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Abstract: Enzymes excreted by rumen microbiome facilitate the conversion of ingested plant ma-
terials into major nutrients (e.g., volatile fatty acids (VFA) and microbial proteins) required for
animal growth. Diet, animal age, and health affect the structure of the rumen microbial community.
Pathogenic organisms in the rumen negatively affect fermentation processes in favor of energy loss
and animal deprivation of nutrients in ingested feed. Drawing from the ban on antibiotic use during
the last decade, the livestock industry has been focused on increasing rumen microbial nutrient sup-
ply to ruminants through the use of natural supplements that are capable of promoting the activity
of beneficial rumen microflora. Selenium (Se) is a trace mineral commonly used as a supplement to
regulate animal metabolism. However, a clear understanding of its effects on rumen microbial com-
position and rumen fermentation is not available. This review summarized the available literature for
the effects of Se on specific rumen microorganisms along with consequences for rumen fermentation
and digestibility. Some positive effects on total VFA, the molar proportion of propionate, acetate to
propionate ratio, ruminal NH3-N, pH, enzymatic activity, ruminal microbiome composition, and
digestibility were recorded. Because Se nanoparticles (SeNPs) were more effective than other forms
of Se, more studies are needed to compare the effectiveness of synthetic SeNPs and lactic acid bacteria
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enriched with sodium selenite as a biological source of SeNPs and probiotics. Future studies also
need to evaluate the effect of dietary Se on methane emissions.

Keywords: selenium/selenium yeast/sodium selenite/sodium selenate/selenium nanoparticles; selenium
deficiency; selenium toxicity; digestibility; lactic acid bacteria/probiotic/microbial/microflora/microbiota/
bacterial communit; enzymatic activity; fer-mentation/volatile fatty acids; nutrient/nutrition; ru-
men/ruminal/ruminant; farm animal/livestock/cow/sheep/goat/buffalo

1. Introduction

The conversion of carbohydrates that exist in botanical fibers ingested by ruminants
is mainly dependent on the activity of the microbial population in the rumen [1]. The
rumen is abundant in astronomic numbers of various microorganisms including bacteria,
methanogenic archaea, anaerobic fungi, and protozoa [2,3]. Due to the large number
of enzymes excreted by these microorganisms, fibrous plant materials and non-protein
nitrogen are broken down and changed into nutritious products, primarily volatile fatty
acids (VFA) and microbial protein, which promote the production of milk and muscle [2].
Environmental factors such as heat stress, different management strategies (e.g., diets
high in fermentable carbohydrates) and improper diets comprising inadequate supply of
essential nutrients and/or improper feed formulation alter the composition of the ruminal
microbial communities by promoting the propagation of pathogenic microorganisms in the
rumen, resulting in a deficient fermentation process [1,4].

Dysfunctional fermentation causes a considerable loss of dietary energy and protein
by promoting excessive production of ammonia and methane, which contribute to envi-
ronmental hazards such as global warming [3]. As shown in Figure 1, rumen microbial
alterations occurring in some diets employed by the intensive production system are associ-
ated with the development of various diseases [4,5]. These diets promote the propagation of
endotoxic bacteria, which is associated with the reduction in the beneficial microflora, local
inflammation in the gut, gut dysbiosis, and passage of the toxic bacteria and their metabo-
lites into the systemic circulation to induce remote dysfunctions in various organs [6–10].
For example, goats on high grain diets for 50 days expressed reduced rumen pH and
dysfunctional patterns of rumen bacterial composition, and significantly increased rumen
and blood levels of lipopolysaccharide (LPS) [5]. LPS influx into the circulation resulted in
activation of inflammatory signaling, increased production of pro-inflammatory cytokines
(interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α)) and matrix metalloproteinase-2,
impaired animal health, and altered gait due to laminar tissue damage [5,11]. In addition,
the colonization of diarrheic pathogens (bacteria, fungi, and viruses) in the bovine intestinal
tract can cause considerable economic losses due to the reduction in milk yield and meat
production [12].

In the past, antimicrobials have been routinely used as nutrition-boosting tools in order
to promote animal health and save energy by altering methanogens. However, the use of
antimicrobials as growth promoters or for prophylactic purposes in livestock production
has been banned in Europe and many other parts of the world since 2006 because of the
associated health hazards (e.g., antibiotic resistance) [13,14]. Ionophore antimicrobials
(e.g., Monensin and Lasalocid) are excessively used in the livestock industry in the U.S.
and several countries to increase feed efficiency/promote growth and to protect against
coccidial and bacterial infections [15]. As growth promoters, ionophores increase perfor-
mance efficiency in cattle through various related mechanisms that involve (1) altering the
dynamics of ruminal fermentation, leading to increased propionate levels; (2) decreasing
ruminal proteolysis and ammonia synthesis, resulting in increased chance of protein influx
into the small intestine; and (3) reducing substrates involved in methane production, which
decreases energy loss [16]. The antimicrobial properties of ionophores result from their
ability to induce osmotic shock via a mechanism that involves facilitating the transport of
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ions across microbial biologic membranes: influx of Na+ and efflux of H+ and K+, resulting
in intracellular alkalosis, followed by increased intracellular influx of Ca++ [17]. The latter
is a multifunctional second messenger, and its dysregulation is associated with excessive
homeostatic imbalance, which boosts mitochondrial-mediated cellular death [7,18]. How-
ever, there is a great debate concerning the safety of ionophores in husbandry because of
the risk for microbial adaptation, toxicity due to overdose or interaction with other drugs,
and environmental pollution. The latter develops because the ionophores excreted are
largely unmetabolized, and they are introduced into the food chain when manure is used
to fertilize croplands [15–17].

Figure 1. Schematic illustration of possible causes of altered fermentation in ruminants and possible
treatment with selenium (Se). Se deficiency can largely affect farm animals, even before they are
born. This is because of increased maternal need for Se during the third trimester of pregnancy and
during peak lactation. Increased Se supply is needed to promote muscular growth in bovine fetus
and growing calves, and lack of Se supplementation during these two stages may evoke diseases
associated with Se deficiency in bovine neonates and nursing calves (e.g., white meat disease). Several
factors such as high grain diets, mineral deficiency, and stress inflected by climate change negatively
affect fermentation through interference with ruminal pH and ruminal microbiota structure/activity.
Poor digestibility and deficient fermentation result in excessive energy loss and decreased yield of
energetic value, leading to environmental pollution and less milk and meat production. Trace minerals
such as Se are supplemented in feed to promote efficient ruminal fermentation. Se is supplemented
as inorganic salts, organic yeast/amino acids, or nanoparticles. In addition to its possible toxicity,
inorganic Se interacts with ruminal content, resulting in lower amounts of bioavailable Se. In contrast,
the other types are more taken by ruminal microbiome, produce more bioavailable Se, can be effective
at small doses, and are less toxic.
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Since the 1950s, anabolic implants containing growth promoting chemicals such as
bovine somatostatin and sex hormones (estrogenic, e.g., estradiol, androgenic, e.g., the
synthetic testosterone analogue trenbolone acetate, or a combination of estrogenic and
androgenic) have been widely used in the U.S. and several countries to increase body weight
gain, feed conversion efficiency, and productivity [19,20]. Increased muscular growth in
response to hormonal implant use is associated with a greater need for trace minerals.
Therefore, trace mineral supplementation is frequently needed in animals on hormonal
implants [19]. Moreover, the use of hormonal supplementation in cattle production is
a subject of scrutiny. This is because the accumulation of hormonal residues in animal
foods (e.g., milk and meat) increases the risk of human exposure to exogenous steroids.
Additionally, residues excreted in cattle waste access raw water and the soil to be further
accumulated in plant food [20,21]. Evidence denotes that chronic exposure to hormonal
residues, even at low concentrations, interferes with biological activities in humans to
induce metabolic and endocrinal dysfunctions [9,21].

Natural and plant-derived compounds, especially those with strong antimicrobial
properties, are attracting research attention as alternative nutrition-and growth-promoting
feed additives [1,13]. Most investigated effects of feed additives involve acceleration of
fiber digestion, inhibition of excess release of ammonia via partial inhibition of proteolysis,
and reduction in methane production [1]. Supplementing feed with growth promoters,
nutraceuticals, pharmaceuticals, microminerals, and antioxidants has been adopted to
enhance the productive performance of livestock [22]. This strategy may reduce input
cost such as feed, vaccines, and drugs as well as counteract the adverse contributions of
husbandry to environmental pollution, climate change, and diseases [23]. Selenium (Se)
has been increasingly used in the last few years in order to enhance digestibility and animal
performance [24–26].

1.1. Selenium in Nature and Its Forms

Se is a potent immunomodulatory nonmetallic trace element commonly available as
an amorphous brick red powder that turns into a black vitreous form when it reaches its
melting point [27]. It has six different isotopes that vary according to their stabilization
states, half-life, and mode of decay [27]. In nature, Se exists in inorganic forms that vary
according to the redox and pH of the surrounding environmental conditions. The most
common inorganic forms are sodium-selenate [Na2SeO4, Se(VI)] and sodium-selenite
[Na2SeO3, Se(IV)]; selenide [Se2−, Se(−II)] and elemental Se [Se (0)] are less common while
Se dioxide (SeO2) results from the combustion of elemental Se, which exists in fossil fuels
and waste material [28]. Inorganic Se exists in the soil and water; it is consumed by bacteria,
algae, plants, and primates, who transform it into organic Se. Se bioaccumulation in plants
and animals may result from excessive and non-wise use of Se in human activities [28].
Se existing in plant food, seafood, and animals is organic Se (Se chemically bound to
carbon)—taking the form of amino acids (e.g., selenomethionine (SeMet), selenocysteine,
dimethylselenide, and dimethyldiselenide) [27,29,30].

1.2. Selenium Biokinetics and Bioactive Properties

The body’s daily needs of Se can be met by dietary Se (organic) or Se supplements
(inorganic Se) [31]. Detailed investigations of Se biokinetics note that oral Se is absorbed to a
great extent [28,31]. The bioavailability of organic Se is greater than that of Se from inorganic
sources [32]. The distribution of Se is even throughout the body including breast milk.
Its elimination is trivial through breath and sweat; it mostly occurs through the intestinal
and urinary tracts, with trimethylselenium ions, selenosugars, and Se-methylselenoneine
representing its most common urinary metabolites [31].

Counteracting oxidative stress is one of the key functions of Se [33]. Around 3% of
its main form, selenoproteins, is involved in the synthesis of Se-dependent glutathione
peroxidase (GSH-Px), which scavenges free radicals such as reactive oxygen species
(ROS) [30,33–35]. Selenocystines represent a main component of the thyroxin system,
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which also comprises nicotinamide adenine dinucleotide phosphate [36]. All the compo-
nents of this system facilitate the reduction in protein disulfides in ribonucleotide reductase,
thioredoxin peroxidase, and protein disulfide-isomerase, which work harmoniously to
regulate DNA synthesis and repair, antioxidant production, and proper functioning of the
endoplasmic reticulum [36].

An adequate Se supply is necessary for the full expression and enzymatic activities of
specific selenoproteins containing selenocysteine, which are crucial for the functioning of T
lymphocytes and natural killer cells, which can kill tumor cells and attack pathogens [33,37].
Se is thought to decrease cell death following severe infections because of its inhibitory
effect against transient receptor potential melastatin 2—a calcium channel involved in cell
apoptosis [35]. It also exerts a direct antipathogenic effect—the conversion of inorganic
forms (e.g., selenite) into the element’s divalent form oxidizes thiol groups in the active site
of viral protein disulfide isomerase, converting them into inactive sulfydryl groups [38,39].

Thanks to its antioxidant properties, Se is reported to protect against coronary heart
disease [30], ventilator-associated pneumonia, COVID-19, acute respiratory distress syn-
drome, and overall mortality as its most desired effect [35,38,40]. In fact, the outcome of
COVID-19 in China has largely been associated with regional levels of Se, with greater
recovery in Se-rich regions and poorer recovery in Se-deficient areas [40]. This is because Se
distribution in the soil greatly varies in China, which is associated with variation in Se levels
in human food originating from plant and animal sources [41]. Indeed, Keshan disease,
a rare form of cardiomyopathy induced by Se deficiency, is common in Se-deficient areas
in China [42]. Se deficiency is also involved in the development of metabolic disorders by
promoting pancreatic atrophy [43]. Se can also promote thyroid function, wound healing,
and male fertility [27]. In addition, it may protect against severe adverse effects of drugs,
heavy metals, carcinogens, mycotoxins, and pesticides [44]. The use of Se as an antioxidant
may be more favorable than other nutrients that are commonly used as antioxidant agents.
Collective knowledge shows that the long-term use of Se in humans for preventive pur-
poses is less likely to induce adverse effects (mortality) relative to other commonly used
antioxidants (beta carotene, vitamin A, and vitamin E) [45]. However, Se has a narrow
toxicity range (i.e., slight overdoses may induce toxicity) [46]. Human overexposure to Se,
especially inorganic hexavalent Se, is associated with type 2 diabetes, high-grade prostate
cancer, and neurodegenerative diseases (e.g., amyotrophic lateral sclerosis and Parkinson’s
disease) [42]. Therefore, ensuring adequate dietary supply to humans (e.g., plant and
meat/milk food with adequate levels of Se) may be necessary to avoid Se deficiency in
humans as well as toxicity associated with unnecessary intake of Se supplements [46].

1.3. Selenium Deficiency in Livestock

Se dietary levels vary according to geographical location and the use of Se-containing
fertilizers [29,30]. Therefore, Se is commonly used in agriculture. Plants enriched with Se
are reported to be stress resistant, have more efficient biosynthesis, and are richer in amino
acids, minerals, and antioxidants than non-enriched plants [47]. Because of the uneven Se
levels from the soil to forage grass in different regions, different ruminants (even different
breeds of a ruminant species) commonly experience Se deficiency [29].

Se deficiency in livestock is a major cause of economic losses. Se deficiency increases
metabolic dysfunction (indicated by high insulin level) [48]. It also triggers thyroid dys-
function by inhibiting the conversion of thyroidal thyroxine to triiodothyronine [48,49].
This is because Se is a key structural component in selenocysteine, which exists in the active
sites of enzymes involved in the thyroxin system such as iodothyronine deiodinases and
thioredoxin reductases [36]. It also heightens the vulnerability to infections by promot-
ing the evolution of pathogenic viral species [34,38], which frequently induce oxidative
stress in order to direct physiological processes of host cells toward viral replication [50].
White muscle disease, retained placenta, ill-thrift, osteoporosis, and mastitis are common
examples of livestock diseases induced by Se deficiency [51,52]. Inflammatory conditions
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associated with Se deficiency in cattle such as mastitis can considerably reduce fertility [53].
On the other hand, Se is reported to exert fertility-potentiating effects in goats [54].

Se deficiency can seriously endanger meat production. Maintaining rapid mus-
cle growth is crucial in the animal breeding industry since it is an indicator of somatic
growth and increased meat production [19,55]. Muscular growth is a dynamic process,
which is based on overall balance between protein synthesis/anabolism and degrada-
tion/catabolism. Anabolism rate is greater than catabolism under normal physiological
and nutritional conditions [55,56]. Muscle modeling is orchestrated by a large network
of interrelated signaling cascades that regulate metabolism, oxidative stress, immune re-
sponse, and autophagy, which all affect the activity of atrophy genes [57–59]. Dietary Se
deficiency is associated with downregulation of selenoprotein encoding genes in pancreas
and skeletal muscle [43]. Because fetal growth is high during the third trimester, maternal
Se transfer to the growing fetus increases. Se is also involved in the synthesis of milk pro-
teins, which may justify the Se drop during peak lactation. Lack of Se supply to pregnant
and peak lactating animals may trigger Se deficiency in neonate and nursing animals [60],
which is likely to affect their growth. Calves with nutritional muscular dystrophy express
significantly low serum levels of Se, GSH-Px, and vitamin E, along with the development
of Zenker’s necrosis, hyperglycemia and accelerated levels of creatine kinase (CK) and
lactate dehydrogenase (LDH) [61]. CK and LDH are biomarkers of muscle dystrophy; the
latter is associated with mitochondrial dysfunction, indicating that metabolic dysfunction
evoked by oxidative stress is the mechanism underlying muscle loss in Se deficient ani-
mals [18,59,62]. Experimentally, Se deficiency (0 mg/kg body weight (BW)) and excess
(16 mg/kg BW) are reported to significantly reduce weight gain rate, specific growth rate,
feed efficiency, and muscle crude protein content in Rainbow Trout. In both conditions, the
expression of atrophic genes (MuRF1 and Atrogin-1) and the abundance of muscle ubiqui-
tinated proteins significantly increased. The underlying mechanism involved decreased
phosphorylation of Akt Ser473 and the ratio of phosphorylated Forkhead Box O transcrip-
tion factor (FOXO) 3a/FoxO3a, along with increased phosphorylation of the inhibitor of
κB α and upregulation of TNF-α, IL-8, and nuclear factor kappa light chain enhancer of
activated B cells (NF-κB) [55]. On the other hand, Se supplementation can restore muscle
integrity by increasing antioxidant production and selenoproteins (e.g., SELENOW) in
skeletal muscle, which is associated with reduced pressing muscle loss, decreased oxidative
changes in frozen meat, increased muscular pH after 24 h of slaughter, cooking loss, and
lower drip in broilers and pigs. Organic Se and SeNPs were significantly more effective
than inorganic Se [63–65]. Compared with no treatment, maternal supplementation with
Se-yeast boluses (105 mg of Se/week) during the third trimester was associated with
increased expression of myosin and actin filament associated genes in newborn calves.
These genes are involved in muscle development, potentially allowing for optimal muscle
growth, functioning, and contraction [66]. In summary, Se dysregulation evokes muscular
dysfunction by interfering with signaling that regulates muscle cell survival and activates
atrophy genes [43,55,61], while Se supplementation during the third trimester can promote
muscle growth [66], lower muscle loss, and improve meat quality [64,65]. Notably, Se
supplementation during the first and second trimester has a potentially adverse effect on
the development of muscle and collagen structures [66].

1.4. Selenium Use in Livestock

Because of the excessive economic losses caused by Se deficiency in the livestock
industry, Se is frequently supplemented to animals in the form of inorganic salts, primarily
sodium selenite [67]. Inorganic and organic trace minerals are frequently integrated into
complete rations, rumen boluses or as ad libitum mineral blocks [68]. The most common
route of Se administration is orally in bolus forms. However, injections are also used;
subcutaneous injections of different forms of Se (e.g., sodium selenite vs. barium Se)
considerably vary in the speed of absorbance [32,36]. Organic forms of Se are also commonly
used as supplements (e.g., Se yeast and SeMet) [24,25,69]. Different Se forms affect Se
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metabolism in animals in different ways, resulting in variations in the expressed benefits or
even toxicity when certain forms are used [44,47]. Se inorganic salts exhibit lower uptake
by ruminal microorganisms and interact with ruminal contents, resulting in higher levels
of non-bioavailable Se [32,67]. Inorganic Se can be highly toxic, and it is less likely to be
transferred to milk and meat, which limits the growth of growing animals (e.g., lambs and
calves) [68,70]. To avoid the adverse interactions between inorganic Se and ruminal bacteria,
it is frequently administered in injectable forms [71]. However, this form of treatment is
more likely to affect the general state of the ruminant rather than microbial fermentation per
se. Alternatively, for oral administration, coating inorganic Se by lipids [67], encapsulating
it within polymeric nanoparticles [70], or enriching lactic acid bacteria (LAB) with inorganic
Se—to facilitate its transformation into elemental Se nanoparticles (SeNps)—have been
recently introduced to improve treatment outcomes [68].

Nanotechnology uses methods such as nanoprecipitation and emulsion-evaporation to
reduce mineral dimensions to nanoparticles of 1–100 nm [70,72]. Increasing mineral surface
area reduces antagonistic behavior typically induced by traditional inorganic minerals in the
gastrointestinal tract, considerably increases their bioavailability, contributes to desirable
effects on metabolism and antioxidant capacity at considerably lower doses, and minimizes
pollution secondary to mineral excretion into the environment [23,70]. Smaller size SeNPs
(5–15 nm) at a concentration of less than 0.5 mM are suggested to minimize oxidative stress
in COVID-19; they can also act as an antiviral drug carrier. SeNPs are less toxic than other
forms of Se, and their bioavailability and efficiency in preventing oxidative damage are
higher [33]. Thus, SeNPs represent a putative long-acting alternative to inorganic and
organic Se [31]. Se encapsulation in polymeric nanoparticles facilitates Se release in pH less
than four, which coincides with the intestinal conditions [70]. Aggregate data show that
the use of SeNPs in poultry can considerably promote feed utilization, foster growth and
reproduction, increase the relative weights of immune-related organs (burse and thymus)
and enhance immunity, improve antioxidant status and GSH-Px activities, and increase the
abundance of beneficial species of intestinal bacteria (at 0.9 mg/kg diet) as well as intestinal
production of short chain fatty acids [23]. SeNPs have recently been introduced in ruminant
breeding practice at a small scale [70,73–75]. This review aims to explore the available
literature for the collective effect of Se on fermentation in ruminants. To obtain relevant
studies for this narrative review, we conducted a systematic search in Web of Science and
PubMed databases using combinations of relevant search terms: (cow OR cattle OR calf
OR calves OR heifer OR buffalo OR bull OR steer OR sheep OR ewe OR lamb OR ram
OR goat OR kid OR deer OR camel) AND (rumen OR fermentation OR digestibility OR
CH4 emission OR methane emission OR microflora OR microbiota OR purine derivatives)
AND (selenium OR selenite OR selenomethionine OR Sel-Plex). A manual search in Google
Scholar was also conducted. The search included all studies published until September
2021, and was not limited by language or study type. The database search resulted in
775 studies including 59 duplicated reports. Studies included were those using Se alone to
affect rumen fermentation. Thirty-nine relevant studies including four studies obtained by
the manual search were included in the synthesis of the article.

2. Results

In one study, Se was supplemented to grass as a fertilizer [25]; in another study, Se was
provided to animals orally [76]; and in the rest of the studies, Se was mixed with the diet.
As shown in Table 1, different dietary Se species increased total VFA concentrations and
molar proportions of propionate in the rumen fluid of dairy cows [24,26,69,77], Holstein
bulls [78,79], Holstein dairy calves [80], goats [81,82], sheep [25,73,75,83], and lambs [84,85].
Lambs and sheep fed organic or inorganic Se diet exhibited an increase in the production
of ruminal acetate, iso-butyrate, and iso-valerate compared with the control group [83–85].
In line, the rumen liquor of crossbred wethers fed a purified diet plus a weekly oral dose of
1 mg sodium selenite per sheep contained higher molar proportions of acetic and iso-valeric
acids than that of untreated sheep [76]. The molar proportion of butyrate decreased in
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Se-treated ruminants compared with the controls. On the other hand, the molar proportion
of butyrate was higher in the rumen of cows, bulls, and rams fed different Se supplements
than in the rumen of animals fed basal diet [25,69,79]. In contrast, rumen-protected sodium
selenite (4.8 mg/cow/day) or coated sodium selenite (0.1, 0.2, or 0.3 mg/kg DM) supple-
mentation reduced the molar proportion of butyrate in the rumen of dairy cows compared
with non-treatment [26,77]. Moreover, the molar proportion of acetate was lower in dairy
bulls fed sodium selenite and coated sodium selenite compared with animals receiving the
basal diet [79]. All types of dietary Se decreased acetate to propionate (A to P) ratio in the
rumen fluid of different ruminants [24–26,69,73,75,77–80,86]. In few instances, inorganic
and organic Se at different doses had no effects on ruminal total VFA [86,87], composition
of VFA [86–89], and A to P ratio [84,86–88].

Se supplements decreased rumen pH and NH3-N concentration in dairy cows [24,26,69,77],
steers [78,79,86], Holstein dairy calves [80], goats [81,82], sheep [73,75,83], and lambs [85].
On the other hand, ruminal NH3-N concentrations in the rumen of rams receiving the
medium level of Se yeast were higher than those in high and low Se yeast groups and
the control group [25]. In some studies, Se had no effect on ruminal pH [25,86–89] or
NH3-N [79,80,87,88].

Se supplementation enhanced the digestibility of dry matter (DM), organic mat-
ter (OM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber
(ADF) [24,26,29,69,73–75,78–80,83,90–94], ether extract [24,26,29,73–75,78–80,83,91,94,95],
crude fiber [91], starch [77], microbial N efficiency [88], nutritive value digestible crude
protein, and total digestible nutrients [74,94] in the rumen of different ruminant species.
In one study, supplementing the steer diet with Sel-Plex (7.5, 15, and 22.5 mg/steer/day)
increased ruminal microbial protein synthesis, especially higher doses (p < 0.01) [86]. In
few studies, Se had no effect on digestibility [87,96–103].

Urinary excretion of allantoin and total purine derivatives (PD) were higher in Se
treatments than in the control treatment [73,75,78,80,86]. Meanwhile, supplementing
Tabapuã steers with Sel-Plex (5 g/head/day) reduced the urinary excretion of uric acid [87].
In some studies, different Se supplements did not affect the urinary excretion of uric
acid [73,75,78,80,86], xanthine, hypoxanthine [73,75], and allantoin [87].

In a single study, microbial analysis of ruminal microbiota revealed no difference in the
relative abundance (%) of bacterial phyla among treatments except for the phylum of Syner-
gistetes, which increased in low Se treatment compared with the control group [25]. At the
family level, Lachnospiraceae increased in high Se treatment relative to all other groups. At
the genus level, Carnobacterium and Dysgonomonas increased in medium Se compared with
other Se levels and the controls. The Lachnospiraceae XPB1014 group increased in the high
Se group compared with other treatments. Moreover, Prevotella 1 was higher in the control
and medium Se than those in low Se doses. The Rikenellaceae RC9 gut group increased in
low Se compared with the control group. Hafnia-Obesumbacterium was lower in the high
Se group than the other Se groups. Furthermore, Tax4fun metagenome analysis indicated
that carbohydrate and other amino acid-related gene activities and metabolic pathways
were overexpressed in the rumen microbiota of Se yeast-supplemented sheep [25]. Studies
employing quantitative PCR analysis revealed that dietary Se increased total bacteria, total
anaerobic fungi, total protozoa, Ruminococcus albus, Ruminococcus flavefaciens, Butyrivibrio fib-
risolvens [26,77,78,80], Fibrobacter succinogenes [26,78,80], Ruminobacter amylophilus [26,77,78],
and total methanogens [80]. Total methanogens decreased in another study [78]. The
population of Dasytricha ruminantium, Ophryoscolex caudatus (f. tricoronatus), Polyplastron
multivesiculatum, and Diploplastron affine were significantly higher in sheep supplemented
with organic or inorganic Se than in animals given the basal diet alone[104]. Prevotella
ruminicola decreased in three studies [26,77,78]. Moreover, total protozoa numbers and the
percentage of Diplodinium and Ophryoscolex caudatum in the rumen fluid of lambs supple-
mented with sodium selenite (0.3 mg Se/kg feed) were higher than those fed the basal
diet [85]. On the other hand, some studies revealed no effect of different Se supplements
on some microbial populations including total bacteria [88], Fibrobacter succinogenes [77],
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Prevotella ruminicola [80], total methanogens [26], total protozoa [87,88,104], and Entodinium
spp., Isotricha spp. [104].

Table 1. Effects of different sources of Se supplementation on different farm animals.

Species Se Source VFA A:P pH NH3-N Digestibility Enzymes Microbiota PD Ref.

Lactating
dairy cows SeY + - - - + ND ND ND [24]

Lactating
dairy cows RPSS + - - - + + +- ND [77]

Lactating
dairy cows

HMSeBA and
SS + - - - + ND ND ND [69]

Lactating
dairy cows SS and CSS + - - - + + +- ND [26]

Lactating
dairy cows SeY ND ND ND ND 0 ND ND ND [99]

Beef cattle SS 0 ND 0 ND ND ND ND ND [89]
Beef calves and

dairy heifers SS and SeY ND ND ND ND 0 ND ND ND [97]

Dairy calves SS + - - 0 + + +- + [80]
Dairy calves SeY ND ND ND ND 0 ND ND ND [100]
Dairy bulls SS + - - - + + +- + [78]
Dairy bulls SS and CSS + - - 0 + ND ND ND [79]

Steers SeY + - 0 - ND ND ND + [86]
Steers SeY 0 0 0 0 0 ND 0 0 [87]

Buffalo heifers SS ND ND ND ND 0 ND ND ND [96]
Male buffalo

calves SS ND ND ND ND + ND ND ND [93]

Male buffalo
calves Se # ND ND ND ND 0 ND ND ND [102]

Pregnant and
lactating ewes SS ND ND ND ND + ND ND ND [94]

Sheep SeY and SeNps + - - - + ND ND + [73]
Sheep SS and SeY + 0 0 - + ND ND ND [83]
Sheep SeY ND ND ND ND + ND ND ND [92]
Sheep SS and SeY ND ND ND ND ND + ND ND [105]

Lambs SS, SeY, and
SeNps ND ND ND ND + ND ND ND [74]

Lambs SS and SeY ND ND ND ND ND ND + ND [104]
Lambs SS + ND - ND ND ND + ND [85]

Male lambs SSA and SeY + 0 ND ND ND ND ND ND [84]
Male lambs SeY ND ND ND ND ND + ND ND [106]
Male lambs SS 0 0 0 0 + ND 0 ND [88]

Male lambs SS and
Jevsel-101 * ND ND ND ND 0 ND ND ND [101]

Male lambs SS and SeY ND ND ND ND + ND ND ND [90]
Male lambs SS ND ND ND ND 0 ND ND ND [98]
Male sheep SeNps + - - - + ND ND + [75]
Male sheep SeY ND ND ND ND + ND ND ND [29]

Rams SeY + - ND + ND ND +- ND [25]
Rams SS + ND ND ND ND ND ND ND [76]

Lactating goats SS and SeMet ND ND ND ND + ND ND ND [95]
Cashmere goats SS ND ND ND ND 0 ND ND ND [103]

Goats SeY + ND - ND ND ND ND ND [82]
Goats SeY ND ND ND ND + ND ND ND [92]

Male goats SeY + 0 - ND ND ND ND ND [81]

Se: Selenium; VFA: Volatile fatty acids; A: P: Acetate to propionate ratio; PD: Purine derivatives; +: increase; -:
decrease; 0: no effect; ND: not determined; SeY: Se yeast; SeNps: Se nanoparticles; RPSS: Rumen-protected sodium
selenite; SS: sodium selenite; SSA: sodium selenate; HMSeBA: hydroxy-analog of selenomethionine; CSS: Coated
sodium selenite; SeMet: Selenomethionine; #: The used Se species is not defined; *: Organic Se.
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Sodium selenite at different concentrations increased the ruminal activity of xy-
lanase, protease, and α-amylase [26,77,78,80], pectinase [77,78,80], cellobiase [26,78], and
carboxymethyl-cellulase [26]. In addition, Se yeast-extract increased the activities of gamma-
glutamyl transferase, glutamate dehydrogenase, and aspartate aminotransferase in the
rumen fluid of lambs [105] as well as the activities of alkaline phosphatase and glutamate
dehydrogenase in the ruminal fluid of Se-treated sheep [106]. Likewise, GSH-Px activity
increased in the ruminal epithelium of Se-treated goats [82]. In fewer studies, Se supple-
mentation did not exhibit a significant effect on alanine aminotransferase [105,106], alkaline
phosphatase [105], aspartate aminotransferase, γ-glutamyl transferase [106], carboxymethyl
cellulase [77,78,80], and cellobiase [77,80] in the ruminal fluid.

Se-yeast supplementation (6 µg/kg BW) to sheep grazed on a mixed pasture of alfalfa
and tall fescue improved gross energy (GE), digestive energy (DE), and metabolic energy
(ME) intakes. However, different Se levels (3, 6, 9, 12 µg/kg BW) had no significant
effect on CH4 energy output per day while CH4 output as a proportion of GE, DE, and
ME intakes decreased in Se treatments compared with the control. Furthermore, the
N intake, fecal N, urine N, digestible N, and retained N were higher in the Se-yeast
treatment (6 µg/kg BW) compared with the control [92]. Total N production, total N
production/intake N, and total N production/digestible N were higher in early lactating
goats receiving organic and inorganic Se (0.3 mg Se/head/day) than those in the control
group [95]. Meanwhile, urinary N, urine N/intake N, and urine N/digestible N decreased
in Se-treated animals. Moreover, lactating goats fed different types of Se diet exhibited
improvements in production energy/ME intake as well as a decrease in urinary energy/ME
intake and maintenance energy/ME intake compared with the control group [95]. Similarly,
N retention increased in male lambs receiving sodium selenite or organic Se (Jevsel-101,
0.15 mg) compared with those in the control group [101]. In contrast, two studies reported
no effect of dietary Se on N intake, N excretion, or N retention in cashmere goats or male
buffalo calves [102,103]. Readers interested in a detailed illustration of Se treatments are
encouraged to refer to Supplementary Table S1.

3. Mechanism of Action of Se in Ruminal Fermentation

Although no clear mechanism has been explored for increased energy production in
animals receiving Se supplementation, Se is likely to promote the integrity and functioning
of the digestive tract of ruminants through multiple interrelated mechanisms, resulting in
more efficient ruminal fermentation. Figure 2 represents an attempt to illustrate how Se
supplementation may improve fermentation and energy supply in ruminant animals.

In most studies, Se treatment resulted in more efficient transportation and absorption
of VFA. The levels of VFA account for a key index of rumen fermentation [25]. In fact,
Se supplementation was associated with increased abundance of bacteria that degrade
cellulose (e.g., Ruminococcus albus, Ruminococcus flavefaciens, Fibrobacter succinogenes, and
Butyrivibrio fibrisolvens) [26,77,78,80]. VFA act as vital nutrients for the host as well as for
intestinal microbiota [107]. Their absorption largely occurs all over the host’s ruminal
epithelium [25]. VFA can regulate numerous host-signaling mechanisms [107], which con-
tribute to its unique role in promoting ruminant immunity and growth [25]. Experimental
evidence shows that the growth of several isolates of the hemorrhagic Escherichia (E.) coli
O157:H7 is enhanced in the ruminal fluid of fasted and poorly nourished animals, but it is
inhibited in the rumen of well-fed animals [108]. Therefore, increased VFA production is
likely to increase the resistance of the rumen environment to opportunistic pathogens.

In mucosal inflammatory conditions, probiotics and prebiotics are used to enhance
VFA production. Alternatively, exogenous short chain fatty acid supplementation is used to
restore VFA levels [109]. Metanalytic data show that short chain fatty acid supplementation
can significantly reduce plasma levels of high-sensitivity C-reactive protein, LPS, and TNF-
α in humans and animals [110]. The anti-inflammatory activity of VFA can be synergized
by the anti-inflammatory activity exerted by Se itself. In rats treated with anticancer
nedaplatin, which frequently induces diarrhea through activation of p53 or p53-regulated
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thrombospondin-1, SeNPs reduced diarrhea by inhibiting the activity p53 or p53-regulated
thrombospondin-1 without interfering with the therapeutic activity of nedaplatin [111].
Se, along with other trace minerals, are reported to mitigate the cluster of differentiation
antigens positive cells 4 (CD4+), T-cells depletion, and reduce T-cell activity in calves
challenged with bovine viral diarrhea virus (BVDV2) five days after immunization [112].

Figure 2. Possible modifications in ruminal fermentation activities following selenium (Se) sup-
plementation. Se treatments modify the microbial activity and composition, favoring the growth
of species with high Se intake and higher digestibility of cellulose, resulting in increased energy
supply to the host, primarily volatile fatty acids (VFA). VFA also maintain rumen pH at a favorable
level. Additionally, VFA represent an energy source for different bacterial species in the rumen,
and they regulate various signaling mechanisms that regulate immunity and growth. Because Se
supplementation increases bacterial intake of Se, bacterial digestion later in the digestive tract in-
creases the ruminants’ supply of Se, which exerts antioxidant and anti-inflammatory activities. Lactic
acid bacteria (LAB) are one of the bacterial species that increase in response to Se treatment. LAB
are probiotics that exert antioxidant and anti-inflammatory activities. Thus, Se operates in several
interrelated ways to correct gastrointestinal dysfunctions (e.g., dysbiosis and pathogenic colonization,
e.g., by Escherichia (E.) coli). Finally, Se treatment improves fermentation efficiency and digestibility,
with implications for animal health and productivity.

Rumen bacterial species that incorporate Se in their structure mainly include Butyvib-
rio fibrisolvens, Selenomonas ruminantium, Streptococus sp., Lactobacillus sp., and Prevotella
ruminicola [71]. Se intake into rumen bacteria in sheep receiving unprocessed soy, as a
source of intact organic Se, was 5-fold higher than in sheep receiving heat-treated soy,
which is low in its content of Se [113]. In ruminants, Se supplementation decreased the
abundance of Prevotella ruminicola [26,77,78], which metabolize Se into elemental forms
that are inaccessible to the host animals [71]. On the other hand, adequate Se intake can
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promote the propagation of Selenomonas ruminantium and Butyvibrio fibrisolvens, which
promote the production of bioavailable selenoamino acids [26,52,71,77,78,80].

Gut microbiomes convert inorganic Se into amino acids, primarily SeMet and seleno-
cysteine [28,71]. These amino acids catalyze GSH-Px synthesis, resulting in the attenuation
of oxidative stress [30,33–35]—an effect documented in the intestinal mucosa of goats [114].
Cumulative evidence shows that methionine and cysteine are capable of promoting mu-
cosal immunity and barrier function, reconstructing the structure of the damaged gut and
reversing its dysfunction, along with reducing post-weaning stress in pigs [115]. Due
to its antioxidant, anti-inflammatory, and probiotic-stimulating activities, Se is likely to
restore optimum function of the ruminal epithelium. Experimentally, induction of Se defi-
ciency in chicken resulted in duodenal villi cell apoptosis via an oxidative stress-induced
mitochondrial apoptosis pathway associated with suppression of the activity of GSH-Px
and thioredoxin reductase. In the meantime, apoptosis was potentiated via inflammatory
signaling-induced death receptor pathway as a result of NF-κB activation by the accelerated
levels of ROS [114]. Young goats treated with Se yeast expressed significant increases in
the intestinal (duodenum and jejunum) mucosal weight, villi height and width, and villi
surface area [116]. Similar results were detected in Hu lambs [117]. Additionally, Se yeast
influenced the α diversity and abundances of rectal flora at the levels of the class, order,
family, genus, and species [117]. Immunity modulation by Se is likely to affect bacterial
growth in the lumen favoring beneficial species. In accordance, Se treatment is associated
with increasing the speed and production of specific antibodies to pathogens that threaten
the health of the intestinal tract such as E. coli [118] and BVDV2 [112,119] in vaccinated
animals [112,118,119] or even in non-vaccinated animals [120].

Se supplementation can increase the abundance of certain species of LAB [25,71].
The intake of inorganic Se into LAB is high [51,121,122], resulting in its conversion into
seleno-amino acids and SeNPs, which both exert antioxidant and antibacterial activities
against pathogenic species [12,121,122]. In vitro investigations show that supplementing
Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus with sodium selen-
ite at 80 µg/mL increase the accumulation amount of Se to 12.05 ± 0.43 µg/mL and
11.56 ± 0.25 µg/mL, along with achieving the relative maximum living cells. Microscopic
examination uncovered the deposition of elemental SeNPs on the cell surface of LAB [123].
Moreover, LAB exert antioxidant and anti-inflammatory effects; they represent a common
form of probiotics. Apart from Se treatment, LAB metabolites promote the growth of
beneficial bacteria and discourage the growth of pathogenic species [124]. Compared with
the wild type, Se-enriched LAB caused extensive damage in the membrane of pathogenic
Salmonella typhimurium, E. coli, Staphylococcus aureus, and Listeria monocytogenes in fermented
pickles [123]. Broiler supplemented with four metabolites of various strains of Lactobacillus
plantarum expressed increased fecal population of LAB and Enterobacteriaceae, along with
increases in fecal VFA, small intestine villus height, final body weight, weight gain, average
daily gain, and reduction in feed conversion ratio [125]. In fermented pickles, Lactobacillus
plantarum enriched with organic/inorganic Se significantly inhibited the production of
advanced glycation end-products (AGEs), inhibited Enterobacter, Halomonas, and Klebsiella,
and increased the abundance of Lactococcus, Lactobacillus, and Leuconostoc than Se-free
Lactobacillus plantarum [122]. It is noteworthy that AGEs are aggravated by ROS and cy-
tokines, and they potentiate a vicious cycle of oxidative stress and inflammation, leading to
ill-health [9,126].

E. coli inhibits the growth of beneficial bacteria in the gut [8]. It also produces tox-
ins that alter the integrity of the gut membrane causing dysbiosis, which promotes the
passage of these toxins and even the bacteria into the circulation, resulting in a systemic
inflammatory response [7,9]. E. coli exchanges genetic material with other bacterial species,
and possibly passes antibiotic resistance genes to transient bacterial pathogens that cause
disease in humans. In fact, E. coli is a reservoir of antibiotic resistance genes and a logical
indicator of the degree of antibiotic resistance within bovine microbial populations of the
digestive tract because it represents 1% of the colonic bacteria in cattle, accounting for the



Fermentation 2022, 8, 4 13 of 23

majority of resistance in Enterobacteriaceae [6,127]. E. coli propagation in diarrheic ruminants
is frequently associated with pathogenic propagation of other species such as Candida (C.)
albicans [12]. Grain diets promote the propagation of the enterohemorrhagic E. coli, while
switching to all hay diets can decrease E. coli survival, resulting in 1000-fold decline in E.
coli within five days [6].

It is possible that Se supplementation improves fermentation by correcting gastroin-
testinal dysfunctions induced by pathogenic organisms. Experimentally, SeNPs in combi-
nation with antimicrobials that are potent against active against Gram-negative bacteria
(E. coli, Salmonella, Shigella, Klebsiella, Enterobacter, and Pseudomonas aeruginosa) such as
Polymyxin can inhibit Enterobacter cloacae 1.9 times higher than Polymyxin alone. There
was no difference in treatments involving E. coli [128]. Nonetheless, the green synthe-
sized SeNPs (0.4 and 0.3 mg/mL) inhibited E. coli and C. albicans isolated from the feed,
drinking water, and feces of diarrheic buffaloes. The effect was potentiated when SeNPs
were combined with cinnamon oil. The effect of SeNPs alone and in combination with
cinnamon oil was significantly superior to traditional antimicrobials [12]. Compared with
inorganic Se, organic Se yeast in puppies between 20 and 52 weeks of age was associated
with higher number of DNA copies of Lactobacillus, a trend to lower DNA copies of E. coli,
higher fecal end-fermentation products related to protein degradation in females, higher
DNA concentration of Bifidobacterium in males, along with higher concentrations of total
VFA, propionate, and butyrate [129]. Pregnant cows fed Se-supplemented hay exhibited
increased concentrations of immunoglobulin G subclass 1 and J-5 E. coli antibody in cow
colostrum and calf serum compared with non-fortified hay [120]. This effect is of particular
importance in husbandry systems, which suffer excessively because of diarrhea induced
by enterotoxigenic E. coli in calves [130]. One of the methods used to stimulate protective
immunity is vaccinating the dam, allowing the passive transfer of protective antibodies
to calves through the colostrum [130]. Thus, it is possible that ruminant supplementation
with bioavailable Se may inhibit the growth of harmful bacterial species such as E. coli.

Altogether, the use of Se as a dietary supplement in ruminants can positively affect
fermentation in many ways: (1) modifying ruminal microbial structure favoring the propa-
gation of bacteria with higher Se intake, higher fiber digestibility, and probiotic/antioxidant
activity (e.g., LAB); (2) increasing VFA production promotes favorable pH, increases rumen
resistance to pathogens, and modulates signaling cascades of inflammation and oxidative
stress; and (3) Se as an antioxidant/anti-inflammatory, along with the activity of VFA and
LAB, correct oxidative stress and inflammation in the digestive tract, which are induced by
improper diet and pathogens, resulting in optimal gastrointestinal functioning.

4. Discussion

Se supplementation to ruminants has recently been an attractive trace-mineral nutri-
tion modality [29,67]. Several excellent reviews have reported that Se supplementation to
ruminants can increase milk yield, milk content of Se, fat, protein, polyunsaturated fatty
acids as well as improve immune response, systemic antioxidants, and feed conversion
(body weight). In treated animals, Se transfer also increased to the newborn via the placenta,
colostrum, and milk [36,131–133]. Although these results reflect improvement in digestibil-
ity and fermentation, the exact mechanism of different Se species on rumen fermentation
is not clearly understood. The current review fills this gap by deeply investigating the
possible effects of dietary Se on fermentation and digestibility in ruminants.

Digestive and metabolic investigations [24,26,29,69,73–75,78–80,83,90–94] show that
Se supplementation (usually at a medium dose rate—0.3 mg/kg DM) can improve N
metabolism and nutrient digestibility (DM, OM, CP, ether extract, NDF, and ADF), which
are beneficial for growth and productivity in cows, sheep, and goats. In fewer studies,
both organic and inorganic Se had no effect on digestibility [87,96–103]. In studies using
Se yeast and SeNPs, they both produced positive effects on digestibility, total VFA, molar
proportion of propionate, A to P ratio, and ruminal NH3-N as well as urinary excretion
of allantoin and total PD, albeit SeNPs had the most beneficial effect [73–75]. Incidentally,
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increased urinary excretion of PD suggests increased utilization of NH3-N for the synthesis
of microbial protein [80]. Sodium selenite protected by lipid microencapsulation decreased
CP digestibility while protected Cu had no effect on nutrient digestibility in vitro [67].
Of interest, supplementing ruminally-cannulated steers with trace minerals (Cu, Zn, and
Mn) in sulfate form decreased DM digestibility while the hydroxy form had no effect on
digestibility [134]. Most reviewed studies show that Se supplementation increased total
VFA concentrations and molar proportion of propionate but reduced NH3-N concentration
and rumen pH to the neutrality zone (Table 1), which favors the activity of bacteria that
degrade cellulose [135]. Thus, SeNPs and organic Se may represent a good source of trace
minerals for enhancing digestibility in ruminants.

Studies show that improved digestibility in Se treatment is secondary to the modula-
tion of ruminal microbiome: increases in total bacteria, total anaerobic fungi, total protozoa,
Ruminococcus albus, Ruminococcus flavefaciens, Butyrivibrio fibrisolvens, Fibrobacter succino-
genes, and Ruminobacter amylophilus, along with a decrease in the relative level of ruminal
Prevotella ruminicola [26,77,78]. Ruminal pH values ranged between 5.40 and 6.98. However,
pH below 6 was reported only in four studies [69,81,82,88], and most studies reported pH
above six. The latter may be optimum for the growth of cellulolytic bacteria as well as for
nutrient degradation [135]. Increased ruminal total VFA concentration following Se intake
resulted in keeping the ruminal pH within the neutral range, which was consistent with
the increase in nutrient digestibility [136].

Changes in microbiome composition and nutrient supply were accompanied by poten-
tiation of microbial enzymes in the rumen: xylanase, protease, and α-amylase, pectinase,
cellobiase, carboxymethyl-cellulase [137]. Cellulolytic enzymes are secreted by ruminal
cellulolytic bacteria, fungi, and protozoa to degrade fibers in feed to acetate [137]. Those
produced by fungi can penetrate the cuticle and lignified tissues of plant materials, leading
to the degradation of the most resistant cell wall polymers [138]. Similarly, the higher
propionate molar proportion may be attributed to increased activity of α-amylase and
populations of Ruminobacter amylophilus and Butyrivibrio fibrisolvens—the dominant bacteria
in charge of the degradation of non-fiber carbohydrates (non-structural carbohydrates e.g.,
starch, sugars, pectins, . . . etc.) in the rumen [138]. Moreover, some strains of ruminal
protozoa also create amylase [139]. The production of propionate requires ruminal hy-
drogen, which is the major substrate for methanogen growth and methane production.
Thus, the positive effect of Se treatment on propionate molar proportion was a reflection
of the decrease in total methanogen population [140]. It is worth mentioning that the
effect of Se supplementation on methane emission was investigated only in three studies.
Two studies reported no significant effect of dietary organic and inorganic Se on methane
emission [84,88]. In the other study, Se yeast had no effect on CH4 energy output per day
while the CH4 output as a proportion of gross energy (GE), digestive energy (DE), and
metabolic energy (ME) intakes decreased in Se treatment compared with the control [92].

The biological functions of Se result from its integral role as a catalytic entity in a
variety of enzymes [28]. Therefore, the antioxidant function of dietary Se may account for
the positive response of microbial population and their enzymatic activity. Specifically,
ruminal microbes incorporate dietary Se to form their protein and cell wall component in
the form of SeMet [141], which is capable of protecting cell membranes against oxidative
damage because of its high ROS scavenging capacity [142]. In line, ruminal microbial
concentration of Se increased following Se dietary supplementation in sheep fed a purified
diet low in Se [76,113,133]. In another study in sheep, total Se absorption and GSH-Px
activity of ruminal bacteria and protozoa significantly increased in response to dietary Se
(0.4 mg/kg DM) [29]. Dietary Se (0.3 mg/kg DM) had a similar effect on ruminal protozoa
in lambs [85].

Studies comparing the effects of different forms of Se favor organic Se over inorganic Se
while SeNPs at considerably lower doses exerted the most desirable effects [73–75]. Aggre-
gate data show that Se, particularly its inorganic form, at concentrations slightly above its
nutritional levels can be extremely toxic, especially to the central nervous system [28,44,47].
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A longitudinal study following humans consuming drinking water supplemented with
inorganic Se (hexavalent Se/selenate, 10 µg/L) in one Italian district for 28 years reported
increased risk for oropharyngeal, urinary, and lymphoid cancer compared with unexposed
residents in other districts [143]. In fact, selenium sulfide is listed as an animal carcinogen
by the U.S. National Toxicology Program [144]. Reports on Se toxicity in ruminants are
quite scarce. In a study supplementing sheep with Se (5 mg selenite orally every two
weeks for 72 weeks), along with low-protein or high-protein diets that are deficient in trace
minerals, death following loss of appetite was reported in five sheep who reached a total Se
cumulative doses of 70, 100, 140, 175, and 180 mg [145]. Chronic dietary exposure of steers
to selenite and SeMet (0.28 and 0.8 mg Se/kg BW/day for four months) was associated with
the development of dystrophic hoof lesions of chronic selenosis/alkali disease. No neuro-
logical, renal, or hepatic lesions were detected in histological examinations [146]. A recent
study reports Se poisoning in Wumeng semi-fine wool sheep receiving oral SeNPs (5 mg/kg
BW/day) for 30 days. In particular, SeNPs caused significant increases in serum IL-6, IL-1β,
malondialdehyde, LDH, glutamic oxaloacetic transaminase, cereal third transaminase,
and alkaline phosphatase, along with significant reductions in hemoglobin, erythrocyte
count, packed cell volume, serum triiodothyronine, free triiodothyronine, IgG, IgM, IgA,
IL-2, TNF-α, superoxide dismutase, glutathione peroxide, total antioxidant capacity, and
catalase [147]. However, factors of improper diet (e.g., low in protein and minerals) [145],
chronic to exposure to Se [146], and overdose [147] are likely to contribute to the negative
effects reported in these studies.

Apart from its potential toxicity, inorganic Se expresses lower bioavailability [44,47].
An interesting in vitro investigation showed that rumen microorganisms separated from
ewes incorporated organic SeMet (13.2-fold greater than Se-free control) significantly
greater than inorganic sodium selenite or sodium selenate (3.3- and 3.5-fold greater than
Se-free control). The amounts of the non-bioavailable elemental Se produced by rumen
microorganisms was significantly lower in SeMet treatments compared with inorganic
Se [32]. In vitro investigations showed that lipid-microencapsulation may minimize the
interaction of sodium selenite with ruminal contents and limit associated production of
the non-bioavailable elemental Se. In fact, relative to uncoated sodium selenite, lipid-
microencapsulation of sodium selenite reduced NH3-N concentration, NH3-N flow, and
CP digestibility; it also increased flows of non-ammonia N and dietary N. Nonetheless,
these effects were non-significant. Meanwhile, protected sodium selenite decreased CP
digestibility [67]. Other factors can affect the bioavailability of different Se species. While
inorganic Se can promote the synthesis of selenoproteins, it cannot be stored in the body
for later use. This is because inorganic Se has a shorter half-life compared with organic
Se, which is bound to either yeast protein or bacterial protein [60,148]. Therefore, urinary
loss of inorganic Se is significantly greater than organic Se [60]. The net absorption of
organic Se and its transport to the tissues in an intact form is greater than inorganic Se.
Se-bound amino acids act as analogs of amino acids for non-specific protein synthesis,
which promotes the incorporation of organic Se into nonfunctional structural proteins
(e.g., in skeletal muscle) as a direct Met replacement [63,149]. In this respect, bacterial Se is
reported to considerably increase intestinal villus height, which is associated with increased
Se retention more than sodium selenite [148].

In all studies, SeNPs were more effective than other Se forms, especially inorganic
Se. Of interest, certain LAB species have the capacity to transform inorganic Se into
predominantly elemental SeNPs, which are more bioavailable and less toxic than inorganic
Se [68,121]. Experimental evidence shows that dietary supplementation of rats with Se-
enriched LAB (Enterococcus faecium CCDM 922A and Streptococcus thermophilus CCDM 144)
increased selenocysteine in the liver and kidney, along with reducing malondialdehyde in
the tissue of various organs [121]. Enriching silage inoculant LAB with inorganic Se does
not hinder LAB ability to act as silage inoculants while their yield of organic and SeNPs
can be considerably increased [51]. Compared with no treatment, feeding ewes inoculated
silage enriched with a supra-nutritional level of SeNPs was associated with significantly
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higher levels of Se in wool, muscle, blood, urine, and feces, denoting adequate absorption
and bioavailability of SeNPs prepared by LAB-enrichment with inorganic Se [68]. In this
respect, SeNPs introduced to livestock can be synthetic [12,70] or biologically produced
through LAB-enrichment with Se salts [68]. Probiotics alone are reported to improve
digestibility and reduce methane emissions in ruminants [3]. In this sense, it is necessary to
compare the cost-effectiveness of synthetic SeNPs and LAB-enriched with inorganic Se in
husbandry production.

Diets used in eight studies were total mixed ration [24,69,74,77,78,80,94,98]; grass was
used in three studies [25,29,92] while diets in the rest of the studies comprised concentrate
feed mixture and roughage [26,73,75,76,79,81–91,95–97,99–106]. Positive effects of Se sup-
plementation on fermentation were noted in animals receiving diets low in Se [76,113,133].
Therefore, the effects of supplementary Se can be masked by dietary sufficiency of Se in the
ration. In addition, changes in gut microbial flora in Se-treated animals may be confounded
by diet type [6]. In this respect, Del Razo-Rodriguez et al. reported Se by grain interaction
in the ruminal digestion of OM, starch, and NDF—70% grain diet supplemented with
Se (0.3, 0.6, and 0.9 mg/kg DM) increased the ruminal digestion values for OM, starch,
NDF, and feed N while supplementing 50% grain diet with the same levels of Se decreased
ruminal digestion of OM and NDF (p < 0.05) [88]. Overall, for optimal use of Se as a
dietary intervention, attention needs to be paid to genetic differences among livestock,
geographical location, dietary preparations, and diet sufficiency of Se [25].

5. Conclusions

Se dietary treatment can modify the composition and potentiate the powerful metabolic
activity of gut microbiome to boost the breakdown of unabsorbed carbohydrates and pro-
teins, resulting in increased total VFA levels and propionate molar proportion, along with
decreases in ruminal pH, NH3-N, and A to P ratio in ruminants. These effects are predomi-
nantly expressed by SeNPs, followed by organic and inorganic forms. More investigations
are needed to compare the effectiveness of synthetic SeNPs and LAB enriched with sodium
selenite as a biological source of SeNPs and probiotics as well as to thoroughly evaluate the
effect of dietary Se on methane emission.
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Abbreviations

A to P ratio Acetate to propionate ratio
ADF Acid detergent fiber
AGEs Advanced glycation end-products
BVDV2 Bovine viral diarrhea virus
BW Body weight
C. albicans Candida albicans
CD4+ Cluster of differentiation antigens positive cells 4
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CK Creatine kinase
CP Crude protein
DE Digestive energy
DM Dry matter
E. coli Escherichia coli
FOXO Forkhead Box O transcription factor
GSH-Px Glutathione peroxidase
GE Gross energy
LAB Lactic acid bacteria
LDH Lactate dehydrogenase
LPS Lipopolysaccharide
ME Metabolize energy
NDF Neutral detergent fiber
NF-κB Nuclear factor kappa light chain enhancer of activated B cells
OM Organic matter
PD Purine derivatives
ROS Reactive oxygen species
Se Selenium
SeMet Selenomethionine
SeNps Se nanoparticles
TNF-α Tumor necrosis factor-α
VFA Volatile fatty acids
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