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Abstract: Kimchi, a popular traditional Korean fermented food, is produced by fermenting vegetables
with various spices and salt. Salt plays an important role in the preparation of kimchi and affects
its taste and flavor. This study aimed to investigate the effects of salinity on kimchi fermentation.
The salinities of five sets of kimchi samples were adjusted to 1.4%, 1.7%, 2.0%, 2.2%, and 2.5%. The
characteristics of each kimchi sample, including its pH, acidity, free sugar content, free amino acid
content, organic acid content, and microbial community composition, were evaluated during kimchi
fermentation. The low-salinity kimchi sample showed a rapid decline in the pH at the beginning of
the fermentation process, a relatively high abundance of Leuconostoc mesenteroides, and high mannitol
production. In the late fermentation period, Latilactobacillus sakei had a higher abundance in the
kimchi sample with high salinity than in other samples. In the initial stage of fermentation, the
metabolite composition did not differ based on salinity, whereas the composition was considerably
altered from the third week of fermentation. The findings showed variations in the characteristics and
standardized manufacturing processes of kimchi at various salt concentrations. Therefore, salinity
significantly affected the types and concentrations of fermentation metabolites in kimchi.

Keywords: kimchi; salinity; fermentation; lactic acid bacteria; metabolites

1. Introduction

Kimchi is one of the most popular traditional fermented foods in Korea that is prepared
using lactic acid bacteria (LAB) fermentation [1]. The type and concentration of various
components and the fermentation temperature affect the flavor, taste, and characteristics
of kimchi [2–4]. Several studies have suggested that fermentation can affect the bioactive
compounds of kimchi and LAB profiles, which can significantly alter the sensory and
nutritional qualities of kimchi [5–7]. However, even though salt is one of the most important
factors in fermentation, there is limited knowledge on the effects of salt on the quality of
kimchi [8,9].

Salt is an important influencing factor in most fermented foods, including kimchi, as
it extends the shelf life of the food and improves its taste [10]. Salt is generally associated
with the physical and sensory properties and preservation of fermented foods [11]. How-
ever, several studies have suggested that high salt intake from dietary sources is strongly
associated with hypertension and cardiovascular disease [12–14]. Salt helps maintain the
quality of kimchi by eliminating harmful bacteria and promoting LAB colonization, which
is the most important process in kimchi fermentation [15]. The type and concentration
of salt affect the changes in the microbial community composition and metabolite pro-
file during kimchi fermentation [16,17]. The previous study has reported that changes
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in bacterial profiles due to different salt treatments led to changes in kimchi metabolite
profiles in relation to sensory and nutritional quality [8]. Although several studies have
characterized the microbial community in kimchi through a metagenomics approach, there
are few studies on the effects of salt concentration on the differences in the metabolites
produced by microorganisms in kimchi [9,16]. The salt concentration (0, 1.25, 2.5, 5%)
suggested in the previous study [9] is for research purposes, and no kimchi is actually
prepared in this manner. There is no commercial kimchi that has such a high concentration
of salt (5% salinity of kimchi). Our preliminary study for monitoring the salinity of kimchi
distributed on the market revealed that the salinity of kimchi was 1.4~2.5%, and the salinity
of kimchi distributed in Korea, China, and United States were in the range of 2.0~2.3% [18].
In addition, Hong et al. [16] analyzed the change in the microbial profiles according to the
salt concentration of kimchi but did not analyze the correlation between metabolites and
microbial community. Since many microorganisms present in the fermentation stage of
kimchi contribute to metabolite production, it is difficult to establish a clear relationship
between salt concentration and the metabolite profile in kimchi.

This study primarily aimed to investigate the effects of salinity on kimchi fermentation.
The comparison of the microbial community composition and metabolite profiles at five
different salinities (1.4%, 1.7%, 2.0%, 2.2%, and 2.5%) is an important strategy for a holistic
understanding of the process of kimchi fermentation.

2. Materials and Methods
2.1. Experimental Materials

Kimchi cabbage and garlic were purchased from the western agricultural and fishery
market in Gwangju (Republic of Korea). Red pepper powder (Geumchi, Gwangju, Ko-
rea), pure salt (Hanju salt, Ulsan, Korea), and other ingredients (including white sugar
from Samyang Corporation, Ulsan, Korea) were purchased from the same market. All
experimental analyses were performed using analytical-grade reagents obtained from
Daejung (Gyeonggi-do, Korea). Water and acetonitrile used for high-performance liquid
chromatography (HPLC) were of chromatographic grade (Merck, Kenilworth, NJ, USA).

2.2. Preparation of Kimchi

The kimchi cabbage was soaked in 10% (w/v) pure salt solution for 18 h. Subsequently,
the salted kimchi cabbage was washed three times with water and then drained for 2 h. The
salted kimchi cabbage was cut into 3 cm × 3 cm pieces to prepare kimchi. The seasoning
mixture was prepared by mixing 29.4% radish, 10.6% scallion, 13.20% red pepper powder,
7.2% crushed garlic, 2.03% crushed ginger, 5.73% fermented fish sauce, 10% vegetable
broth, 3% sugar, and 11.47% glutinous rice paste. The mixture was then added to the salted
kimchi cabbage at a ratio of 70:30 (salted cabbage:seasoning mixture). The final salinity
of the kimchi was adjusted to 1.4%, 1.7%, 2.0%, 2.2%, and 2.5% (1.4%, SK-A; 1.7%, SK-B;
2.0%, SK-C; 2.2%, SK-D; 2.5%, SK-E). Each kimchi sample (600 g) was separately packed in
a polyethylene film and sealed using a vacuum packaging machine (AZC-070, INTRISE,
Ansan, Korea). The packed kimchi was stored for 5 weeks in a refrigerator at 6 ◦C, and its
characteristics were analyzed at intervals of 1 week.

2.3. Microbial Community Analysis

Total DNA was extracted from the samples using a PowerSoil DNA Isolation Kit
(Mo Bio Laboratories, Carlsbad, CA, USA) according to the manufacturer’s instructions.
DNA concentration and purity were measured using a NanoDrop ND-2000 (Thermo Fisher
Scientific Inc., Waltham, MA, USA). PCR was performed using the following primers:
16S V3 (5’-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT ACG GGN
GGC WGC AG-3´) and 16S V4 (5´-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG
ACA GGA CTA CHV GGG TAT CTA ATC C-3´). The PCR cycle was as follows: initial
denaturation for 2 min at 95 ◦C, followed by 30 cycles of denaturation for 20 s at 95 ◦C,
annealing for 15 s at 72 ◦C, extension for 1 min at 72 ◦C, and a final extension step for 5 min.
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Total DNA extracted from the kimchi samples was subjected to PCR using the 16S V4
primer. Sequencing was conducted using the Mi-SeqTM platform (Illumina, San Diego, CA,
USA) by Macrogen (Macrogen Inc., Seoul, Korea). After sequencing errors and ambiguous
and chimeric sequences were eliminated, the CD-HIT-OTU analysis program was used
to determine the species-level operational taxonomic units (OTUs) to cluster sequences
with a similarity of 97%. The representative OTU sequence was used to perform UCLUST
(v.1.2.22) in the reference database (SIVA DB) and to generate taxonomic assignments based
on homology. Microbial communities were analyzed using classifiers of the Ribosomal
Database Project in QIME (v.1.8.0).

2.4. Analysis of pH and Titratable Acidity

The juice from the kimchi samples was extracted using a gauze after blending, and
the pH value was measured directly using a pH meter (TitroLine 5000, SI Analytics GmbH,
Mainz, Germany) at room temperature (24–26 ◦C). The titratable acidity was determined
by titration with 0.1 N NaOH until the endpoint of pH 8.3 was reached. The titratable
acidity was calculated based on the percentage of lactic acid produced [19].

2.5. Analysis of Organic Acids

Organic acid contents were measured using a modified procedure of a previous
study [20]. Distilled water (50 mL) was added to 2 g of each sample, and the organic acids
were extracted using a sonicator (PowerSonic 520, Hwashin Tech Co., Daegu, Korea) for
30 min. Subsequently, the solutions were filtered twice, first using a filter paper (Advantec
No. 1, Toyo Roshi Kaisha, Ltd., Tokyo, Japan) and then using a syringe (Minisart RC,
Hydrophilic, 0.2 µm, 15 mm, Sartorius Stedim Biotech GmbH, Goettingen, Germany).
HPLC was conducted using an Agilent 1260 infinity/G4212B system (Agilent Technologies,
Santa Clara, CA, USA) with a variable wavelength diode array detector set to 210 nm.
The injection volume was 10 µL. Organic acids were analyzed using an Aminex HPX-87H
column (300 × 7.8 mm, 9 µm, Bio-Rad, Hercules, CA, USA) maintained at 50 ◦C. Isocratic
elution was performed using 0.008 N H2SO4, with deionized water as the mobile phase,
for 30 min at a flow rate of 0.6 mL/min. Organic acids in the samples were identified by
comparing their retention times with those of standard organic acids and quantified using
a calibration curve derived from the peak areas of the standards.

2.6. Analysis of Free Sugars

The free sugar content of each sample was determined using a modified procedure
from the previous study [21]. Ten grams of each homogenized kimchi sample was added
to a 50 mL centrifuge tube, and adjustment to a constant volume was performed by adding
40 mL distilled water. The sample solution (50 mL) was heated in a water bath at 85 ◦C
for 25 min and then cooled to room temperature. After centrifugation at 3000 rpm for
10 min, 1 mL of the supernatant was collected. The supernatant was filtered using a nylon
membrane filter (0.45 µm, 25 mm, PTFE, Whatman GmbH, Dassel, Germany), and 6 µL of
the supernatant was injected for the analysis of free sugars. The free sugar contents were
measured by HPLC (1260 Infinity, Agilent Technologies, Santa Clara, CA, USA) using an
instrument equipped with refractive index detectors. A carbohydrate column (Asahipak
NH2P-50 4E, Shodex, Tokyo, Japan) was used at an oven temperature of 30 ◦C. The mobile
phase was composed of 75% acetonitrile in water, dispensed at a flow rate of 1 mL/min.
The free sugar content was estimated using standard curves of fructose, glucose, sucrose,
and mannitol.

2.7. Analysis of Free Amino Acids

Free amino acids were measured using a modified procedure of a previous study [22].
For the analysis of free amino acids, 1 g of each homogenized kimchi sample was added
to a 50 mL centrifuge tube, and adjustment to a constant volume was performed by
adding 10 mL of distilled water. After centrifugation at 3000 rpm for 30 min, 1 mL of 5%
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trichloroacetic acid was added to 1 mL of the supernatant and centrifuged at 6800 rpm for
20 min, following which the supernatant was collected. The supernatant was filtered using
a syringe filter (RC, 0.2 µm, 25 mm, Sartorius) and analyzed using an automatic amino acid
analyzer (L-8900, Hitachi, Tokyo, Japan). An ion-exchange column (4.6 × 60 nm, Hitachi
HPLC Pack Column, #2622SC PF Column) was used for analysis, and the amino acids in
the sample were detected using a UV detector (570 and 440 nm). For the mobile phase
analysis, the Wako L-8900 buffer solution, dispensed at a flow rate of 0.35 mL/min, was
used, and the samples were analyzed using a 20 µL sample.

2.8. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 9.0 (GraphPad Software
Inc., San Diego, CA, USA). For positive and negative correlation analyses between the bac-
terial community composition and the metabolites present in kimchi, a correlation analysis,
using XLSTAT Premium Software Package version 19.4 (Addinsoft, New York, NY, USA),
was performed based on the bacterial abundance in kimchi at the LAB species level and the
targeted metabolite concentration. Correlation coefficient analysis was performed based on
the relative abundances of the bacterial taxa (top six taxa with >1% of the mean abundance)
at the species level and the kimchi metabolite contents. The statistical significance of the
observed variation was assessed using the PERMANOVA function (* p < 0.05, ** p < 0.01,
and *** p < 0.001). Principal component analysis (PCA), which is an unmanaged pattern
recognition method, was used to identify the outliers in data sets and the storage periods.
Correlation analysis between the PCA data and variables was performed using the XLSTAT.

3. Results and Discussion
3.1. Microbial Community Analysis

To compare the changes in the microbial community composition in the samples, the
taxonomic structures at the species level were identified (Figure 1). In the initial stage of fer-
mentation, the microbial communities in the five kimchi samples were similar at the species
levels; Aerosakkonema funiforme and Weisella confusa were the predominant microorganisms
in all samples. As fermentation progressed, the predominance of Latilactobacillus sakei and
Leuconostoc gelidum was observed. Interestingly, in the first week of fermentation, L. gelidum
was the predominant microorganism, and its ratio was high in SK-A with low salinity
(43.69%). Conversely, A. funiforme was the primary microorganism in kimchi with high
salinity (SK-E). This result was similar to that obtained in a previous study that confirmed
the changes in microbial community composition at high salinity; the authors reported
an increase in the abundance of A. funiforme and a decrease in that of L. gelidum [5]. After
5 weeks, the abundance of L. gelidum reduced, whereas that of L. sakei showed an increasing
trend. In particular, L. sakei was the predominant microorganism in kimchi samples with
high salinity, in contrast to that in other samples. These results indicated that Leuconostoc
and Latilactobacillus play an important role in kimchi fermentation. During the initial stage
of fermentation, when the kimchi has low levels of aeration and weakly acidic conditions,
Leuconostoc species are the predominant microbial species present; as fermentation pro-
gresses, the acidity increases, and an anaerobic environment is established [23,24]. Because
Latilactobacillus grow and adapt well under highly acidic and anaerobic conditions, the
rapid increase in acidity and the establishment of anaerobic conditions toward the end
of fermentation are advantageous for its growth. This is consistent with the results of
previous studies [25].
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3.2. Changes in the pH and Titratable Acidity of Kimchi

The pH changes in kimchi at different salinities were analyzed for 5 weeks (Figure 2a).
pH and titratable acidity are important factors in kimchi fermentation [26]. On the first
day of fermentation, the pH was approximately 5.4. There were no differences in the pH
values between the different groups of kimchi. A gradual decrease in pH was observed
as fermentation progressed. After 1 week, the pH value started decreasing; in particular,
the pH value of SK-A, which had low salinity, declined sharply. After 2 weeks, the pH of
the other kimchi samples also declined sharply, and there were no significant differences
among the pH values of the different kimchi samples at the end of the fermentation period.
Hong et al. [16] reported that the pH of kimchi with low salinity was lower than that of
kimchi with high salinity at the initial stage, and the pH value declined rapidly during the
initial period of fermentation. In the early stages of fermentation, the pH declined sharply,
but the decline was gradual after the midpoint of the fermentation period; meanwhile,
the acidity was reported to increase continuously, and the pH was further reduced by the
organic acids produced by LAB [20]. The titratable acidities of kimchi during fermentation
are shown in Figure 2b. In general, titratable acidity is inversely proportional to the pH
value. Our results indicated that the titratable acidity of kimchi was significantly affected
by its salinity. Overall, the titratable acidity of all kimchi samples increased rapidly during
the 5 weeks of fermentation. The titratable acidity increased slightly and became relatively
stable, with values ranging from 0.5 to 1.0, after 2 weeks. Salinity was shown to lower the
initial titratable acidity of kimchi, which may have further delayed kimchi fermentation at
the initial stage. The rapid decrease in pH observed in this study was slightly different from
what is generally observed in kimchi fermentation. The pH and titratable acidity of kimchi
with different salinities were similar to those generally observed in kimchi fermentation
during the 5-week fermentation period [27]. Till the second week of fermentation, the
titratable acidity of the high-salinity kimchi group was significantly lower than that of the
low-salinity kimchi group. Similarly, Hong et al. [16] reported that at the initial stage, the
pH of kimchi with low salinity was lower than that of kimchi with high salinity, and the
pH value decreased rapidly during the initial period of fermentation.

3.3. Changes in the Metabolite Profile of Kimchi

It is well known that the taste and flavor of kimchi are primarily related to its metabo-
lite profile, and metabolite production is affected by the microbial community composition
during kimchi fermentation. To investigate the effect of salinity on kimchi fermentation,
the kimchi metabolites were analyzed using HPLC with a metabolomics approach.
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Figure 2. Changes in the pH (a) and acidity (b) of kimchi samples with different salinities during
fermentation.

The changes in the organic acid content of kimchi samples fermented for 5 weeks at
different salinities at 6 ◦C are presented in Figure 3. Six organic acids (acetic acid, citric
acid, malic acid, succinic acid, lactic acid, and fumaric acid) were detected during kimchi
fermentation. The lactic acid levels increased sharply in the first 2 weeks and increased
gradually after 2 weeks. In particular, the level of lactic acid was significantly higher in
low-salinity kimchi samples during the first and second weeks of fermentation. The acetic
acid levels increased steadily for 5 weeks, and kimchi samples with low salinity eventually
showed a high acetic acid content. Lactic acid is an organic acid whose content increases
during fermentation [11]. The change in titratable acidity is similar to the change in the
lactic acid content, and it seems that the titratable acidity of kimchi is primarily affected
by lactic acid; therefore, lactic acid is an important indicator of the quality of kimchi [28].
In this study, the change in titratable acidity and the change in lactic acid content showed
similar tendencies, and the titratable acidity of kimchi was primarily observed to be affected
by lactic acid. Malic acid was produced during the initial stage of fermentation, but its
concentration decreased to zero by the end of the fermentation period. According to
Shim et al. [29], malic acid is commonly converted to lactic acid and acetic acid by LAB
during fermentation. The lactic acid content increased during fermentation, as it was the
primary organic acid, whereas the malic acid content decreased steadily. Seo et al. [9] also
showed that the acetic acid and lactic acid contents increased during fermentation, whereas
the succinic acid and malic acid contents decreased.
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fermentation.

The changes in the free sugar content of kimchi samples fermented at different salin-
ities at 6 ◦C for 5 weeks are presented in Figure 4. In general, the free sugars primarily
detected were fructose, glucose, maltose, sucrose, and mannitol, and the free sugar con-
centration in low-salt kimchi decreased in the early stage of fermentation. The free sugar
content in all kimchi groups decreased during the fermentation process; a similar finding
was reported in a previous study [3,20], in which the free sugar contents in all treatment
groups decreased rapidly during the initial stage of fermentation. The decrease in the levels
of free sugar, especially glucose, could be presumably attributed to sugar consumption by
the rapidly proliferating LAB present in kimchi rather than to the release of free sugars in
the cabbage. In this study, the fructose and glucose levels decreased rapidly until 2 weeks,
but the fructose level declined more rapidly, and fructose was completely consumed during
the 2 weeks.

Mannitol, a sugar alcohol, was not detected at the beginning of the fermentation
period, but its production increased to a significant level in all kimchi samples after 1 week
of fermentation, and the level increased significantly after 2 weeks of fermentation. In
particular, the level of mannitol was high in low-salinity samples in the first and second
weeks of fermentation. During this period, the Leuconostoc species ratio in the low-salinity
kimchi group (SK-A) was relatively higher than that in the high-salinity kimchi group
(SK-E). L. mesenteroides along with other heterofermentative LAB is known to produce
high levels of mannitol from a mixture of glucose and fructose [21,24,30]. Therefore, it is
considered that kimchi with a high ratio of Leuconostoc produces mannitol at high levels.
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The changes in the free amino acid composition of kimchi samples fermented at
different salinities at 6 ◦C for 5 weeks are presented in Figure 5. The concentrations of
most amino acids produced in kimchi are maintained or increased during fermentation.
Jung et al. [23] reported that the concentration of amino acids increased rapidly at the begin-
ning of fermentation and gradually decreased after the fermentation was halfway through.
Similarly, in this study, the glutamic acid content decreased rapidly at the beginning of
fermentation and then increased, as also reported by Park et al. [27]. In contrast, the con-
centrations of glycine, methionine, cystathionine, leucine, tyrosine, γ-amino-n-butyric acid
(GABA), and lysine increased during fermentation, and there was no significant difference
in amino acid concentrations based on salinity.
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3.4. Multivariate Statistical Analysis

PCA is a popular technique of multivariate statistical analysis used to simplify data
from multidimensional datasets that can be interpreted through graphical visualization [31].
The shift of the sample (dots) from left to right in the PCA score plot indicated continuous
metabolic changes during fermentation (Figure 6a). After 2 weeks of fermentation, till
the 5th week of fermentation, the shift of the sample proceeded slowly, indicating that
the change in the metabolite profile was slow during this period, which is consistent
with the findings from previous studies on varying salinities in kimchi fermentation [4,9].
To determine the differences in the metabolite profiles of kimchi samples with different
salinities during 5 weeks of fermentation, a PCA model was constructed using variables
obtained from free sugar, organic acid, and free amino acid data at 0, 1, 3, and 5 weeks.
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At the beginning of the fermentation period, kimchi with various salinities could not be
completely distinguished on the PCA score plot, but during the first week of fermentation,
the kimchi samples could be separated according to salinity.
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As shown in Figure 6b, the metabolite profiles at different salinities could be com-
pletely distinguished from each other from the third week of fermentation. At the third
week of fermentation, the samples were completely distinguishable on the PCA score
plot, and in particular, SK-A and SK-B could be clearly distinguished till the 5th week
of fermentation. Positive and negative correlations between species-level transitions and
changes in the metabolite profile during kimchi fermentation were analyzed and presented
as a heatmap (Figure 7). Correlation coefficient analysis was performed using the relative
abundance of abundant bacterial taxa (top six taxa with >1% of the mean abundance) at the
species level and the abundance profiles of kimchi metabolites. A similar heatmap pattern
was observed for samples with a limited difference in salinity, whereas the two kimchi
samples with a substantial difference in salinity, SK-A and SK-E, showed markedly differ-
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ent patterns, particularly with respect to amino acid metabolites. The negative correlation
between amino acid concentrations and LAB species was higher in high-salinity kimchi.
The changes owing to salinity may be related to the amino acid predominantly consumed
by LAB. More specifically, it was shown that the abundances of L. sakei, L. carnosum, and L.
mesenteroides were significantly positively correlated with the acetic acid and lactic acid
contents and negatively correlated with the glucose and fructose contents. The levels of
methionine, leucine, cystathionine, and GABA showed a significant positive correlation
with the abundances of L. sakei and L. mesenteroides. Kimchi fermented with fermented fish
sauce showed higher levels of acetate, lactate, and GABA than kimchi fermented without
fermented fish sauce [32]. The mannitol content showed a significant positive correlation
with the abundances of L. sakei and L. mesenteroides (p < 0.001). Kim et al. [16] reported that
L. sakei can produce mannitol at low concentrations because of its homofermentative and
heterofermentative characteristics. Another study showed the production mannitol at low
levels by some homofermentative LAB, such as Lactobacillus leichmannii and Lactococcus
lactis [22]. Therefore, PCA and heatmap are suitable statistical methods for evaluating
the correlation between salinity and the different characteristics of kimchi. Kimchi with
different quality characteristics can be produced by varying the salinity ratio, which is in
agreement with the results of previous studies [7,8,14].
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Figure 7. Correlation analysis between successive colonization by lactic acid bacteria and metabolite profiles in kimchi
samples fermented at different salinities. The blue and red colors correspond to negative and positive correlation, respec-
tively. The color intensity is proportional to the correlation coefficient. The color bar indicates the corresponding color and
correlation coefficient. * p < 0.05, ** p < 0.01, *** p < 0.001.
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4. Conclusions

In this study, the changes in the characteristics of kimchi at different salinities were
observed, and the correlation between the types of LAB and the metabolites produced
was analyzed. Interestingly, the abundances of microbial communities and concentrations
of metabolites in kimchi differed according to the salinity. The results of metabolite
analysis, including multivariate statistical data of organic acids, free sugars, and free amino
acids, and the microbial community analysis data, providing insights into the unique
characteristics of kimchi fermented at different salinities. The results obtained in this study
can be applied to fermented foods processed at different salt concentrations. Appropriate
salt concentrations can alter the microbial community composition and metabolite profile
in a specific food product, which can positively affect its quality.
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