phase, high molecular weight organics (e.g., lipids,
carbohydrates, and proteins) are first hydrolysed into smaller building units (i.e., fatty
acids, glucose, and amino acids) by the action of acidogenic bacteria. The produced small
molecules are further degraded by acidogenic bacteria into volatile fatty acids (VFAs)
and other by-products such as CO2, H2S, and NH3. VFAs are further digested during
the acetogenesis phase by the action of acetogenic bacteria to produce H2, CO2, and
acetate. Finally, methanogenic archaea utilize these intermediates during methanogenesis
to produce biomethane and other gases [37].
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Figure 2. The four phases involved in anaerobic digestion of biomass showing the related
microbial communities.

2.2. Marine-Based Anaerobic Digestion

Due to the shortage of fresh water in many countries, desalination technologies
have received increasing attention. However, it is an energy-intensive process; energy
consumption should either be reduced or compensated for with alternative renewable
energy resources, such as wind power, solar energy, tidal power, geothermal energy, and
anaerobic digestion coupled with desalination using plants/algae. Integration of these
renewable energy technologies into desalination processes could significantly reduce GHG
emissions [38]. Regarding anaerobic digestion as an energy source, the substitution of
conventional fresh-water-based feedstocks with marine resources (seaweed and seawater)
could be a promising approach for countries that lack adequate supplies of fresh water
(Figure 3). In addition, it will significantly reduce the environmental impact due to the
reduction of fossil fuel consumption. However, mono-digestion of seaweed still faces many
challenges which result in low biogas yield. In addition, the digestate cannot be used
directly as a biofertilizer and requires costly pretreatment to eliminate the heavy metals
and residual salts.
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3. Potential of Marine Resources for Biofuel Production

Marine environment, with the depth reaching beyond 10 km, covers more than 70% of
the Earth’s surface, and it is the natural habitat for over one billion microbial species and
thousands of macroscopic species [39,40]. It is estimated that all marine organisms make
up approximately 50% of the global biodiversity. These marine organisms have diverse
biochemical compositions and can be used for outstanding bioactivities and nutraceutical
enriching profiles due to their excellent adaption to a wide-range of variations in the marine
environment. More than 30,000 marine-derived bioactive compounds described so far have
been used as valuable sources of food bioactive ingredients, nutraceuticals, cosmeceuticals,
pharmaceuticals, and many other applications [39]. In recent years, photoautotrophic organ-
isms have been discussed as a promising candidate for energy sustainable production, with
more interest dedicated to algal biomass as third-generation biofuel feedstocks [20,38,41].
They are more advantageous due to the elevated cost of lignin degradation for conversion
of second-generation biofuel feedstocks, such as lignocellulosic wastes [42,43], and com-
petition of first-generation edible feedstocks with the available resources [44]. Therefore,
R&D for algae-based biofuels in the last decade has grown considerably to counter these
issues. Specifically, marine microalgae [45,46] and seaweed [47,48] have been discussed as
potential feedstocks for integrated biofuel production, seawater desalination, and heavy
metal removal. In that context, net energy of 11.0 GJ ton−1 of dry weight (dw) can be
generated from seaweed, compared to 9.5 GJ ton−1 dw from microalgae, both of which are
much higher than that of terrestrial plants. The highlights of review articles published and
a comparison with current review articles are summarized in Table 1.

Table 1. Key points of some previous published papers on marine resources for biorefinery, compared
to current review articles.

Feedstocks Study Highlights References

Seaweeds

• Marine macroalgal waste valorisation is reviewed
considering a biorefinery approach.

• A world perspective concerning marine macroalgal
waste was provided.

• Agricultural and feed applications were reviewed
aiming at the direct use of the biomass.

• Cascade valorisation routes were presented
considering high- and low value-products.

• Valorisation routes were extensively discussed
focusing on future perspectives.

[49]
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Table 1. Cont.

Feedstocks Study Highlights References

Genetically modified
algae

• Focused on biosafety concerns and regulatory
frameworks of Fourth Generation Biofuel (FGB).

• Discussed genome-scale engineering to boost
biomass production.

• Highlighted the current and prospective challenges
of FGB production.

• Extracted whole-genome sequences as a basic
prerequisite for molecular analysis.

• Strong national and international commitments
were needed to develop FGB.

[50]

Seaweeds

• Methods of pre-treating algal biomass for
utilization were summarized and compared.

• Bioconversion of algal biomass into value-added
products was reviewed.

• Strategies for the improved bioavailability of algal
biomass were suggested.

• Challenges and trends for future development of
algal biorefinery were discussed.

[51]

Algae and shellfish
waste

• Review on thermal co-processing of lignocellulosic
biomass, algae, and shellfish waste.

• Design, operation, and key parameters of
pilot-scale reactors were discussed.

• Techno-economic analysis and synergistic effects of
co-processing were discussed.

• Co-pyrolysis and co-gasification for high energy
recovery and high profitability.

• Carbon credit makes thermal co-processing more
sustainable to utilise biomass.

[52]

Seafood waste

• Seafood production was associated with the
generation of large amounts of waste biomass
responsible for huge nutritional losses.

• The waste biomass can be used as a source of
valuable nutrients and also other industrial
compounds including bioenergy.

• Green processing can help eco-friendly utilization
of the waste.

• Algal technology and biorefinery can recover the
compounds on a commercial scale.

• Green processing helps improve blue economy and
achieve sustainable development.

[53]

Seaweeds

• Seaweed-based regenerative ocean farming can
efficiently restore marine ecosystems.

• Seaweed was discussed as a good source of protein
and bioactive compounds for human and
animal consumption.

• Seaweed showed the potential to be a future source
of energy and renewable plastics.

• Seaweed offers coastal nations a viable source of
revenue and a bioeconomy option.

[54]
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Table 1. Cont.

Feedstocks Study Highlights References

Marine resources
(seaweed, seawater, and
marine microorganisms)

• The potential of marine resources (seaweed,
seawater, and marine microbes) for energy
production are discussed in detail.

• A promising technology that can convert organic
compounds of marine resources into biogas are
discussed.

• A comprehensive review encompassing integrated
biogas potential and effective approaches to
enhance seaweed digestibility for biogas
production are highlighted.

• Utilization of different techniques such as
pre-treatment, co-digestion, and sequential
extraction of seaweed biomass to enhance the
biogas yield and to mitigate the effect of inhibitors
are presented.

• Integration of marine microalgae cultivation
through anaerobic digestate recovery for
value-added compounds production, biogas
upgrading, and bioenergy generation is discussed
as a promising approach towards zero-waste.

Current
study

3.1. Natural Resources of Marine Biorefinery

A closed-loop marine route using seawater, seaweed, halophilic microalgae, and an
adapted microbial community could be a potential combined system for efficient biofuel
production through a zero-waste biorefinery approach. In that context, the measurable
goals of economic, social, and environmental benefits including profitability, renewability,
water conservation, carbon neutrality, and minimum waste generation are the key end
points when developing a sustainable biorefinery platform. Biorefinery is a technology
that translates biomass into multiple products through a cascading sustainable process.
Sustainability metrics for marine biomass are measured as the percentage of valuable
product recovery, maximum energy and water efficiency, zero-waste generation, and op-
timal return on investment. Marine biorefineries aim to boost the establishment of a
circular bio-economy as a more efficient resource management of bio-based renewable
resources by transiting from the current linear economy to a sustainable circular one [55].
Seaweed biomass can be obtained primarily from naturally-grown seaweed by wild har-
vesting or through aquaculture-based production in seaweed farming. Comparatively,
wild harvesting is limited and cannot meet the growing industry demand [39]. Therefore, a
marine-based biorefinery system for seaweed farming could be a practical solution towards
sustainable climate mitigation as well as water, energy, and food security.

3.2. Seawater

Seawater represents about 97% of the global water and covers about 71% (i.e., 3.6 × 108 km2)
of the earth’s surface [40,56,57]. It is considered as a renewable water source and is readily
accessible in almost all countries including those suffering freshwater shortages. Energy
conversion/production using seawater is a highly desirable approach. Many inorganic
compounds such as NaCl, MgSO4, MgCl2, CaSO4, MgBr2, K2SO4, and K2CO3 are present
in natural seawater. Amongst these, NaCl is the major constituent for seawater salinity,
representing about 3.5% (55% chloride and 30% sodium) of seawater [58]. The salinity
of seawater is influenced by the season of the year and the climate of the region. For
instance, water salinity in the Red Sea and the Mediterranean Sea can reach up to 4.1%
and 3.9%, respectively, which is much higher than in Wonthaggi and Australia where it is
2.8% [59,60]. No matter the level of salinity, water and minerals required for the growth of
microbial communities during anaerobic digestion can be sustainably provided by seawater.
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Several technologies/methods have been applied to generate energy from seawater, such
as hydrogen production by photocatalysis, photoelectrochemical methods, and biochemical
methods. Due to the presence of essential ions such as chloride, sodium, sulfate, and
magnesium (Table 2), seawater can act as a catalyst in the biomass fractionation and as an
alternative source of nutrients in the conversion processes [61–63].

Table 2. Average chemical composition of seawater. Data modified from Ref. [58].

Element Concentration Range (g/L)

Cl 19.5–22.0
Na 10.8–14.0
Mg 1.3–1.5
S 0.9–3.2

Ca 0.37–0.42
K 0.38–0.46
Br 0.07
C 0.03
N 0.01

Seawater-Mediated Biofuel Production

Seawater contains a lot of natural inorganic and organic matter that can be used indirectly
to produce biofuel through microbial or seaweed cultivation. Microorganisms such as pho-
totrophic bacteria, cyanophytes, and dark-acidogenic bacteria can grow in seawater, producing
H2 and/or VFAs [64–67]. Furthermore, phototrophic bacteria have the potential to degrade
VFAs for H2 production [68]. Specific microorganisms trigger fermentation reactions in the
presence of nutrients at slightly alkaline pH [68]. Other operating conditions such as light
intensity, temperature, characteristics of marine bacterial strains, and availability of nutrients
are crucial factors that influence the efficiency of H2 production. Among them, optimization
of temperature and pH are the main influencing factors that can significantly enhance H2
production efficiency through nutrient supplementation in seawater [68]. Microalgae can be
grown in seawater, and biomethane can be generated by anaerobic digestion of microalgal
biomasses in a seawater medium. However, it might result in microbial inhibition due to the
high concentration of Na+ ions which are toxic to the microbial communities. Hence, marine
sediments have been suggested as a source for salt-tolerant anaerobic microbes for CH4
production using microalgae and seawater [69,70]. In that context, Miura et al. evaluated [71]
various marine sediments as promising microbial sources for biomethane fermentation of
the phaeophyte Saccharina japonica at seawater salinity and observed that all studied marine
sediments were able to produce VFAs, while one of the studied sediments showed enhanced
biomethane production due to complete conversion of the produced VFAs. It was attributed
to dominance of acetoclastic methanogens belonging to the Methanosarcina genus after cul-
tivation. Thus, establishing anaerobic microbial communities for marine-based anaerobic
digestion can be achieved.

Various studies reported successful anaerobic digestion of seaweed (Table 3), where the
wet marine biomass contains approximately 3% ash with similar salinity as seawater [72].
Marquez at al. [73] examined three microbial inocula, namely marine sediment, cow
manure, and sea wrack-associated microflora for biogas production. Among them, marine
sediment was recommended as the best source for microbial communities for anaerobic
digestion of sea wrack biomass with seawater, where the average biomethane produced
was 94.33 mL g−1 VS. This finding confirms the possibility of biomethane production even
if seawater is added as liquid substrate when appropriate microbial communities are used.
Other studies reported marine sediment as an active site of biomethane production, where
marine sediments from sublittoral and littoral locations were evaluated for biomethane
production from Macrocystis pyrifera in a seawater medium. Littoral sediment showed
higher activity of methanogenesis with enhanced biomethane yield of 217.1 mL/g VS,
which was comparable to that reported using a freshwater medium. All of these studies
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shed light on the importance of energy resources of seashore and island communities.
However, the biomethane yield of the marine anaerobic digestion system is still much
lower than the theoretical values [71]. Since different microbial communities have great
differences due to different marine habitats [74], it is speculated that marine sediment of
different ecosystems might have significant impact on biomethane production potential
from seaweed.

Table 3. Summary of some previous studies that reported anaerobic digestion of seaweed.

Seaweeds Mode Remarks Refs.

Cladophora sp. and
Ulva intestinalis

Batch/
Continuous

• Batch tests of 100 mL were assessed by
co-digesting Cladophora sp. and Ulva
intestinalis from the Gulf of Riga with
wheat straw and straw pellet.

• Mono-digestion showed the lowest BMP
for Ulva intestinalis (277.7 mL CH4/gVS)
and the highest for the Cladophora sp.
523.3 CH4/g VS.

• Co-digestion resulted in a slight increase
in the synergy index (i.e., from 1.9% to
4.7%) but not for all co-digestion trials.

[75]

Ulva rigida + sugar
industry

wastewater

Batch/
Continuous

• The optimal inoculum for biogas
production was obtained from mixing
decomposed macroalgae with diluted
anaerobic sludge from a wastewater
treatment plant.

• A SMY of 76 mL/g VS and a biomethane
content of 75% were obtained from
continuous co-digestion of dried and
powdered Ulva rigida and sugar industry
wastewater at a weight ratio of 50:50
performed in an anaerobic up-flow reactor.

• PCR-DGGE results suggested a significant
change occurred in the bacterial and
archaeal communities during a four-month
continuous anaerobic digestion.

[76]

Laminaria digitata/
Saccharina latissima
with dairy slurry

Batch/
Continuous

• Higher specific biomethane yield (SMY)
was obtained during batch digestion tests
by acclimatized inoculum obtained from
continuous macroalgae digesters compared
to inoculum obtained from digesters
treating grease trap waste and slurry.

• Continuous co-digestion of natural L.
digitata and dairy slurry operated more
efficiently with higher L. digitata fraction
(67% of VS) at an organic loading rate
(OLR) of 5 g VS/L/d, generating a SMY of
232 mL/g VS at an MC of 57%.

• Continuous co-digestion of cultivated S.
latissima and dairy slurry achieved a higher
SMY of 252 mL/g VS at S. latissima fraction
of 67% (VS) but lower OLR of 4 g VS/L/d.

• Continuous mono-digestion of both
macroalgae were affected at the OLR not
exceeding 4 g VS/L/d.

[77]
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Table 3. Cont.

Seaweeds Mode Remarks Refs.

Green pea +
Laminaria digitata Continuous

• Biomethane production from digestion of
green peas was inhibited by excessive
VFAs, when only 2% of substrate was
replaced with L. digitata at an OLR of 2.67
g VS/L/d.

• Certain macroalgae constituents even at
trace concentrations were more inhibitory
to the traditional methanogens than to the
other microbes such as acidogens.

• Effective microbe adaption and start-up
strategies, including initial very low
macroalgae addition at a low OLR, can
reduce the inhibitory effect whilst
enhancing the process stability;
consequently, co-digestion was stable at an
OLR of 1.25 g VS/L/d comprising 35% of
macroalgae, generating a biogas yield of
ca. 500 mL/g VS at MCs of 55–65%.

[78]

Ulva sp. + sewage
sludge Batch

• An optimal SMY of 139 mL/g co-substrate
was achieved using dehydrated Ulva sp.
and sewage sludge at a dry weight ratio of
6:94.

• Further increase of algae fraction resulted
in a sharp decline in biogas production.

• A TS reduction of 59% and a VS reduction
of 75% were achieved.

[79]

Macrocystis pyrifera,
Durvillea

Antarctica/their
blend

Anaerobic
sequencing

batch reactor
(ASBR)

• Both algae species have similar biogas
productions of 180.4 mL/g dry algae per
day, with a biomethane concentration
around 65%.

• The same methane content was observed
in biogas yield of algae blend; however, a
lower biogas yield was obtained.

[80]

Ulva rigida Batch

• Through mixing decomposed macroalgae
with anaerobic sludge and water, yielding
into 408 mL of biogas.

• The process was then investigated in a
sequencing batch reactor (SBR) which led
to an overall biogas production of 375 mL
with 40% of biomethane.

• A high biogas production yield of 114
mL/g VS added was obtained with 75% of
methane.

[77]

3.3. Marine Microalgae

Many recent studies focused on the synthesis of useful compounds by marine microor-
ganisms for various purposes including functional biochemical production, animal feed,
and human food, as well as energy recovery. Among these microorganisms, halophilic and
halotolerant microalgae have been recognized as promising organisms for biotechnology
research owing to their diversity, CO2 fixation, and high biomass productivity. So far,
many eukaryotic and prokaryotic (Cyanophyta) microalgae are identified as promising
candidates for value-added products and biofuel, and some are currently available on an



Fermentation 2022, 8, 520 11 of 28

industrial scale [81]. Halophilic microalgae include a wide variety of salt tolerant organisms,
which are not only resistant to high salinity but can adsorb and concentrate the solutes in
their cells at higher concentrations than the surrounding environment [82]. For instance,
the green microalga Dunaliella salina is a common halophile with the ability to live at high
salt concertation of 3 M NaCl [83], and it showed the highest growth of 2.32 g L−1 at salinity
of 150% through stepwise adaptation. Microalgae from saline inland and estuaries zones,
from brackish marsh to high salt environments, can be isolated and used as salt tolerant
species with great potential for biomass and biochemical production as well as seawater
bio-desalination [84].

It was reported that the halophyte Pheridia tenuis sequesters salt in the vacuoles with
the potential to obtain salt-free water after cultivation [85]. Many algal species, including
Spirulina sp. and D. salina, can produce β-carotene, glycerol, lipids, and essential omega-
fatty acids that can be used as food supplement sources [86,87]. Khazraee et al. [88] utilized
effluents of a dairy wastewater treatment plant as substrate in the anode, while Chlorella
vulgaris was inoculated in the cathode. The salinity removal was 0.341 g−1 day−1 with
higher growth of 38%. The synergistic effect of the microalga Scenedesmus abundans with
bacteria was investigated using the organic compounds present in effluent of a petroleum
refinery. Maximum cellular density of 2.058 and chlorophyll and carotenoid concentrations
of 2.78 and 1.365 g mL−1, respectively, were recorded. Interestingly, some freshwater
microalgae such as Chlorella vulgaris and Scenedesmus sp. showed high chloride ion removal
efficiency with enhanced lipid accumulation at high salinity, which provides a feasible
technology for dual application in seawater desalination and biodiesel production [89].
However, the biodesalination concept is a new topic, and related research is still in its
infancy that could be useful for integrated marine biogas production.

3.4. Seaweed

The fast growth of seaweed and other marine plants results in the formation of a thick
canopy layer that affects the growth of suspended phytoplanktons due to the inhibition of
light penetration. Thus, the rate of photosynthesis decreases, resulting in a reduction of
dissolved oxygen required for aquatic organisms. In addition, the accumulation of seaweed
at the coastal areas poses many aesthetic and environmental issues. Generally, millions of
tons of naturally-grown seaweed are washed up on coastal areas as a waste, which should
be removed and disposed of by dumping in landfills to maintain eco-labels such as Blue
Flag Beach category for tourism [90]. However, landfills have many issues and negative
environmental impact [91]. Recently, seaweed has been discussed as an alternative and
renewable energy source [38,92]. Seaweed comprises mainly three groups belonging to
red, green, and brown algae [93] that have been discussed for the production of various
biofuels [20]. Global seaweed production has been rising rapidly in recent years, reaching
32.4 million tons in 2018 with an average increase rate of 10% over 10 years [94]. Out of the
total seaweed production, seaweed farming accounts for 96.7%, whereas wild harvesting
accounted for 3.3% in 2015 [94]. The biochemical composition of seaweed biomass varies
considerably based on the species and growth conditions, composed mainly of carbohy-
drates, proteins, and lipids (Table 4). Compared with lignocellulosic biomass, seaweed has
the potential of high yields with no requirements of intensive fertilization or arable land [95].
Seaweed requires only seawater, CO2, sunlight, and inorganic nutrients to grow, making it
a promising feedstock for biomass and energy production [96]. Additionally, it is devoid of
lignin which enhances biomass biodegradability compared to lignocellulosic biomass [97].
In addition to the commercial possibilities of seaweed farming, it has a high potential of
CO2 fixation and nutrient adsorption, subsequently lessening the eutrophication of water
and enhancing sustainable biomass supply [98].
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Table 4. The biochemical composition of representative brown, red, and green seaweed.

Seaweeds Carbohydrates (%) Lipids (%) Proteins (%) References

Brown

Dictyopteris australis 33.1 9.7 1.3 [99]
Laminaria digitata 46.6 1.0 12.9 [100]
Saccharina japonica 51.0 1.0 8.0 [101]
Undaria pinnatifida 43.0 4.0 24.0 [102]

Stoechospermum marginatum 33.6 10.9 3.9 [99]

Red

Gracilaria vermiculophylla 34.5 0.24 35.3 [103]
Gracilaria gracilis 28.6 1.7 13.7 [104]

Acanthophora spicifera 11.6–13.2 10.0–12.0 12–13.2 [105]
Palmaria palmata 39.4 3.3 22.9 [100]
Hypnea valentiae 11.8–13 9.6–11.6 11.8–12.6 [106]

Green

Ulva reticulate 33.3 2.5 6.9 [105]
Cladophora glomerata 34.7 2.4 13.7 [104]

Ulva rigida 15.8 1.5 13.7 [77]
Codium decorticatum 50.6 9 6.1 [99]
Halimeda macroloba 32.6 9.9 5.4 [107]

3.4.1. Biofuel Production from Seaweed

Among several biomass feedstocks, renewable biofuel generation from seaweed has
gained much attention in recent years due to many advantages over first- and second-
generation biofuel feedstocks [108]. The appearance of naturally-grown marine macroalgae
waste (MMW) at the coastal regions is a regular phenomenon influenced by eutrophication,
wind, temperature, and wave episodes [109,110]. There are several reports about the neg-
ative impacts of MMW accumulation all over the world [111,112]. Seaweed waste lacks
the appropriate management as it is mostly sent to landfills or left unmanaged, represent-
ing a loss of renewable resources and ultimately leading to coastal degradation, health
problems, environmental consequences, and economic issues by affecting the tourism and
beach-based commerce [109,110]. Therefore, seaweed has been discussed as an attractive
feedstock for bioenergy and other value-added products [109,113,114].

Adoption of macroalgal biomass via thermal conversion for bio-oil, anaerobic di-
gestion for biogas production, and fermentation for ethanol (Figure 4) could provide a
promising solution for marine pollution [115]. Among thermal conversion methods, direct
combustion, pyrolysis, and gasification require a dry feedstock, where the drying step
has a significant negative impact on the energy balance and the return on investment.
In that context, seaweed water content (80%–90%) which is generally much higher than
many terrestrial plants (sugarcane~75%, and grain maize 14%–31%), makes it a less feasible
source for pyrolysis [116–118]. However, hydrothermal conversion could provide a feasible
route for bio-oil production from wet macroalgal biomass. More detailed discussion on the
pros and cons of thermochemical conversion of seaweed has been published recently [41].
In addition, recycling of anaerobic digestate sludge to the HTL system could enhance the
energy recovery due to higher organic load (Figure 4). Similarly, the residual biomass
from the fermentation process can be efficiently converted to biogas, which was reported
to enhance energy recovery [47]. For anaerobic digestion, biodegradation of recalcitrant
compounds occurs during hydrolysis phase, which is the rate-limiting phase for the en-
tire process [119]. Low cellulose content and absence of lignin [109], together with the
presence of easily fermentable carbohydrates, increase the potential of seaweed for biogas
production [120]. Although seaweed has a preferable cellular structure to terrestrial plants,
successful biodegradation is still a fundamental issue for solubilisation of recalcitrant
compounds and efficient degradation of organic macromolecules into simple compounds.
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Figure 4. Different routes of biofuel production from seaweed for enhanced energy recovery and
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3.4.2. Anaerobic Digestion of Seaweed

Anaerobic digestion of MMW, mainly composed of the phaeophyte Saccorhiza polyschides,
showed the maximum biogas yield of 227 mL/g VS in 53 operational days and maximum
biomethane content of 64.5% in 51 days due to the increase of total solid content up to
2.5% [121]. At the end of anaerobic digestion, 43% COD reduction and 46% VS reduction
were recorded. Many other studies reported the high efficiency of seaweed for biogas
production (Table 5). It was reported that anaerobic digestion of seaweed can produce
up to 447.8 mL/g VS of biomethane without any pretreatment. Compared to terrestrial
plants and microalgae, the highest recorded biomethane yield was 334 mL/g VS and
284–287 mL/g VS, respectively (Table 5). These results indicate the potential of seaweed as
a feasible feedstock for biogas production.

Sequential energy recovery is another aspect that has been discussed recently to
enhance the efficiency of biomass conversion (Figure 5). The strategy of sequential or
co-production of biofuels could enable the complete utilization of seaweed biomass for
enhanced biofuel production. Co-production of biofuels is carried out based on biochemical
composition in which biofuels are produced sequentially. For instance, carbohydrate-rich
seaweed could be used for sequential biohydrogen and biomethane production, collec-
tively called hythane. The potential of Ulva reticulata for hythane production was studied
to increase the disintegration potential through chemo-mechanical pretreatment. The pre-
treatment enhanced the biomass disintegration, induced liquefaction at a minimum specific
energy of 437.1 kJ/kg TS, and resulted in higher hydrogen production of about 63 mL H2/g
COD [122]. In addition, S. latissima was evaluated for consequent biohythane generation
and showed an improved solubilization trend with enhanced biomethane production to
345.1 mL/g VS, and the maximum energy conversion efficacy of 72.8% was achieved after
two-stage biohythane production [123].
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Sequential product recovery could also enhance the process of energy recovery from
seaweed. In that context, sequential utilization of two Laminaria sp. for phytoremedia-
tion, recovery of value-added products, and bioenergy recovery was suggested [124,125].
Value-added products (including pharmaceutical polysaccharides and protein) were ini-
tially extracted; then residual biomass was used for anaerobic digestion, which showed
higher biomethane production of 523 and 535 mL CH4/g VS for L. digitata and Laminaria
saccharina, respectively. In addition, anaerobic digestion performance of the whole and
agar-extracted Gracilaria multipartita biomass was compared [126]. Results showed that
biogas yield was enhanced after agar extraction, which was attributed to lipid and long
chain fatty acids reduction in the residual biomass. Moreover, seaweed anaerobic digestion
has much shorter T80 compared to that of lignocelluloses. For instance, T80 of Gracilaria
multipartita was 12 days [126], while it was 15 days for rice straw [127]. Lignocelluloses
pretreatment can reduce T80, where it was reduced from 21 days for anaerobic digestion
of raw rice straw to 14 days after pretreatment with anaerobic digestate [128]. Interest-
ingly, agar extraction prior to anaerobic digestion of seaweed was reported to reduce T80
from 12 days to 11 days [126], which is much better compared to lignocelluloses. From
an economic aspect, agar pre-extraction from Gracilaria multipartita biomass enhanced the
annual revenue to USD 36,087 per ton−1, compared to USD 1253 per ton−1 for the whole
seaweed biomass [126]. Therefore, sequential anaerobic digestion and establishing inte-
grated approaches could enhance the economy of the whole process. During anaerobic
digestion, the microbial community is the main indicator for successful reactor performance
as discussed in the next section. Thus, understanding the microbial community distribution
and dynamics could help researchers better predict and establish successful marine-based
anaerobic digestion systems.

Table 5. Comparison of pre-treated microalgae, lignocellulosic biomass, and unpretreated seaweed
biomethane potential.

Biomass CH4 Production (mL/g VS) References

Microalgae

Phaeodactylum tricornutum 284–287 [129]
Nannochloropis salina 247 [130]

Rhizoclonium 145 [131]
Phormidium sp. 223 [132]

Nannochloropis salina 233 [130]
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Table 5. Cont.

Biomass CH4 Production (mL/g VS) References

Lignocellulosic biomass

Wheat straw

295 [133]
299
285
334

Rice straw
207
261
203

Maize stalk
267
254
272

Seaweeds

Sargassum sp. 260–380 [134]
Saccharina latissima 340 [135]
Laminaria digitata 232 [76]

Saccharina latissima 252 [76]
Laminaria japonica 350 [136]

Pelvetia canaliculata 386 [137]
Laminaria hyperborea 280 [138]

Sargassum sp. 92.18 [139]
Ulva intestinalis 447.8 [75]

Laminaria digitata 327 [140]

3.5. Microbial Communities in a Marine-Based Biogas System

The processes involved in anaerobic digestion including application of pretreatment
can significantly influence the microbial communities and abundance, which ultimately
affect the biogas production. Azizi et al. [141] studied the changes in microbial communities
under both mesophilic and thermophilic anaerobic digestion of the Rhodophyte Gracilaria
sp. The abundant bacterial orders included Clostridiales, Synergistales, and Bacteriodales;
while Coprothermobacter sp. showed dominance under thermophilic conditions due to
its proteolytic activity at high temperatures (50–70 ◦C). However, archaeal communities
showed an abundance of Methanobacteriales and Methanomassiliicoccales under thermophilic
and mesophilic conditions, respectively, with a highest cumulative biomethane yield under
a thermophilic environment (246.1 mL CH4/g VS). In addition, Sun et al. [142] evaluated
the microbial performance during anaerobic digestion of seaweed and attributed the ob-
tained sequences into five major groups Firmicutes, Bacteroidetes, Synergistales, Spirochaetes,
and Proteobacteria. The prevalence of phylum Bacteroidetes during anaerobic digestion of
seaweed was correlated to the high protein content. Additionally, increased OLR provides
a higher protein-input to the digestion system, which results in Bacteroidetes enhancement.
With the increase of substrate, Bacteroidetes bred rapidly, leading to an accumulation of
VFAs in the system. Order Methanobacteriales was the major methanogen among the de-
tected archaea in the reactor. When OLR are elevated, a mass of substrate is fermented and
converted to H2/CO2 by bacterial communities, which is beneficial to the Methanobacteriales
growth. Enrichment of Methanobacteriales is related to the hydrogenotrophic methanogens
pathway for biomethane production from microalgal biomass [143]. In that context, Jung
et al. [144] stated that Methanotrichaceae was the major methanogenic group, indicating
that aceticlastic methanogenesis was likely the major pathway for biomethane produc-
tion using sulfur-rich seaweed biomass. Hydrogenotrophic methanogens, particularly
Methanomicrobiales, became more abundant by increasing the OLR in a mesophilic reactor.
These results suggest the contribution of hydrogenotrophic methanogenesis to biomethane
production at higher OLRs. In contrast to Methanomicrobiales, the Methanobacteriales propor-
tion decreased as the OLRs increased, which can be attributed to the higher sensitivity of



Fermentation 2022, 8, 520 16 of 28

Methanobacteriales to H2S toxicity and organic overload than Methanomicrobiales [145,146].
Thus, Methanomassiliicoccales, Clostridiales, Methanobacteriales, and Synergistales are the main
microbial communities that should be enriched during microbial adaptation for applica-
tion in marine-based anaerobic digestion. However, different profiles of pH, VFAs, and
feedstock composition significantly alter the microbial communities and are required to be
studied per case.

4. Challenges Associated with Marine Biogas Production

Anaerobic digestion of seaweed is still in the infancy stage as it is studied mostly
in labs. Despite various advantages of seaweed over other biofuel feedstocks, there are
some challenges that need to be overcome in order to reach industrial-scale levels [147].
Seaweed anaerobic digestion has major bottlenecks due to the elevated content of high
molecular weight organic compounds and relative rigidity of the cell wall, which hinders
the hydrolysis process [148]. In addition, seaweed biomass contains several inhibitory
compounds such as sulfate that hampers the biomethanation and causes subsequent micro-
bial inhibitory effects. High sulfur content results in the generation of hydrogen sulfide
during anaerobic digestion by sulfate-reducing bacteria, leading to competition between
methanogens and sulfate-reducing bacteria for acetate, and subsequently lesser biomethane
yield [149]. Some seaweed has low biodegradability index, e.g., Ascophyllum nodosum and
Fucus serratus (0.19–0.34, respectively, when anaerobically digested for 30 days), which
results in low VS degradation where 66–81% of VS cannot be degraded [123]. In addition,
availability of carbohydrates in seaweed differs by seasonal variations, geographic loca-
tions, and sometimes the carbohydrate content is relatively lower than the acceptable level
for efficient biogas production [150].

Seaweed has the advantage of excess cations, such as sodium, potassium, and calcium,
which were reported to enhance the microbial communities. For instance, Jard et al. [113]
investigated the effect of K+ and Na+ on anaerobic digestion and found that both have
significant impact on the digestion process. However, results showed that K+ has more
impact on biomethane production, which was attributed to the relatively higher initial
content of Na+ (3.1 g L−1) in the inoculum than K+ (0.4 g L−1). Thus, the evaluation of
cations content in the feedstock, seawater, and inoculum is of great importance to design
a successful anaerobic digestion process in seaweed. Heavy metals represent another
concern during anaerobic digestion, where high concentrations may be inhibitory to the
microbial population. At optimum concentration, heavy metals play a significant positive
role for enhanced anaerobic digestion [151]. However, Nkemka et al. [152] investigated
the impact of heavy metals in mixed seaweed of the Baltic Sea on anaerobic digestion and
reported that a high concentration of cadmium poses a significant negative impact during
anaerobic digestion. However, higher biomethane yield was achieved using iminodiacetic
acid (IDA) cryogel which can remove heavy metals from seaweed hydrolysate before
anaerobic digestion.

For decades, seaweed has been discussed as a potential natural source of antimicrobial
products that may help curb antibiotic resistance in livestock [153,154]. Various studies
attributed the antimicrobial and other biological activities of seaweed to polyphenolic com-
pounds [153,155]. Despite the advantageous characteristics of polyphenolics in seaweed
as bioactive compounds, they have an inhibitory effect on anaerobic digestion [148]. It is
reported that the higher the polyphenol levels present, the lower the level of biomethane
produced is. Thus, initial extraction of polyphenols and using the residual biomass for
anaerobic digestion could enhance the economy of the whole process. Another limiting
factor for anaerobic digestion of seaweed is ammonia inhibition due to high protein content
which results in a low C/N ratio. The reported optimal C/N ratio for anaerobic digestion
ranges from 20 to 30. At lower ratios, nitrogen will be released and accumulate in the
form of ammonia (NH4

+). In addition, high nitrogen contents were reported to inhibit
methanogens, which result in the accumulation of VFAs that leads to failure of the pro-
cess [98]. Thus, excessive high NH4

+ concentrations increase the pH value leading to a
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toxic effect on the microbial communities. In addition, unionized ammonia leads to proton
imbalance, while ionized ammonia inhibits the enzymes incorporated in biomethane pro-
duction [98]. Overall, the composition of seaweed and seawater complicates the evaluation
of the substrate as a feed source for anaerobic digestion, which can be mitigated using
different strategies as discussed in the following section.

The challenges related to implementing seaweed biorefinery include techno-economic
feasibility and efficient biomass conversion to a viable output. Recent studies stated that
energy production coupled with bioremediation using seaweed biomass for combined
bioethanol and biogas production can render the energetic sustainability using energy
and transportation. However, high production cost, low productivity, and cost-intensive
downstream processing have been the major bottlenecks in developing large-scale sys-
tems [156,157]. A recent study on the economic feasibility of Sargassum sp. biomass in
anaerobic digestion estimated an annual gross biomethane production of 3.02 × 105/m3.
The annual gross energy yield and profit were 1083.9 GJ and USD 68,738, respectively [112].
Although the study showed promising results, the production cost of biomethane from
seaweed is economically unfeasible yet unless the production of valuable by-products (such
as agar, alginates, mannitol, and iodine) can be considered [158]. In terms of pollution abate-
ment, anaerobic digestion of seaweed is a valuable technology [148], while it requires future
efforts, especially from the engineering and industrial point of view. These efforts would
make the seaweed biomass economically competitive and allow the integration of different
production systems to reduce the process cost and achieve a zero-waste approach [159].

5. Strategies to Boost Marine Biogas Production

As discussed in the previous section, anaerobic microbial activity is adversely affected
by various inhibitors such as sulphide, ammonia, polyphenols, and heavy metals, [160].
To address the challenges associated with CH4 productivity, some technologies have been
explored aiming at OM bioavailability for microbial hydrolysis, thereby reducing the hy-
draulic retention time (HRT) and enhancing biogas generation [159]. Various pretreatment
methods, including physical, thermal, chemical, and biological methods, have been applied
to enhance seaweed digestibility (Table 6). The pretreatment aims to degrade the cell wall
architecture, improve the hydrolysis of seaweed polymers, and overcome undesired com-
pound formation that might inhibit the subsequent microbial metabolic activity. Despite
alkali and acid pretreatment showing effective action in swelling fibers and hydrolyzing
polymers, it increases the risk of inhibitory compound generation and consequently appears
less attractive than other chemical treatments, such as peroxides and enzymes. Washing
seaweed in fresh water was suggested to eliminate the inhibitory salts, but the value of
this pretreatment warrants further research to reduce the impacts on sustainability due to
the requirement of fresh water. On the other hand, seaweed accumulates metal ions by its
negatively-charged polysaccharide components, which not only reduces the biogas yield
but requires further evaluation to ensure the safety of the digestate for further applications.

In summary, it is possible to design a suitable seaweed biogas production system with
proper pretreatment that could maximize its sustainability for biofuel production at the
lowest cost. A possibility to increase the extent and rate of biodegradability during seaweed
digestion is to use adapted inoculum to the high salinity and specific anaerobic digestion
conditions of seaweed. In addition, ammonia inhibition can be controlled by adjusting the
C/N ratio through co-digestion with other substrates containing a high C/N ratio [161].
In addition, the low organic nutrient content of seawater can be compensated for by the
addition of wastewater (liquid co-digestion). The inhibitory effect due to high content of
heavy metals or indigenous bioactive compounds such as polyphenols can be mitigated by
sequential processing of biomass through initial extraction followed by anaerobic digestion
of residual biomass.
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Table 6. Biogas/biomethane enhancement of seaweed by various pretreatments.

Pretreatment Feedstock Pretreatment
Conditions

AD
Process HRT (d) Incubation

Temp. (◦C) Results Change in Energy
Potential (%) Refs.

Physical

Mechanical

Laminariaceae
Beating;
580 rpm;
10 min

Batch 21 50 430 mL
CH4/gTS +53 [120]

P. canaliculata
Beating;
580 rpm;
60 min

Batch 21 37 340 mL
CH4/gVS +74 [108]

P. canaliculata
Beating;
580 rpm;
10 min

Batch 21 37

444 mL
biogas/gTS +179

[162]F. serratus 181 mL
biogas/gTS +183

F. vesiculosus 231 mL
biogas/gTS +220

L. digitata 157 mL
biogas/gTS +52

Microwave Laminaria sp. 50 Hz;
560 W; 30 s Batch 38 25 244 mL

CH4/gVS −26 [163]

Biological

Bm-2 strain
white rot fungi
and Trametes

hirsuta,

Mexican Caribbean
macroalgae
Consortia

35 ◦C; 6 d Batch 29 35 104 mL
CH4/gVS +20 [164]

Enzymatic broth L. digitata 40 ◦C; 24 h Batch 32 35
86 mL

CH4/gVS −6 [165]
Cellulase 37 ◦C; 24 h 225 mL

biogas/gVS −1

Chemical

Acids

L. digitata

120 ◦C; 1 h;
1 atm Batch 32 35 [165]

2.5% citric
acid

237 mL
biogas/gVS +4

1% lactic acid 161 mL
biogas/gVS −42

6% lactic acid

101 mL
bio-

gas/g
VS

−226

6% oxalic acid
83 mL

bioga/g
VS

−275

6% citric acid
69 mL

bioga/g
VS

−330

Thermal

Autoclaving Sargassum sp. 121 ◦C; 1 bar;
30 min Batch 42 37 541 mL

CH4/gVS +60 [166]

Steam explosion S. latissima
130 ◦C;
10 min
160 ◦C;
10 min

Batch 119 37 268
260

+20
+17 [167]

5.1. Anaerobic Co-Digestion
5.1.1. Biomass Co-Digestion

Anaerobic co-digestion (AcoD) refers to digestion of at least two substrates which have
complementary properties to achieve better performance and to provide better nutrient
balance with enhanced biogas production [168]. The major benefits of co-digestion include
enhanced system stability and biomethane yield through synergistic effects which promote
more diverse microbial communities, better nutrient balance (especially C/N ratio and trace
elements), and dilution of toxic compounds including heavy metals [169]. The typical C/N
ratio of macroalgae is generally as low as 14 due to high protein content [28], which varies
widely based on the species, location, and season. Thus, it is necessary to add co-substrates
rich in carbon to balance the nutrient supply and dilute the inhibitory compounds, which
ultimately ensures a stable digestion process. For instance, seaweed biomass was recently
suggested as a co-substrate for anaerobic digestion with lipidic-rich waste, which could
achieve the desired C/N ratio and nutrient balance [28]. Anaerobic co-digestion also
has another benefit on the economical scale because it provides the possibility of sharing
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facilities and equipment, which reduces the total investment cost [28]. The co-digestion
synergistic impact on biogas production takes place due to interaction between different
substrates, which is correlated to the supplementation of micronutrients and trace elements
or any other parameter that ultimately influences digestibility of the substrate [170,171].
For instance, a synergistic effect was recorded during co-digestion of Laminaria japonica with
sewage sludge or food waste at different mixing ratios. The study showed that increasing
the seaweed proportion up to 75% with food waste significantly increased the biomethane
yield, which was attributed to the relatively higher sulphur content in the seaweed biomass.
Thus, the content of trace metals in the seaweed biomass plays a significant role in co-
digestion, which provides advantageous characteristics with metal-deficient wastes [136].
Tabassum et al. [140] investigated mono- and co-digestion of brown macroalgae, where
co-digestion of L. digitata with dairy slurry at a VS ratio of 67:33 showed high anaerobic
digestion efficiency at a relatively high OLR of 5 g VS L−1 d−1, which resulted in SMY
of 232 mL/g VS. In addition, co-digestion of S. latissima with dairy slurry achieved a
higher SMY of 252 mL/g VS at a lower OLR of 4 g VS L−1 d−1 [76]. In the same context,
co-digestion of both fresh and dried Ulva sp. with cattle slurry showed up to 17% more
biomethane yield than mono-digestion [172].

5.1.2. Wastewater Co-Digestion

Water-borne waste, which contains either OM and/or essential inorganic nutrients
that promote microbial activity, represents a potential hazard to natural water systems [173].
Therefore, wastewater mixed with seawater can be used to cultivate the macroalgae [41]
or co-digested directly with seaweed for enhanced anaerobic digestion efficiency. In that
regard, Tabassum et al. [77] achieved a stable digestion process when Ulva rigida was co-
digested with sugar industry wastewater at a weight ratio of 50:50. In addition, co-digestion
of seaweed (15%) with waste activated sludge (WAS, 85%) was feasible with 26% higher
biomethane production than WAS alone without decreasing the overall biodegradability of
the substrate (42–45% biomethane yield) [174]. Some liquid byproducts also can be used to
be co-digested with seaweed. For instance, glycerol is one of the byproducts produced from
the biodiesel industry, and nowadays, its production exceeds the commercial demand [103].
Options for biological conversion of glycerol into valuable products are becoming increas-
ingly important, including anaerobic co-digestion with several substrates [103]. Glycerol
is an easily acidifying compound rich in carbon, while its amendment as a co-substrate
should be carefully evaluated in order to prevent reverse process imbalance. In general,
the addition of glycerol up to 6% was reported to significantly boost the biomethane pro-
duction, but higher concentrations resulted in an inhibitory effect [175,176]. However,
Oliveira et al. [177] assessed the optimal conditions for biomethane production from the
macroalga Sargassum sp. co-digested with glycerol and waste frying oil. Results showed
that the biochemical biomethane potential of Sargassum sp. was 181 L CH4 kg−1 COD,
while co-digestion with glycerol and waste frying oil increased the biomethane potential
(BMP) by 56% and 46%, respectively. Co-digestion of glycerol, seaweed (G. vermiculophylla),
and sewage sludge was evaluated, where the addition of 2% glycerol (w:w) increased the
BMP by 18%, achieving almost complete methanation of the substrate (96 ± 3%) with
specific biomethane production of 599 L CH4 kg−1 VS [104]. However, an inhibitory ef-
fect was recorded with the addition of 5% glycerol. A significant increase in the specific
biomethane production was also observed by co-digestion of the seaweed G. vermiculophylla
with sewage sludge (605 L CH4 kg−1 VS) compared to mono-digestion.

Co-digestion of Batik wastewater with dried marine seaweed Gracillaria verrucosa
(BW:DG-50:50) showed a significant increase in cumulative biogas and biomethane produc-
tion, with average values of 23.18 mL (biogas) and 11.59 mL (biomethane), compared to
13.83 mL and 6.92 mL, respectively, for inoculum and 11.82 mL and 5.92 mL using fresh
biomass [178]. In another example for wastewater application, the feasibility of co-digestion
of Ulva sp. with whey was investigated at varying substrate mixing ratios which confirmed
the beneficial effect of whey on biomethanation of Ulva sp., with a biomethane yield up to
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1.6-fold higher than mono-digestion of Ulva sp. [179]. Overall, liquid anaerobic co-digestion
of seaweed with marine water mixed with wastewater is still not definitive, but it is worthy
of further investigation and optimization.

5.2. Integrated Marine Biorefinery

The phenomenon of use and recover, reduce, re-use (U&3Rs) endeavors to create a
zero-waste strategy for a supply chain via comprehensively restoring as well as regenerating
resources in the industrial and natural ecosphere [180]. In practice, it endeavors to produce
zero waste through system-wide innovations to recover value from what was traditionally
called “waste”. Zero-waste practices pertain to novel strategies for reducing resource usage
and recovering value from the common waste flow [181]. For example, the residues of
seaweed after extraction of value-added compounds such as lipids, proteins, carbohydrates,
and agar may be used for bioenergy production through anaerobic digestion, creating an
alternative source of renewable energy. Thus, the overarching objectives of the current
review can be extended to the zero-waste strategy, and the potential of possible outcomes
outlined above can provide additional downstream products from marine biogas systems
(Figure 6). In many studies, seaweed was selected based mainly on its potential to be used
for biofuel production [76,112,182], and the digestate of seaweed might be restricted to
being used as a fertilizer due to the high content of heavy metals [183]. In addition, other
studies focused on using seaweed to remove heavy metals [112], which makes the digestate
worse for further application as a biofertilizer. Although a biofuel-based zero-waste strategy
prioritized biogas yield, digestate can be used as a potential growth medium for marine
microalgae cultivation. The produced biogas can be used for microalgae cultivation where
CO2 is utilized by microalgae, and CH4 is upgraded. Introducing value-added compound
extraction and other routes for energy recovery from microalgal biomass will have a
significant positive impact on the whole system efficiency through the suggested integrated
zero-waste approach. In addition to the suggested approach, artificial intelligence has
been recently integrated in different processes including biogas production processes [184],
which could be inevitable for further enhanced biogas recovery from seaweed in a marine-
based system.
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6. Conclusions

Recent studies confirmed the promising potential of seaweed as a biofuel feedstock
for anaerobic digestion and biogas production. Though anaerobic digestion efficiency
of seaweed needs to be further improved, additional cost-effective technologies such as
pretreatment, inhibitor removal, and operational optimization can overcome the technical
issues. The present article introduces a new integrated marine-based co-digestion system
with sequential processing of biomass as a potential approach to enhance process efficiency.
A marine-based system that includes seaweed, seawater, and adapted anaerobic marine
microbes integrated with marine microalgae cultivation could improve the quality of the
produced biogas, lower CO2 emissions, and ensure a zero-waste strategy. Although anaero-
bic co-digestion of seaweed with other biomass feedstocks showed promising results, liquid
co-digestion is still not definitive but is worthy of further investigations and optimization.
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