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Abstract: The lipogenic ability of the yeast Solicoccozyma terricola DBVPG 5870 grown on hydrolyzed
lignocellulose obtained from cardoon stalks was evaluated. Data on cell biomass, lipid produc-
tion, and fatty acid profiles of triacylglycerols obtained in batch and fed-batch experiments were
carried out at the laboratory scale in a 5L fermenter, and at two different temperatures (20 and
25 ◦C) were reported. The higher production of total intracellular lipids (13.81 g/L) was found
in the fed-batch experiments carried out at 20 ◦C. S. terricola exhibited the ability to produce high
amounts of triacylglycerol (TAGs) with a characteristic fatty acids profile close to that of palm oil.
The TAGs obtained from S. terricola grown on pre-treated lignocellulose could be proposed as a
supplementary source of oleochemicals. Indeed, due to the rising prices of fossil fuels and because of
the environmental-related issues linked to their employment, the use of TAGs produced by S. terricola
grown on lignocellulose could represent a promising option as a supplementary oleochemical, espe-
cially for biodiesel production.

Keywords: Solicoccozyma terricola; biofuels; biochemicals; oleaginous yeast

1. Introduction

The increasing level of greenhouse gas emissions and the depletion of fossil fuel re-
serves are among the major concerns in the energy sector [1,2]. The excessive consumption
of fossil fuels has elevated in the recent decades the average temperature of the Earth,
thus causing severe impacts on terrestrial ecosystems and biological diversity [3]. In this
regard, one of the objectives proposed by major world organizations for the mitigation
of the effects of global warming is the research of alternative renewable energy sources.
Biofuels have been considered promising substitutes of fossil fuels for mitigating the impact
of greenhouse gas emissions [4,5]. They are classified based on their physical/chemical
properties, nature, and biotechnological processes [6,7], and include bioethanol, biobutanol,
biodiesel, and biogas [8].

The use of microorganisms for biofuels production via biotechnological conversion
of biomass feedstock is regarded as an important step for reducing the dependence on
fossil fuels [9]. Different fungal species can be used for the (whole or partial) production
of biofuels due to their ability to produce high concentrations of oleochemicals or as
biocatalyst for the transesterification process [10,11]. Among fungi, some yeasts exhibit
advantages for lipid production over other oleaginous microorganisms, mainly due to
their shorter duplication times, easier cultivation in large-scale fermenters, and rapid
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growth on different low-cost raw substrates [12]. The amount of intracellular lipid (almost
exclusively constituted by triacylglycerols—TAGs) accumulated by yeasts is species- and
even strain-dependent, with lipid content ranging from 20 to 70% of cell dry weight [13].
Due to the similarity of their fatty acids (FAs) profile with that of other organic oils, TAGs
obtained from oleaginous yeasts may be regarded as a potential alternative to conventional
vegetable oils (obtained from oil-seed crops) [14,15].

TAGs from oleaginous yeasts characterized by a prevalence of monounsaturated FAs
can be considered good candidates for biodiesel production, but also for some food and
cosmetic applications [14–22]. However, despite the above advantages, the global potential
demand for TAGs from oleaginous yeasts is quite low due to their high production costs.

One of the possible ways for reducing the cost of biotechnological processes is the
use of cheap substrates as C sources for supporting microbial growth and metabolism [23].
Thus, the use of lignocellulosic biomasses as raw C sources has been taken into considera-
tion due to their wide availability in nature [24–26]. However, lignocellulosic feedstocks
need mechanical, physical, and chemical pre-treatment to release free mono- and oligosac-
charides supporting yeast growth and metabolism. Therefore, the lipogenic ability of
oleaginous yeasts on pre-treated lignocellulosic biomasses has been widely studied [26–28].

Recently, some lignocellulosic feedstocks available in large quantities in the Mediter-
ranean area were studied as C sources for TAGs accumulation by oleaginous yeasts in
shaken-flask batch cultures. The yeast species Solicoccozyma terricola exhibited the highest
lipogenic performances on pre-treated cardoon stalks [29]. Cardoon (Cynara cardunculus L.)
is a non-food oilseed crop exhibiting growing in arid soils and needs low fertilization
requirements. After oilseed harvest, about 12,000 tons/year of cardoon stalks are accumu-
lated from Italian cultivations and their disposal is considered quite problematic [30–32].

The scaling-up of a given process from shaken-flask to fermenter may be regarded
as a way to increase the production scale. In this sense, the goal of the scaling-up of a
given biotechnological process is to replicate (and even to improve) the fermentation per-
formances at a larger scale [33–37]. Along with everything, the use of fed-batch cultivation
systems has been proposed as a valid implementation of conventional batch approaches
for increasing the metabolic performances of a number of fermentation processes [38,39],
including those focused on lipid production [23,40–42].

The purpose of the present manuscript is to evaluate the lipogenic ability of the yeast
S. terricola grown on hydrolyzed lignocelluloses obtained from cardoon stalks. Cell biomass,
lipid production, and FAs profiles of TAGs obtained in batch and fed-batch experiments
carried out at the laboratory scale in a 5 L fermenter at two different temperatures (20 and
25 ◦C) are reported.

2. Materials and Methods
2.1. Chemicals and Yeast Strain

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA), while all
media were from Oxoid (Roskilde, Denmark).

The strain Solicoccozyma terricola DBVPG 5870 used in this study was previously
selected based on their superior lipogenic aptitude [29,43] and was preserved at −80 ◦C
in the Industrial Yeast Collection DBVPG of the Department of Agricultural, Food and
Environmental Sciences, University of Perugia, Italy. Salient information on the strain is
reported on the DBVPG website (www.dbvpg.unipg.it, accessed on 13 November 2021).
Working cultures were subcultured on YPD agar: 20 g/L glucose, 10 g/L yeast extract,
10 g/L peptone, 20 g/L agar, pH 6.0.

2.2. Biomass Feedstocks and Steam Explosion Pre-Treatment

The cardoon stalks (CS) were kindly provided by Matrica S.p.A (Porto Torres, Italy) in
dried form. Composition of raw CS: cellulose (30.5% ± 0.5), hemicellulose (17.2% ± 0.07),
acetyl groups deriving from hemicellulose deacetylation during biomass pretreatment
(5.0% ± 0.12), pectin (4.7% ± 0.33), and lignin (14.2% ± 0.18). CS were treated as previously

www.dbvpg.unipg.it
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reported. Briefly, biomass feedstock was preliminary dried at 40 ◦C for 1 week and then
subjected to size reduction (min. 1 cm, max. 3 cm) by a cutting mill. Steam-explosion (SE)
of biomass was performed to deconstruct the lignocellulosic portion making it accessible
to hydrolytic enzymes. SE of CS was conducted into a 11 L batch reactor (Biochemtex,
Tortona, Italy) as reported by Cavalaglio et al. [44].

CS were firstly soaked in a 1.45% H2SO4 solution (w/w) overnight and, therefore, the
solid portion was separated from the solution. The SE process was performed following the
optimized conditions reported by Cavalaglio et al. [44]: briefly, CS biomass was subjected
to SE pre-treatment at 166 ◦C for 10 min. Pre-treatment of lignocellulosic feedstocks via SE
released two different fractions: (i) a water-insoluble substrate (WIS) containing a mixture
of cellulose and lignin; and (ii) a pre-treatment liquor (Pt-L) containing hemicellulose, C5
carbohydrates, and some inhibitors, which need to be detoxified for allowing microbial
growth and metabolism. The WIS was separated from Pt-L by a stainless-steel filter
(cutoff 1 mm), washed with water at 50 ◦C for 30 min using a solid/liquid (S/L) ratio of
10% (w/w) [45] and then analyzed for their content of cellulose, hemicellulose and lignin
following the National Renewable Energy Laboratory (NREL) analytical procedures [46].
Briefly, acid hydrolysis with H2SO4 of each sample was performed in triplicate to obtain
C5 and C6 monomers from cellulose and hemicellulose. The concentration of both C5 and
C6 monomers was detected by Dionex Ultimate 3000 HPLC (Thermo Scientific, Sunnyvale,
CA, USA) equipped with a Biorad Aminex HPX-87H column (Biorad, CA, USA) thermo-
regulated at 50 ◦C and a RI detector (RefractoMax520, Thermo Scientific, Waltham, MA,
USA), mobile phase = 0.01 N H2SO4, flow 0.6 mL/min. The concentration of polymeric
sugars was calculated using an anhydrous correction of 0.88 and 0.90 for C5 and C6
carbohydrates, respectively. The remaining acid-insoluble residue was used to calculate
the acid-insoluble lignin after removing the ash content.

2.3. Monosaccharides Production: Enzymatic Hydrolysis of WIS

The WIS was selected for the subsequent phase of enzymatic hydrolysis to release
mono- and oligosaccharides from cellulose, due to their higher contents of carbohydrates,
as suggested by current literature [45,47–50]. Briefly, WIS of CS (S/L ratio of 5 % w/w) was
hydrolyzed for 72 h at pH 5 and 50 ◦C in a 5 L Biostat® APlus-Sartorius stirred bioreactor
(Sartorius, Goettingen, Germany). An enzyme cocktail solution (CTEC2, Novozyme,
Denmark) with an activity of 150 FPU/mL and 5444 CBU/mL and a density of 1.3 g/mL
was used with a dosage of 0.3 g/g of insoluble glucans (30%). The bioreactor is equipped
with an automatic monitoring and controlling system for rotation speed, pH, aeration,
temperature, and antifoam.

The solid–liquid separation following enzymatic hydrolysis was performed as follows:
insoluble residual lignin fraction was separated from the carbohydrate-rich hydrolyzed
liquid fraction by filtration (cut-off 0.45 µm) under pressure (73 g/m2). The concentration
of C sources on hydrolyzed CS was determined by HPLC: glucose = 52.17 ± 0.30 g/L,
xylose = 3.27 ± 0.27 g/L, cellobiose = 1.31 ± 0.05 g/L, and acetic acid = 0.55 ± 0.09 g/L.

To calculate the C/N ratio, the total nitrogen content of hydrolyzed CS was determined
by semi-micro Kjeldahl method as described in AOAC Official Methods SM [51]. After
hydrolysis, the CS sample (hydrolyzed CS) were stored at −20 ◦C until use.

2.4. Batch and Fed-Batch Experiments

Batch and fed-batch cultures were carried out in triplicate at both 20 and 25 ◦C to
check the influence of temperature on yeast lipogenic performances. A loopful of 48 h
cells of S. terricola DBVPG 5870 was inoculated in 50 mL orbital shaken flasks (160 rpm)
containing 10 mL of pre-culture medium (50% of YPD broth and 50% of hydrolyzed CS).
The pH of pre-culture media was adjusted to 5.5 with NaOH 1 M and yeast extract was
added to obtain a C/N ratio of about 40. After incubation at 20 or 25 ◦C for 24 h, the
precultures were inoculated in 5 L bioreactors containing 1 L of hydrolyzed CS to reach
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a final concentration of 107 UFC/mL. pH was adjusted to 5.5 with NaOH1M and yeast
extract was added to obtain a C:N ratio of about 40:0 for batch fermentations.

For fed-batch fermentation yeast extract was added to reach a C:N ratio of 40:20, to
promote cell growth rates and to increase the duration of the growth phase [52,53]. During
batch and fed-batch experiments, the yeast growth was daily monitored spectrophotomet-
rically while carbohydrate depletion was checked by HPLC. Batch fermentations were
performed until the complete depletion of glucose. In fed-batch experiments, the sub-
strate was maintained above 20 g/L by feeding with hydrolyzed CS containing 120 g/L of
glucose, in agreement with a few studies [52–54] reporting this minimum value may be
considered optimal for stimulating intracellular lipid accumulation in oleaginous yeasts.
Aliquots of 10 mL were taken every 24 h to estimate glucose concentration, cell dry weight
and total intracellular lipid content. A total of five cycles of substrates were done. After
this point, the experiment was run until the complete depletion of glucose. In both batch
and fed-batch experiments, 500 µL/L of silicon antifoam (Sigma-Aldrich, St. Louis, MO,
USA) were added in the first days of fermentation in order to prevent foam formation.

2.5. Extraction of Total Intracellular Lipids

The extraction of total intracellular lipids was performed using the protocol previously
reported [43]. Briefly, 10 mL of each culture were centrifuged (5000× g for 10 min) and
repeatedly washed with distilled water. The cells were thus treated with 10 mL of 4 M
HCl, incubated at 60 ◦C for 2 h in a water bath to obtain acid-hydrolyzed cells, then mixed
with 15 mL of a chloroform/methanol 2:1 (v/v) mixture and incubated at room temperature
for 2 h in an orbital shaker at 160 rpm. After incubation, the samples were centrifuged
(4000 rpm for 10 min) to obtain the separation of the different phases. The organic phase
containing the lipids was separated and put inside glass vials, which were fluxed to dryness
in the dark by a gas nitrogen flow. Glasses were then instantly sealed with a rubber septum,
weighed to determine the total of intracellular lipids, and stored at −20 ◦C until GC analysis.
The weight of lipids extracted from yeast cells, the amount of yeast biomass produced
after batch and fed-batch fermentations (both in shaken flasks or bioreactor), the content of
glucose, xylose and cellobiose of the hydrolyzed biomass, and the duration of incubation
required for obtaining the complete depletion of carbohydrates were used to calculate
the following parameters: (i) the total intracellular lipid production (PL); (ii) % of total
intracellular lipid on cell biomass (PL/DW); (iii) the lipid yield (PL/Glu = ratio between
the total intracellular lipid production and the amount of total carbohydrates expressed as
equivalent glucose used by yeasts for growth and metabolism).

2.6. Determination of Fatty Acids (FAs) Profiles of Triacylglycerols (TAGs) by GC

The determination of profiles of FAs in TAGs was performed with a GC Varian
3300 equipped with a FI-detector. Trans-esterification was carried out at room temperature
in tubes for 1 min in 4 mL of n-hexane and 160 µL of sodium methoxide under vortex
agitation. Work-up of the reaction was then conducted using 1.6 mL of a saturated solution
of sodium chloride in diH2O to precipitate out salts and other reaction by-products. The
samples were centrifuged (2000 rpm for 5 min) to obtain the separation of two different
phases. The supernatant was separated and put in glass vials.

A TG-WaxMS capillary column (length 30 m, internal diameter 0.25 mm, film thickness
of 0.25 µm (Thermo-Fisher Scientific—Waltham, MA, USA) was used for the separation of
the different FAs. The injector temperature was 250 ◦C, the FI-detector temperature was
260 ◦C, and the oven temperature was programmed as follows: (i) an isotherm at 140 ◦C
for 0 min; (ii) a gradient (6 ◦C/min) from 140 to 160 ◦C; (iii) a gradient (8 ◦C/min) from
160 to 180 ◦C; (iv) a gradient (4 ◦C/min) from 180 to 240 ◦C; and a final isotherm at 240 ◦C
for 15 min. Analytical high-purity gasses used helium as mobile phase, hydrogen as fuel,
nitrogen as make-up gas, and air as oxidant. FAs profiles were identified by comparing
their retention times with those of commercial standards of fatty acyl methyl esters (Fatty
Acid Methyl Esters Standard Mixture, Sigma-Aldrich, Merck KGaA, Darmstadt, Germa-
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nia). Peak areas in the full chromatogram were used to determine their relative amounts.
Watson’s formula was used to calculate the degree of unsaturation (DU) of TAGs extracted
from yeasts [55]:

DU = [% monoenes + 2(% dienes) + 3(% trienes)]/100 (1)

2.7. Statistical Analysis

Batch and fed-batch fermentations were carried out in triplicate and the statistical
analyses were performed using Student’s t-test. Principal Component Analysis (PCA) was
carried out on the FAs profiles using the R environment for statistical computing (R core
Team [56]). Data were not standardized prior to analysis and results relating to the main
FA were displayed on correlation biplots.

In order to estimate potential physical parameters of biodiesel obtainable from TAGs
produced by S. terricola in batch and fed-batch experiments performed at 20 and 25 ◦C, FAs
profiles were elaborated by empirical formulas, according to European Standards EN 14214:
CLSF = chain length saturated factor; OS = oxidative stability; CFPP = cold filter plugging
point; KV = kinematic viscosity; D = density; SV = saponification value; IV = iodine value;
CN = cetane number; HHV = high heating value [57].

3. Results
3.1. Lipogenic Aptitude in Batch and Fed-Batch Experiments

No significant (p > 0.05) differences were found between the lipogenic aptitudes
exhibited by S. terricola in batch experiments performed at 20 and 25 ◦C (Table 1), while
significant (p < 0.05) differences emerged between the fed-batch experiments carried out at
the two different temperatures.

Table 1. Lipogenic aptitude of Solycoccozyma terricola in batch experiments performed at 20 and 25 ◦C. DW = cell dry weight;
PL = total intracellular lipid production; PL/DW = % of total intracellular lipids on cell biomass; PL/Glu = lipid yield. PL/d,
daily lipid production. Different superscript letters show significant (p < 0.05) differences between experiments carried out
at 20 and 25 ◦C.

T
(◦C)

DW
(g/L of

Substrate)

PL
(g/L of Substrate)

PL/DW
(%)

PL/Glu
(%)

PL/d
(g/L of Substrate × Day)

20 17.58 ± 1.03 a 7.13 ± 0.38 a 40.7 ± 4.38 a 14.24 ± 1.83 a 1.43 ± 0.08 a

25 15.96 ± 0.76 a 6.68 ± 0.48 a 41.94 ± 3.83 a 14.64 ± 0.99 a 1.34 ± 0.10 a

In this second case, a more rapid glucose depletion and the highest biomass accumu-
lation was found at 20 ◦C (Figures 1A and 2A).

Likewise, S. terricola grown in fed-batch experiments exhibited a superior ability to
accumulate significantly (p < 0.05) higher amounts of total intracellular lipids at 20 ◦C:
13.81 g/L were observed at the end of fermentation (Figure 1B), while 9.69 g/L of lipids
were found at 25 ◦C (Figure 2B). This trend was the consequence of a higher biomass
production (Figure 1A,B) combined with a higher percentage of total intracellular lipid on
dry cells (PL/DW) observed at 20 ◦C (Figure 2A,B). Moreover, the fed-batch experiments
carried out at 20 ◦C showed a significantly (p < 0.05) higher lipid yield (PL/Glu) than that
observed at 25 ◦C (Figures 1B and 2B).

By comparing the different culture regiments, the higher lipogenic aptitude exhibited
by fed-batch experiments is the consequence of the longer duration of the process (and
therefore of a prolonged accumulation of cell biomass and intracellular lipids). Indeed,
the percentage of total intracellular lipid on dry cells (PL/DW) observed in fed-batch
experiments carried out at 20 ◦C (Figure 1B) were significantly (p < 0.05) higher than that
observed in batch processes at both 20 and 25 ◦C (Table 1). On the contrary, the average daily
lipid production observed in fed-batch experiments (PL/d = 1.38 ± 0.03, calculated on the basis
of data reported in Figure 1B) was not significantly (p < 0.05) different than that obtained in
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batch fermentations (Table 1). Likewise, the lipid yield was not significantly (p < 0.05) affected
by the different culture regiments used in the study (Table 1 and Figures 1 and 2).
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3.2. FAs Profiles of TAGs in Batch and Fed-Batch Experiments

The FAs profiles of TAGs produced by S. terricola grown on CS-based substrate in
batch and fed-batch experiments performed at 20 and 25 ◦C are reported in Table 2. TAGs
produced by S. terricola grown at 20 ◦C in batch experiments exhibited a significantly
(p < 0.05) higher percentage of unsaturated FAs (UFAs = the sum of oleic acid and linoleic
acid accounted for over 67% of the total FAs) than that found after growth at 25 ◦C. This
trend was counterbalanced by a corresponding significant (p < 0.05) decrease of their
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corresponding saturated FAs (palmitic + stearic acids = 31.53% of the total) (Table 2).
The same trend was observed in fed-batch experiments, where a higher abundance of
UFA was found at 20 ◦C compared to that found after growth at 25 ◦C, coupled with
a significant (p < 0.05) higher percentage of oleic acid and a parallel decrease of both
palmitic and stearic acids (the sum of the two FAs accounted for over 37% of the total)
(Table 2). Significant (p < 0.05) differences were found between 20 and 25 ◦C in both batch
and fed-batch experiments, especially in the terms of DU: overall, in both cases a higher
DU was found at 20 ◦C (163 and 134% of the value observed at the higher temperature,
respectively) (Table 2).

Table 2. Fatty acids (FAs) profile of triacylglycerols (TAGs) produced by Solicoccozyma terricola in batch and fed-batch
experiments, performed at 20 and 25 ◦C. Different superscript letters show significant (p < 0.05) differences between
experiments carried out at 20 and 25 ◦C. SFA = % of saturated fatty acids; UFA = % of unsaturated fatty acids; DU, degree of
unsaturation. C14:0 myristic acid (tetradecanoic acid), C16:0 palmitic acid (hexadecanoic acid), C16:1 palmitoleic acid [(9Z)-
hexadec-9-enoic acid), C18:0 stearic acid (octadecanoic acid), C18:1 oleic acid [(9E9Z)-octadec-9-enoic acid], C18:2 linoleic
acid [(9Z,12Z)-9,12-octadecadienoic acid], C20:0 arachic acid (eicosanoic acid), C20:1 gondoic acid [(11Z)-11-eicosenoic acid],
C22:0 behenic acid (docosanoic acid), C22:1 erucic acid [(13Z)-docos-13-enoic acid], C24:0 lignoceric acid (tetracosanoic
acid). Different superscript letters indicate significant (p < 0.05) differences.

T
(◦C)

C14:0
(%)

C16:0
(%)

C16:1
(%)

C18:0
(%)

C18:1
(%)

C18:2
(%)

Batch
20 0.00 a 20.99 ± 0.14 a 0.63 ± 0.05 a 10.54 ± 0.22 a 58.95 ± 0.07 a 8.06 ± 0.15 a

25 0.49 ± 0.051 b 33.13 ± 0.71b 0.2 ± 0.34 a 20.38 ± 1.87 b 44.06 ± 0.9 b 1.05 ± 0.09 b

Fed-batch
20 0.79 ± 0.11 a 29.53 ± 0.93 a 1.46 ± 0.21 a 7.97± 0.68 a 56.19± 0.26 a 2.5 ± 0.44 a

25 0.39 ± 0.04 b 36.67 ± 1.31 b 1.03 ± 0.07 a 19.81 ± 1.2 b 36.75 ± 0.52 b 4.4 ± 0.52 b

T
(◦C)

C20:0
(%)

C22:0
(%)

C24:0
(%)

SFA
(%)

UFA
(%)

DU
(%)

Batch
20 0.00 0.00 0.83 ± 0.04 a 32.36 67.64 75.70
25 0.00 0.00 0.7 ± 0.13 a 54.69 45.31 46.36

Fed-batch
20 0.35 ± 0.26 a 0.11 ± 0.01 a 0.6 ± 0.12 a 39.75 60.25 63.03
25 0.43 ± 0.02 a 0.22 ± 0.02 b 0.2 ± 0.01 b 57.78 42.22 46.95

PCA was used to compare the FAs profiles of TAGs produced by S. terricola in both
batch and fed-batch experiments (performed at 20 and 25 ◦C) with the FAs profiles of
some common vegetable oils (obtained from oil-seed crops) [58,59]. The sum of PC1 and
PC2 was close to 100% of the total variance. Interestingly, PCA demonstrated that the FAs
profiles of TAGs produced in both batch and fed-batch experiments were close to that of
palm oil, mainly due to similar concentrations of both palmitic and stearic acids (Figure 3).

In order to estimate the potential physical parameters of biodiesel obtainable from
TAGs produced by S. terricola in batch and fed-batch experiments performed at 20 and
25 ◦C, FAs profiles were elaborated by empirical formulas, according to European Stan-
dards EN 14214 [57]. Overall, with the sole exception of the oxidative stability (OS), the
results were consistent with the references value for several parameters, namely kine-
matic viscosity (KV), density (D), saponification value (SV), iodine value (IV), and cetane
number (CN) (Table 3).

In detail, KV and D were in the ranges between 3.5 to 5 mm2/s and 0.86 to 0.90 g/cm3,
respectively for all experiments. SV defines the amount of KOH in mg required to saponify
one g of oil under specific conditions [57]. This value generally has a minimum range
of 0.5 g, in these experiments, all trials reported over 190 mg for g of oil. The parameter
IV defined by the mg of I2 consumed by 100 g of substrates in a chemical reaction has a
maximum value of 120 mg: all results showed fewer values and the lowest was reported in
the batch fermentation at 25 ◦C. Finally, all trials reported values slightly higher than 51 for
CN (Table 3).
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cozyma terricola in both batch and fed-batch experiments performed at 20 and 25 ◦C and those of
some common vegetable oils. B20 and B25 = batch experiments at 20 and 25 ◦C, respectively; Fb20
and Fb25 = fed-batch experiments at 20 and 25 ◦C, respectively; PAL = red palm oil; OL = olive oil;
PNT = peanut oil; RPS = rapeseed oil; SOY = soybean oil; SFL = sunflower oil; GRP = grape oil; HOS
= High oleic sunflower; ALM = almond oil; COR = Corn oil; JAT = Jatropha oil [54,55]. SFA = % of
saturated FA; UFA = % of unsaturated FA.

Table 3. Predictive estimation of the physical parameters of biodiesel obtainable using triacyl glycerols (TAGs) produced by
Solicoccozyma terricola in batch and fed-batch experiments performed at 20 and 25 ◦C. Data were calculated using results
reported in Table 2. CLSF = chain length saturated factor; OS = oxidative stability; CFPP = cold filter plugging point;
KV = kinematic viscosity; D = density; SV = saponification value; IV = iodine value; CN = cetane number; HHV = high
heating value.

T
(◦C)

CLSF
(%)

OS
(h)

CFPP
(◦C)

KV
(mm2/s)

D
(g/cm3)

Reference values/ranges Not specified ≥6 h Variable * 3.5–5 0.86–0.90

Batch experiments 20 10.91 4.86 4.38 4.63 0.87
25 18.41 5.99 17.55 4.74 0.86

Fed-batch experiments 20 12.75 5.35 7.61 4.56 0.87
25 19.28 5.97 19.08 4.73 0.86

T
(◦C)

SV
(mg KOH/g of oil)

IV
(mg I2/100 g) CN HHV

(MJ/Kg)

Reference values/ranges ≥0.50 ≤120 ≥51 Not specified

Batch experiments 20 192.42 65.00 58.09 39.87
25 194.61 39.74 64.21 39.86

Fed-batch experiments 20 194.91 54.14 60.50 39.86
25 195.91 40.34 63.87 39.92

* Depending on geography and period of year.
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4. Discussion

In light of the results herein reported, the possibility of using lipids produced by
oleaginous yeasts from pre-treated lignocelluloses obtained from cardoon stalks as sus-
tainable and cheap extra-source of oils (exhibiting a FAs profile comparable with that of
palm oil) could be regarded as a realistic chance, also in view of the rising global request of
oleochemicals and biofuels obtained from biotechnological processes [60,61].

Previous studies investigated the lipogenic ability of S. terricola grown in batch fermen-
tations on both different pure sugars (glucose, glycerol, xylose, galactose, sucrose, maltose,
and cellobiose) and on different lignocellulosic biomasses (cardoon stalks, stranded drift-
wood and olive tree pruning residues): a superior lipogenic ability was found when
S. terricola was grown on lignocellulosic biomasses, especially in media containing hy-
drolyzed lignocelluloses obtained from cardoon stalks [29,43].

S. terricola grown in fed-batch experiments exhibited a higher lipogenic aptitude
at 20 ◦C. Despite batch culture being the most studied approach to select novel lipid-
overproducing yeasts [62], the use of fed-batch cultures has been proposed as a possible
upgrade for improving metabolic performances of oleaginous yeasts, mainly in the terms
of production of cell biomass and intracellular lipids [63,64]. Fed-batch fermentations
carried out at 20 ◦C exhibited the higher values of % of total intracellular lipid on cell
biomass (PL/DW), despite the lipid yield (PL/Glu) being quite far from the maximum
theoretical value [65], as opposed to the results reported by Tasselli et al. [29], who found
that this species was able to reach a lipid yield close to the maximum theoretical value
when grown on CS in shaken flasks at 20 ◦C. Overall, S. terricola exhibited the higher
ability to accumulate high amounts of total intracellular lipids when grown in fed-batch
experiments carried out at 20 ◦C as a consequence of its superior ability to produce yeast
biomass and to accumulate lipids at the cytoplasmic level. The other relevant parameters
(i.e., yield and daily productivity) was not significantly (p < 0.05) affected by the different
culture regiments.

Overall, the main parameter affecting the lipogenic aptitude of S. terricola was the
temperature. The yeast species Metschnikowia pulcherrima showed a temperature-dependent
trend within a range of temperature from 15 to 30 ◦C, especially for biomass and lipid
yields, and FAs profile. A remarkable decrease of DU and of short chain FAs (C14:0, C16:0,
and C16:1), and a parallel increase of oleic acid suggested that at low temperatures the
activity of desaturases could be stimulated at the expenses of that of elongases [66]. This
temperature-related trend was also observed in Saccharomyces cerevisiae and was correlated
with genome regulation, indicating that the transcription of genes encoding for desaturase
is apparently activated at low temperatures, probably because unsaturated FAs has been
understood to express an important role in maintaining the cell membrane fluidity [67].
Likewise, D12-fatty acid desaturases from Yarrowia lipolytica were expressed to a higher
extent at low temperature (12 ◦C), thus increasing DU, although no higher accumulation of
intracellular lipids were found [68].

Principal Component Analysis (PCA) revealed that the FAs profile of TAGs produced
by S. terricola in both batch and fed-batch fermentations at 20 and 25 ◦C was similar to
that of palm oil, as reported by Ramos et al. [59]. Palm oil was in recent decades the most
widely used terrestrial oil crops and its market is projected to continue expanding at a rate
of approximately 2% per year [69,70]. Palm oil is widely used worldwide for its lower cost
and for its almost perfect equilibrium (50:50) between the concentration of both saturated
and unsaturated FAs [71]. The high demand for palm oil is stimulating debates on the
environmental consequences determined by the conversion of forest land and agricultural
land to oil palm cultivations, which can generate environmental implications, such as
greenhouse gas emissions from changes in soil carbon stocks and biomass, forest fires,
air pollutant emissions, losses of biodiversity, and losses of animals, plants, and species
in forest ecosystems [72–76]. Therefore, TAGs obtained from oleaginous yeasts grown
on pretreated lignocellulosic biomass could be proposed as a supplementary source of
oleochemicals, which could be regarded as an alternative to palm oil request [52,77,78]. On
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the other hand, PCA suggested that the FAs profile of TAGs produced by S. terricola in both
batch and fed-batch fermentations carried out at 20 and 25 ◦C were quite far from those
reported for other vegetable oils rich in unsaturated FFAs. Considering that the double
bonds of FFAs are used as possible polymerization points [79], the TAGs synthesized by
S. terricola in this study were not apparently suitable to be proposed as building blocks
for obtaining microbial biopolymers. However, since in both culture regiments a general
increase of the unsaturation degree (DU) was observed from 25 to 20 ◦C, as a consequence
of a general acclimatory response of cold-adapted yeast to lower temperatures [80], we
could postulate that the use of lower incubation temperatures (e.g., 10–15 ◦C or below)
could significantly increase the DU of the FFAs, thus allowing the use of the TAGs obtained
by S. terricola for the production of biopolymers.

Due to the rising prices of fossil fuels and because of the environmental-related issues
linked to their employment, the use of lipids produced by oleaginous microorganisms
grown on lignocelluloses could represent a promising option, also in view of reducing any
potential competition with food resources [81]. In this framework, oils exhibiting a high
% of unsaturated FAs (e.g., oleic acid) could be considered good candidates to be used as
supplementary oleochemicals, especially for biodiesel production [82].

The increase of energy demand coping with the utilization of fossil resources has
engendered a number of serious environmental impacts. Therefore, a progressively strin-
gent worldwide legislation was promulgated for the purpose of reducing greenhouse gas
emissions and stimulating significant research efforts on the development of alternative
fuels [83]. In this context, the lipid produced by S. terricola at 25 ◦C should be an alternative
for biodiesel production [59]. The predicted biodiesel parameters calculated following
currently used formulas [57] were in the range suggested by the European Standards
EN 14214, with the sole exception of a lower value of oxidative stability OS (lower than
the reference value in EN14214), similarly to other biodiesel derived from vegetable oils,
due to the long chain fatty acid alkyl esters, which contains unsaturated portions that are
susceptible to oxidation [83].

5. Conclusions

Recent studies have compared biodiesel production via biotechnological approaches
in the marketplace with traditional production processes. The cost of biodiesel obtained
from microbial oils is actually estimated at 12.8 USD/kg, almost fifteen times higher than
the current market price of conventional biodiesel obtained from oilseed crops (about
0.9 USD/kg) [84]. The use of cheaper C sources (e.g., agro-industrial wastes and non-food
crops) allowing the lipid accumulation by oleaginous yeasts should reduce the production
costs around 50% [29]. Of course, any decrease in costs is also a function of production
volumes: Parsons et al. [69] determined a minimum estimated selling price of about
14 USD/kg using cheap carbon sources (sucrose and wheat straw) and showed how this
value was reduced by around 45 % on scaling of 10,000 ton/y [85]. Therefore, if the use
of cheaper C sources (e.g., cardoon stalks) may be regarded as an easy way to reduce the
production costs of biodiesel obtained from microbial oils, the optimization of the industrial
process is a good strategy to be followed. In this context, the strain S. terricola DBVPG
5870 used in this study (previously selected based on their superior lipogenic aptitude)
exhibited the ability of producing high amounts of TAGs from lignocelluloses obtained
from agro-industrial wastes (i.e., crops cardoon stalks). Fed-batch fermentations showed
better performances than batch experiments demonstrating their aptitude to be exploited
for possible future application on ever-increasing production scales. Interestingly, TAGs
produced by S. terricola DBVPG 5870 exhibited an FAs profile similar to that of palm oil
and compatible with a possible conversion in biodiesel.
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