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Abstract

:

The hydrocarbon-based economy is moving at a large pace to a decarbonized sustainable bioeconomy based on biorefining all types of secondary carbohydrate-based raw materials. In this work, 50 g L−1 in COD of a mixture of food waste, brine and wastewater derived from a biodiesel production facility were used to produce organic acids, important building-blocks for a biobased industry. High salinity (12–18 g L−1), different reactors configuration operated in batch mode, and different initial pH were tested. In experiment I, a batch stirred reactor (BSR) at atmospheric pressure and a granular sludge bed column (GSBC) were tested with an initial pH of 5. In the end of the experiment, the acidification yield (ηa) was similar in both reactors (22–24%, w/w); nevertheless, lactic acid was in lower concentrations in BSR (6.3 g L−1 in COD), when compared to GSBC (8.0 g L−1 in COD), and valeric was the dominant acid, reaching 17.3% (w/w) in the BSR. In experiment II, the BSR and a pressurized batch stirred reactor (PBSR, operated at 6 bar) were tested with initial pH 7. The ηa and the VFA concentration were higher in the BSR (46%, 22.8 g L−1 in COD) than in the PBSR (41%, 20.3 g/L in COD), and longer chain acids were more predominant in BSR (24.4% butyric, 6.7% valeric, and 6.2% caproic acids) than in PBSR (23.2%, 6.2%, and 4.2%, respectively). The results show that initial pH of 7 allows achieving higher ηa, and the BSR presents the most suitable reactor among tested configurations to produce VFA from wastes/wastewaters with high salinity.
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1. Introduction


Biogas is the primary product obtained in anaerobic digestion (AD) processes that present the double advantage of stabilizing biodegradable waste materials and producing renewable energy. Currently, AD processes are being explored to obtain other products, such as organic acids, that may be used as building-blocks for chemicals and biofuels, replacing the need for fossil fuel-based products. These present a higher market value when compared with the energy production from biogas [1].



The production of organic acids is achieved by stopping the process at an early AD stage—acidogenesis. Salinity and pH are two important operating variables that can drive the process, resulting in the interruption or continuation of steps, such as the accumulation of VFA or production of biogas [2]. Usually, low pH inhibits the methanogenic activity [3], thereby favoring the accumulation of by-products of the initial stages of AD, including VFA [4]. On the other hand, if pH levels are near neutrality, there is no hindrance to the methanogenic activity, and VFA can be further converted into biogas [5]. The same happens by regulating the levels of salinity [6]. The presence of salt in wastewater is a concern that can result from the use of seawater for toilet flushing, or from seawater intrusion in coastal WWTP due to the increase in sea-level and flood tide events [7,8]. These events can impact salinity to levels up to 8–19 g L−1 [8]. Moreover, saline wastewaters are produced daily by several industries, such as tanneries, oil and gas producing, and seafood processing (including fish processing) [9]. The anaerobic treatment of these saline wastewaters is a challenge since anaerobic microorganisms are known to be sensitive to the presence of high sodium/or chloride concentrations [10], in particular the methanogenic archaea. These microorganisms can be more sensitive than acidogenic bacteria to high salinity [11], and their activity can typically be inhibited under salt concentrations around 20 g L−1 [6,12].



In addition to those parameters, the bioreactor configuration may be an important feature to address, in order to optimize VFA production from bio-wastes. Generally, the acidogenesis proceeds sufficiently fast in well mixed tanks; however, other configurations have potential to be used for VFA production, and comparisons should be performed [13,14]. For example, in expanded systems such as the expanded granular sludge blanket reactor, the high liquid velocities leads to a slight expansion of the sludge-bed, which results in an excellent contact between sludge and wastewater [13]. Another example may be the pressurized reactors. The application of simultaneous high pressure and temperature has enabled to increase between two and five times the VFA yield from sewage sludge [15], suggesting pressure as a potential variable of interest to improve the acidogenesis of complex wastes, such as food waste (FW). In this way, it may be expected that the application of pressure by using pressurized bioreactors may improve the solubilization of wastes with high solid content, such as FW, therefore facilitating its hydrolysis and further acidification.



In this work, FW from a canteen, brine from a fish-canning industry, and wastewater derived from a biodiesel production facility, with a final salinity of [12,13,14,15,16,17,18] g L−1, were mixed and used to produce VFA in different reactor configurations/conditions (a batch stirred reactor, a pressurized stirred batch reactor, and a granular sludge bed column) and at different pH levels (5 and 7) in order to obtain the best operational conditions that promote organic acids production.




2. Materials and Methods


2.1. Experimental Set-Up and Operation Mode


This work was divided into two experiments, according to the pH tested. In experiment I, two bioreactor configurations were tested with the goal of producing VFA at an initial pH of 5: a batch stirred reactor (BSR), named BSR-5; and a granular sludge bed column (GSBC) reactor with recirculation, named GSBC-5 (Figure 1). In experiment II, an initial pH of 7 was tested in a BSR-7 and in a pressurized stirred batch reactor (PBSR-7) (Figure 1). In both experiments, the reactors were operated in batch mode, due to the high solids content in FW. In BSR-7 and PBSR-7, 5 g L−1 of sodium bicarbonate was used as buffer. All reactors were operated at 37 °C.



The GSBC reactor consisted of a plexiglass cylinder with a total volume of 2.25 L and a working volume of 2 L, with external liquid recirculation that promoted the sludge bed expansion and better contact and mixing. The BSR had a total volume of 5 L and a working volume of 2.5 L, was made of stainless steel, and contained internal stirring paddles. The stainless steel PBSR had a total volume of 2 L and a working volume of 1.2 L (PARR Model 4524, Parr, Moline, IL, USA). PBSR also contained internal stirring paddles. This reactor was pressurized with N2, reaching a final pressure of 6 bar. Samples for VFA, chemical oxygen demand (COD), pH, and salinity were collected over time. In the PBSR, the reactor was depressurized for sampling, and then re-pressurized to 6 bar with N2.




2.2. Substrates and Inoculum


The same inoculum was used for the four reactors, and consisted of anaerobic granular sludge from a brewery wastewater treatment plant (Super Bock, Porto, Portugal). The sludge was previously boiled at 100 °C for 10 min to suppress the methanogens [16], in order to avoid the further degradation of the fatty acids produced. The sludge presented the following concentration in volatile solids (VS) in the reactors: (13.1 ± 1.8) g L−1 in BSR-5; (12.7 ± 0.6) g L−1 in GSBC-5; (20.8 ± 5.6) g L−1 in BSR-7; and (20.8 ± 5.6) g L−1 in PBSR-7.



The substrate consisted of a mixture of FW (Canteen of the University of Minho, Braga, Portugal) and wastewater (WW) derived from a biodiesel production facility, 50/50 in total COD, in a final concentration of approximately 50 g L−1. The FW was homogenized by blending the solid waste in tap water. Additionally, brine from the fish-canning industry (A Poveira, Póvoa de Varzim, Portugal), was added to give high salinity to the mixture. The brine salinity was 224.3 g L−1. The salinity was measured before the experiment, and was constant over time, presenting values of (12.2 ± 2.2) g L−1 in GSBC-5 and (12.3 ± 1.5) g L−1 in BSR-5, in experiment I. In experiment II, the salinity content was increased to (17.8 ± 1.5) g L−1 in PBSR-7 and (18.4 ± 1.5) g L−1 in BSR-7.



The characterization of the substrates used (FW and Biodiesel WW) regarding its content in total COD (tCOD), total solids (TS), and VS is presented in Table 1.




2.3. Analytical Methods


Samples from the reactors content (containing sludge, substrates, and products) were collected over time. The samples for VFA (acetic, propionic, iso- and n-butyric, iso- and n-valeric, and iso- and n-caproic acids), lactic acid, and soluble COD (sCOD) quantification were centrifuged for 15 min at 15,000 rpm and filtered through a 0.2 μm nylon syringe filter. VFA and lactic acid were analyzed using a Jasco (Tokyo, Japan) HPLC equipped with a PU880 JASCO isocratic pump, a 7971 Jones Chromatography oven, an AS2057Plus automatic injector, and a UV-2070plus detector. The mobile phase was composed of a 2.5 mmol L−1 H2SO4 solution. COD (total and soluble) was determined spectrophotometrically using cuvette test kits LCK 014 (Hach-Lange GmbH, Düsseldorf, Germany). Sample dilution (1:10) was previously carried out, to avoid the interference of salinity in COD quantification. A Hach Lange HT 200 S thermostat and a Hach Lange DR 2800 spectrophotometer were used in this analysis. pH was measured with a Hanna (Woonsocket, RI, USA) pH-meter and salinity measurements were conducted using CO 301 digital conductivity meter (VWR, Radnor, PA, USA). Total and volatile solids were determined according to the Standard Methods [17]. Possible biogas production was quantified with a Ritter MilliGas counter (Dr.-Ing. Ritter Apparatebau GmbH, Bochum, Germany).




2.4. Calculations


VFA and lactic acid results are presented in this work in g L−1 of COD. The theoretical COD equivalencefor lactic, formic, acetic, propionic, butyric, valeric, and caproic acids were 1.07, 0.35, 1.07, 1.51, 1.82, 2.04, and 2.21 g of COD g−1 of acid, respectively. These values were calculated according to Equation (1):


   C n   H a   O b   N c  +  (  n +  a 4  −  b 2  −  3 4  c  )   O 2  → n   CO  2  +  (   a 2  −  3 2  c  )   H 2  O + c   NH  3   



(1)







The acidification yield (ηa) was defined as the ratio between the total VFA + lactic acid (in COD) in the reactor and the tCOD fed to the reactors [18,19,20], according to Equation (2):


   η a   (  % ,   w / w  )  =     COD   VFA   +   COD    lactic   acid      tCOD   × 100    



(2)







The ratio between VFA + lactic acid (in COD) and the sCOD measured at each point, was calculated according to Equation (3):


  VFA / sCOD  (  % ,   w / w  )  =     COD   VFA   +   COD    lactic   acid      sCOD   × 100  



(3)







The total VFA corresponds to the sum of each VFA and lactic acid expressed as g of COD.





3. Results


pH, salinity and reactor configurations were tested with the focus on optimizing the VFA production in two experiments. In experiment I BSR and GSBC were tested with an initial pH of 5 and salinity of 12 g L−1. In experiment II, the pH was set to 7, salinity to 18 g L−1, and the reactors evaluated were the BSR and the PBSR.



	
Experiment I






Figure 2 shows the VFA and pH profiles. At day two, VFA concentration attained the maximum in BSR-5, while in the GSBC-5 VFA were much lower and almost constant over the experiment (Figure 2a,b). At this point, the pH seemed to be stabilized (Figure 2c). It dropped to 3.5 in day one, and did not vary over time. Lactic acid was the main acid produced in both reactors (Figure 2a,b), presenting a maximum concentration of 6.3 g L−1 in COD in the BSR-5 and 8.0 g L−1 in COD in the GSBC-5. A clear difference in VFA profiles was observed in both reactors, with significantly higher concentrations of acetic (3.9 g L−1 in COD), propionic (2.1 g L−1 in COD), and iso-valeric (1.8 g L−1 in COD) acids obtained in the BSR-5 in two days, in comparison with the GSBC-5, where these acids achieved maximum values of 0.9 g L−1, 0.7 g L−1, and 1.4 g L−1 in COD, for acetic, propionic, and iso-valeric acids, respectively, in five days. In the GSBC-5, n-butyric acid was also one of the main VFA produced (0.9 g L−1 in COD), while in BSR-5, this acid was not detected. The remaining VFA, such as formic, iso-butyric, n-valeric, iso-caproic and n-caproic acids, were not detected or their quantification was below the detection limit (<25 mg L−1). In the BSR-5, the ηa, and the VFA/sCOD ratio reached a maximum of 28% and 37%, respectively, in two days, and then decreased slightly to 22% and 30% at day five. In the GSBC-5 the ηa achieved a maximum of 24% (VFA/sCOD of 30%) on the last day of experiment (Table 2). In both reactors, the sCOD almost did not change over time, being 36 g L−1 in the BSR-5 and 39.4 g L−1 in the GSBC-5 at the end of operation (day five). Biogas production did not occur over the experiment.



	
Experiment II






Since the best VFA profile and the fastest VFA production were obtained in the BSR-5, in experiment II two stirred batch reactors were tested at an initial pH of 7. The same BSR of experiment I and a pressurized batch stirred reactor were compared. The reasoning for using a pressurized reactor was to assess if high pressure could have a positive effect on hydrolysis, and could ultimately increase the rate and the degree of acidification. The VFA and pH profiles in those reactors are presented in Figure 3.



The VFA profile was similar in both reactors, but slightly higher concentrations of the main VFA, namely propionic (8.0 g L−1 in COD), acetic (6.2 g L−1 in COD), and n-butyric (4.5 g L−1 in COD) acids were recorded in the BSR-7, when compared to PBSR-7 (7.8 g L−1, 5.7 g L−1 and 4.0 g L−1 in COD, respectively). In both reactors, lactic acid was present in high concentration (3.6 g L−1 in COD) at the beginning of the fermentation, but after one day, it started to decrease. On the first day of operation, the iso-valeric acid concentration increased in both reactors until it reached approximately 3.6 g L−1 in COD, but immediately after, on day two, the concentration decreased to 0.3 g L−1 and 0.8 g L−1 in COD in PBSR-7 and BSR-7, respectively (Figure 3a,b). Over the experiment, the other acids (formic, iso-butyric, n-valeric, iso-, and n-caproic) presented concentrations below 2 g L−1 in COD. The pH decreased from 7 to around 6.5 on the first day, and it remained stable over time in BSR-7 (Figure 3c). In the PBSR-7, the minimum pH recorded was 6.1 on day seven, but it increased until 6.4 in the end of the experiment (Figure 3c). At the end of the experiment, the ηa and the VFA/sCOD ratio in the BSR-7 were 46% and 66%, while in the PBSR-7 they were 41% and 55% (Table 2), respectively. Both PBSR-7 and BSR-7 reactors started with the same sCOD of 28.6 g L−1, which then increased to 37.2 g L−1 and 34.7 g L−1, in PBSR-7 and BSR-7, respectively (Table 2), at the end of experiment II. Moreover, in experiment II, biogas production was not detected.



At the end of operation, in both experiments I and II, the granular sludge disintegrated. This may have been caused by the salinity. The presence of high concentration of monovalent cations, such as Na+ ions, has been described as affecting the structure of the sludge [6,21]. The monovalent cations (Na+) can exchange with the divalent cations (Ca2+ and Mg2+) present in the extracellular polymeric substances structure of sludge, promoting the disintegration of the biomass structure [22].




4. Discussion


The production of carboxylic acids from wastes has been the focus of several studies, but only recently has the potential of using wastes containing high salinity to produce these acids been explored [6,23]. In this work, the potential of alternative reactors configuration to produce VFA from wastes/wastewaters containing high salinity was assessed under initial acidic and neutral pH. First, the performance of a BSR and a GSBC was tested with an initial pH of 5, since an acidic pH is known to inhibit the methanogens [3] and is suitable for the acidogenic bacteria [24]. In a second experiment, a BSR was tested at atmospheric pressure and at a pressure of 6 bar with an initial pH of 7.



In experiment I, lactic acid was the main product. This was also reported by other authors under similar experimental conditions, i.e., lactate-type fermentation was described as being favored at pH 4, and uncontrolled pH led to lactic acid accumulation [25]. Tang et al. [26] reported the accumulation of lactic acid in reactors operated without pH control and in the absence of buffering capacity, which further caused a pH drop to values around 3. This extremely acidic pH, resulted in hydrolysis inhibition [26], which was also observed in BSR-5 and GSBC-5, since the sCOD almost did not change over the experiment (Table 2). Slightly acidic pH was suggested to be ideal for hydrolysis, since some hydrolytic enzymes have optimum activity at pH 6 [27,28]; nevertheless, pH control is essential for avoiding the drop of pH below to VFA pKa (around 4.8), in order to prevent microbial inhibition, such as happened in experiment I. Despite of the low pH, the VFA concentration obtained in this work (~11 g L−1 in COD) was much higher than the one obtained by Liu et al. [29] (4.14 ± 0.44 g L−1) in reactors treating FW under acidic conditions and with a salinity of 12 g L−1 (Table 3). Under the tested conditions in experiment I, BSR-5 was shown to be more suitable for acids production, since higher concentrations of VFA were achieved, namely 3.9 g L−1 in COD of acetic acid, 2.1 g L−1 in COD of propionic acid and 1.8 g L−1 in COD of iso-valeric acid (maximum at day 2), when compared to the GSBC-5 (0.9 g L−1, 0.7 g L−1 and 1.4 g L−1 in COD, respectively, at day 5).



Based on the results obtained in experiment I, which showed that the BSR was the best configuration, in experiment II, the BSR was set with a higher initial pH 7 (BSR-7) to avoid the microbial inhibition caused by extremely acidic pH. Neutral pH was also applied in experiment II since pH drop is intensified by the presence of higher salt levels (8 and 16 g L−1) [30], and by the VFA production/accumulation (experiment I). Since neutral pH may allow the reactivation of the methanogens, in experiment II, the salinity content was increased to 18 g L−1 to maintain suppression of the methanogens. Methanogens have a lower acclimation capacity to high salinity concentrations than acidogens, being strongly inhibited at NaCl concentrations above 10 g L−1 [10,31] Besides methanogens, salinity above 20 g L−1 can also inhibit microbial activities of non-adapted acidogens [32], therefore, 18 g L−1 of salinity was the maximum tested in experiment II. Since the ηa increased from 22–24% in experiment I to 41–46% in experiment II, it can be concluded that, in this study, the increase of the salinity did not inhibit the acidogenic bacteria. A pressurized reactor (PBSR-7) was also set, and the performance compared with BSR-7. The results obtained in experiment II have shown that the BSR is more efficient, when comparing the yield of acidification and the VFA/sCOD ratio obtained in this reactor (46% and 66%) with that of the PBSR (41% and 55%), under the same conditions (Table 2). Approximately more than 0.5 g L−1 in COD of (each) acetic, butyric, and caproic acids were produced in the BSR-7 in comparison with the PBSR-7 (Figure 3a,b). Nevertheless, the pressure applied in PSBR-7 resulted in higher solubilization of COD, i.e., in the end of the experiment, the sCOD (Table 2) was higher in the PBSR-7 (37.2 g L−1) than in BSR-7 (34.7 g L−1). The application of pressure as a pre-treatment to enhance the anaerobic digestion of complex wastes has been previously tested [33]. This approach increased the waste solubilization; nevertheless, that did not improve the methane production. Those results are in agreement with the results obtained in experiment II, i.e., the superior hydrolysis observed in PBSR-7 did not result in superior acidogenesis in terms of rate, nor in terms of products distribution. For example, Lindeboom et al. [34] had previously studied the effect of pressure on methanogens, and noticed that an increase of pressure from 1 to 3 bar led to a decrease of 30% on specific methanogenic activity. Despite piezo-sensitive and piezo-tolerant species can being able to survive up to 90 bar [34] (which is much higher than the conditions tested in this work), their activity may be compromised. This may be the case of the acidogens present in the PBSR-7. The higher hydrolysis obtained in PBSR, suggests that this reactor configuration may be interesting to apply in the AD of more complex and/or recalcitrant wastes, but its effects on methanogenic and acidogenic microorganisms should be further assessed.



Comparing the results obtained in experiment II with the work of Li et al. [35], which studied the co-fermentation of FW and waste activated sludge (WAS) under similar conditions to those tested in experiment II (Table 3); the yield of acidification was much lower (estimated in 31%) than the ones obtained in BSR-7 (46%) and in PBSR-7 (41%). Moreover, regarding VFA concentration, Li et al. [35] obtained ~12 g L−1 in COD, while ~20 g L−1 was obtained in both reactors in experiment II. Regarding the fermentation of only FW, with a salinity of 10 and 30 g L−1, and a pH of 6, the yield of acidification attained in the experiments of He et al. [36] was around 100% (estimated).The sum of the VFA produced in that work rounded to 26 g L−1 which is close to the ones obtained in BSR-7 (22.8 g L−1 in COD) and PBRS-7 (20.3 g L−1 in COD); nevertheless, caproate and valerate were not produced, only shorter VFA were (Table 3), while in this work these longer chain acids were produced (Figure 3, Table 3). Sarkar et al. [37] obtained better results than the ones from experiment II, i.e., under a pH of 6 and 10–20 g L−1 of salinity, the acidification yields of FW were around 53–61%; nevertheless, the final VFA concentration (approximately 6 g L−1) was lower than the ones obtained in this study. This may be explained by the fact that the organic load tested by Sarkar et al. [37] (15 g L−1 in COD) was much lower than the one tested in this work (50 g L−1 in COD).



Overall, the yields of acidification obtained with initial pH 5 (experiment I) were lower (approximately half) than those obtained under initial pH 7 (6–6.5 over the experiment, Figure 3c), which is in accordance with previous works, showing that pH 6 presents a better condition to produce high yield VFA, when compared to lower pH [28], even in the presence of higher salinity. Moreover, as described in the literature, at 7 ≥ pH ≥ 5.5 the production of longer chain VFA occurs, especially butyrate, in acidogenic bioreactors treating FW [28,38,39].. In our work, propionate (up to 8 g L−1 in COD) was the main VFA produced. Propionate is an interesting product, as it serves as a food additive, and it is an intermediate in the production of other chemicals, especially polymers, pesticides, and pharmaceuticals [40]. Acetate and butyrate productions were also highly representative at an initial of pH 7 (~28% and ~24%, respectively). Other longer chain acids, such as valeric and caproic acids, were also produced in concentrations up to 3.6 and 1.4 g L−1 (as COD) in BSR-7, and up to 3.7 and 0.9 g L−1 (as COD) in PBSR-7, respectively. The VFA produced can be further recovered and purified by applying downstream processes such as electrodialysis, adsorption, reverse osmosis and nanofiltration, among others. Compiled information about this and other downstream processes for VFA recovery/purification can be found elsewhere [41].



VFA are considered as the preferred precursors for the synthesis of polyhydroxyalkanoates (PHA), also known as bioplastics [42]. Polyhydroxybutyrate (PHB) is the most common PHA; nevertheless, there is an increasing interest in other PHA, such as the co-polymer 3(HB-co-HV) or 3-hydroxyvalerate (3HV), since these are more flexible and stronger with preserved biodegradability than PHB, therefore they may be used in a wider range of applications [43,44]. The production of 3HV results from the conversion of odd-carbons VFA such as valerate and propionate [42], which were the main VFA produced in experiments I and II, respectively (Table 3). Moreover, an advantage of using a fermented feedstocks that has a broad spectrum of VFA, such as acetate, propionate, butyrate, and valerate, is that it allows higher accumulation rates of PHA and also to produce polymers with high diversity of hydroxyalkanoates, containing monomers other than 3HB, such as 3HV or 3-hydroxyhexanoate (3HHx) [44,45]. Therefore, we may suggest that the VFA produced in this study, especially the ones from BSR-7, would be suitable feedstock to produce PHA with longer and diverse chains (3HV, 3HHx, and others).
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Table 3. Performance of acidogenic processes using FW and food processing WW with high salinity content. (n.d.—not determined).






Table 3. Performance of acidogenic processes using FW and food processing WW with high salinity content. (n.d.—not determined).





	
Type of Substrate

	
Type of Reactor

	
pH

	
Salinity

	
COD Fed

	
ηa

	
VFA

	
% VFA

	
Ref.




	
(g L−1)

	
(g L−1)

	
%

	
(g L−1)

	
Acetate

	
Propionate

	
Butyrate

	
Valerate

	
Caproate

	
Lactate






	
FW

	
Batch

(Lab-scale anaerobic reactors, Vw = 4 L)

	
6

	
0

	
200

	
n.d.

	
41.06 ± 0.92

	
47. 6± 1.5

	
8.9 ± 0.4

	
26.4 ± 0.7

	
-

	
-

	
-

	
[29]




	
3

	
n.d.

	
36.18 ± 0.62

	
42.7 ± 1.9

	
10.3 ± 0.3

	
27.1 ± 1.2

	
-

	
-

	
-




	
6

	
n.d.

	
33.37 ± 0.61

	
40.6 ± 0.4

	
44.0 ± 0.1

	
35.3 ± 0.5

	
-

	
-

	
-




	
9

	
n.d.

	
22.65 ± 0.19

	
25.5 ± 0.2

	
8.5 ± 0.1

	
51.2 ± 0.1

	
-

	
-

	
-




	
12

	
n.d.

	
4.14 ± 0.44

	
25.2 ± 0.1

	
2.7 ± 0.1

	
18.9 ± 3.0

	
-

	
-

	
-




	
FW

	
Batch

(Vials, Vw = 0.5 L)

	
6

	
0

	
27

	
n.d.

	
26.61

	
65

	
6

	
29

	
-

	
-

	
-

	
[36]




	
10

	
n.d.

	
30.36

	
53

	
19

	
28

	
-

	
-

	
-




	
30

	
n.d.

	
26.93

	
51

	
27

	
22

	
-

	
-

	
-




	
50

	
n.d.

	
26.19

	
57

	
33

	
10

	
-

	
-

	
-




	

	
70

	
n.d.

	
24.65

	
46

	
51

	
3

	
-

	
-

	
-




	
FW

	
Fed-batch

(Bench scale reactors, Vw = 0.5 L)

	
6

	
0

	
15

	
38.27

	
4.603

	
38.9

	
34.7

	
31.5

	
0

	
-

	
-

	
[37]




	
1

	
44.76

	
5.384

	
49

	
15

	
32

	
4

	
-

	
-




	
5

	
54.65

	
6.25

	
42

	
19

	
34

	
5

	
-

	
-




	
10

	
53.36

	
6.12

	
43

	
18

	
32

	
7

	
-

	
-




	
20

	
60.71

	
6.488

	
33

	
16

	
40

	
11

	
-

	
-




	
30

	
63.35

	
6.52

	
27

	
15

	
44

	
14

	
-

	
-




	
40

	
65.38

	
6.578

	
25

	
11

	
47

	
17

	
-

	
-




	
50

	
59.05

	
5.988

	
26

	
14.9

	
44

	
12.3

	
-

	
-




	
FW and WAS

	
Batch

(Stirred reactors, Vw = 0.8 L)

	
7

	
0

	
40

	
n.d.

	
7.4 ± 1.4 (in COD)

	
-

	
-

	
Dominant

	
Dominant

	
-

	
-

	
[35]




	
10

	
n.d.

	
12.0 ± 1.5 (in COD)

	
-

	
-

	
Dominant

	
Dominant

	
-

	
Dominant




	
20

	
n.d.

	
12.4 ± 1.1 (in COD)

	
-

	
-

	
Dominant

	
Dominant

	
-

	
Dominant




	
30

	
n.d.

	
7.2 to 7.5 (in COD)

	
Dominant

	
-

	
-

	
-

	
-

	
Dominant




	
40

	
n.d.

	
7.2 to 7.5 (in COD)

	
Dominant

	
-

	
-

	
-

	
-

	
Dominant




	
50

	
n.d.

	
7.2 to 7.5 (in COD)

	
Dominant

	
-

	
-

	
-

	
-

	
-




	
FW, Biodiesel WW and Brine

	
Batch (GSBC, Vw = 2L)

	
5

	
12.3 ± 1.5

	
50

	
24

	
11.9 (in COD)

	
7.6

	
5.6

	
7.6

	
12

	
0

	
67.2

	
This study




	
Batch (BSR, Vw = 2.5 L)

	
5

	
12.2 ± 2.2

	
22

	
11.0 (in COD)

	
16.2

	
9.3

	
0

	
17.3

	
0

	
57.2




	
Batch (BSR, Vw = 2.5 L)

	
7

	
18.4 ± 1.5

	
46

	
22.8 (in COD)

	
27.4

	
35.3

	
24.4

	
6.7

	
6.2

	
0




	
Batch (PBSR, Vw = 1.2 L)

	
7

	
17.8 ± 1.5

	
41

	
20.3 (in COD)

	
28.2

	
38.1

	
23.2

	
6.2

	
4.2

	
0










5. Conclusions


In conclusion, an initial pH of 7 allowed for higher acidification yields (41–46%) when compared to a pH of 5 (22–24%). Moreover, the BSR was the reactor more suitable among tested configurations to be used in the acidogenesis of wastes with high solid and salinity content. The fermented broth obtained under those conditions has a greater diversity of VFA with longer chains, and therefore presents a great potential to be used to produce PHA with desirable longer and diverse chains. From an industrial perspective, the implementation of processes with simpler reactors’ configurations, such as the BSR, is advantageous, since it may represent lower investment, operation, and maintenance costs. Nevertheless, this process would be even more appellative for industrial applications if VFA yields could be improved. Alternative strategies, such as the implementation of micro-aeration [46,47,48] or the use of conductive materials [49,50], have been the focus of recent studies, where VFA production has been improved.







Author Contributions


Conceptualization, M.M.A., D.P.M.; Methodology, J.V.O., M.C., C.P., M.S.D.; Investigation, J.V.O., M.C., C.P., M.S.D.; Resources, M.M.A., D.P.M.; Data Curation, J.V.O., M.C., C.P., M.S.D.; Writing—Original Draft Preparation, M.S.D.; Writing—Review & Editing, M.M.A., D.P.M., J.V.O., M.C., C.P., M.S.D.; Supervision, M.M.A., D.P.M.; Project Administration, M.M.A., D.P.M.; Funding Acquisition, M.M.A., D.P.M. All authors have read and agreed to the published version of the manuscript.




Funding


This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit, and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020-Programa Operacional Regional do Norte. Research of M. Carvalho was supported by the SALTIPHA project (PTDC/BTA-BTA/30902/2017), under the funding program 02/SAICT/2017-Projetos de Investigação Científica e Desenvolvimento Tecnológico (IC&DT) with reference NORTE-01-0145-FEDER-030902. J.V. Oliveira acknowledges the financial support of the FCT through the grant attributed (SFRH/BD/111911/2015).




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


Not applicable.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Perimenis, A.; Nicolay, T.; Leclercq, M.; Gerin, P.A. Comparison of the acidogenic and methanogenic potential of agroindustrial residues. Waste Manag. 2018, 72, 178–185. [Google Scholar] [CrossRef] [PubMed]

	



Zhou, M.; Yan, B.; Wong, J.W.C.; Zhang, Y. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresour. Technol. 2018, 248, 68–78. [Google Scholar] [CrossRef]

	



Gujer, W.; Zehnder, A.J.B. Conversion processes in anaerobic digestion. Water Sci. Technol. 1983, 15, 127–167. [Google Scholar] [CrossRef]

	



Fang, H.H.P.; Liu, H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 2002, 82, 87–93. [Google Scholar] [CrossRef]

	



Bermúdez-Penabad, N.; Kennes, C.; Veiga, M.C. Anaerobic digestion of tuna waste for the production of volatile fatty acids. Waste Manag. 2017, 68, 96–102. [Google Scholar] [CrossRef]

	



De Vrieze, J.; Coma, M.; Debeuckelaere, M.; Van der Meeren, P.; Rabaey, K. High salinity in molasses wastewaters shifts anaerobic digestion to carboxylate production. Water Res. 2016, 98, 293–301. [Google Scholar] [CrossRef] [PubMed]

	



Li, X.; Luo, J.; Guo, G.; Mackey, H.R.; Hao, T.; Chen, G. Seawater-based wastewater accelerates development of aerobic granular sludge: A laboratory proof-of-concept. Water Res. 2017, 115, 210–219. [Google Scholar] [CrossRef]

	



Pólvora, S.; Aníbal, J.; Martins, A. INCREaSE 2019; Monteiro, J., João Silva, A., Mortal, A., Aníbal, J., Moreira da Silva, M., Oliveira, M., Sousa, N., Eds.; Springer International Publishing: Faro, Portugal, 2020; ISBN 978-3-030-30937-4. [Google Scholar]

	



Xiao, Y.; Roberts, D.J. A review of anaerobic treatment of saline wastewater. Environ. Technol. 2010, 31, 1025–1043. [Google Scholar] [CrossRef] [PubMed]

	



Chowdhury, P.; Viraraghavan, T.; Srinivasan, A. Biological treatment processes for fish processing wastewater—A review. Bioresour. Technol. 2010, 101, 439–449. [Google Scholar] [CrossRef] [PubMed]

	



Hendriks, A.T.W.M.; van Lier, J.B.; de Kreuk, M.K. Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion. Biotechnol. Adv. 2018, 36, 1–13. [Google Scholar] [CrossRef]

	



Su, G.; Wang, S.; Yuan, Z.; Peng, Y. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms. J. Biosci. Bioeng. 2016, 121, 293–298. [Google Scholar] [CrossRef] [PubMed]

	



van Lier, J.B.; Mahmoud, N.; Zeeman, G. Anaerobic wastewater treatment. In Biological Wastewater Treatment: Principles, Modelling and Design; Henze, M., van Loosdrecht, M., Ekama, G., Brdjanovic, D., Eds.; IWA Publishing: London, UK, 2008; pp. 415–456. [Google Scholar]

	



Van, D.P.; Fujiwara, T.; Tho, B.L.; Toan, P.P.S.; Minh, G.H. A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environ. Eng. Res. 2020, 25, 1–17. [Google Scholar] [CrossRef]

	



Morgan-Sagastume, F.; Pratt, S.; Karlsson, A.; Cirne, D.; Lant, P.; Werker, A. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants. Bioresour. Technol. 2011, 102, 3089–3097. [Google Scholar] [CrossRef]

	



Abreu, A.A.; Alves, J.I.; Pereira, M.A.; Sousa, D.Z.; Alves, M.M. Strategies to suppress hydrogen-consuming microorganisms affect macro and micro scale structure and microbiology of granular sludge. Biotechnol. Bioeng. 2011, 108, 1766–1775. [Google Scholar] [CrossRef]

	



APHA; AWWA; WPCF. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1999; ISBN 0875532357. [Google Scholar]

	



Saritpongteeraka, K.; Boonsawang, P.; Sung, S.; Chaiprapat, S. Co-fermentation of oil palm lignocellulosic residue with pig manure in anaerobic leach bed reactor for fatty acid production. Energy Convers. Manag. 2014, 84, 354–362. [Google Scholar] [CrossRef]

	



Wu, Q.L.; Guo, W.Q.; Zheng, H.S.; Luo, H.C.; Feng, X.C.; Yin, R.L.; Ren, N.Q. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. Bioresour. Technol. 2016, 216, 653–660. [Google Scholar] [CrossRef] [PubMed]

	



Jankowska, E.; Duber, A.; Chwialkowska, J.; Stodolny, M.; Oleskowicz-Popiel, P. Conversion of organic waste into volatile fatty acids—The influence of process operating parameters. Chem. Eng. J. 2018, 345, 395–403. [Google Scholar] [CrossRef]

	



Higgins, M.J.; Novak, J.T. The effect of cations on the settling and dewatering of activated sludges: Laboratory results. Water Environ. Res. 1997, 69, 215–224. [Google Scholar] [CrossRef]

	



Jin, B.; Wang, S.; Xing, L.; Li, B.; Peng, Y. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis. J. Environ. Sci. (China) 2016, 43, 80–90. [Google Scholar] [CrossRef]

	



Fra-Vázquez, A.; Pedrouso, A.; Val del Rio, A.; Mosquera-corral, A.; Val, A.; Mosquera-corral, A. Volatile fatty acid production from saline cooked mussel processing wastewater at low pH. Sci. Total Environ. 2020, 732, 139337. [Google Scholar] [CrossRef] [PubMed]

	



Jankowska, E.; Chwiałkowska, J.; Stodolny, M.; Oleskowicz-Popiel, P. Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation. Bioresour. Technol. 2015, 190, 274–280. [Google Scholar] [CrossRef] [PubMed]

	



Wang, K.; Yin, J.; Shen, D.; Li, N. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresour. Technol. 2014, 161, 395–401. [Google Scholar] [CrossRef]

	



Tang, J.; Wang, X.; Hu, Y.; Zhang, Y.; Li, Y. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR. Waste Manag. 2016, 52, 278–285. [Google Scholar] [CrossRef] [PubMed]

	



Parawira, W.; Murto, M.; Read, J.S.; Mattiasson, B. Profile of hydrolases and biogas production during two-stage mesophilic anaerobic digestion of solid potato waste. Process Biochem. 2005, 40, 2945–2952. [Google Scholar] [CrossRef]

	



Jiang, J.; Zhang, Y.; Li, K.; Wang, Q.; Gong, C.; Li, M. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour. Technol. 2013, 143, 525–530. [Google Scholar] [CrossRef] [PubMed]

	



Liu, N.; Wang, Q.; Jiang, J.; Zhang, H. Effects of salt and oil concentrations on volatile fatty acid generation in food waste fermentation. Renew. Energy 2017, 113, 1523–1528. [Google Scholar] [CrossRef]

	



Zhao, J.; Zhang, C.; Wang, D.; Li, X.; An, H.; Xie, T.; Chen, F.; Xu, Q.; Sun, Y.; Zeng, G.; et al. Revealing the underlying mechanisms of how sodium chloride affects short-chain fatty acid production from the cofermentation of waste activated sludge and food waste. ACS Sustain. Chem. Eng. 2016, 4, 4675–4684. [Google Scholar] [CrossRef]

	



Zhao, J.; Liu, Y.; Wang, D.; Chen, F.; Li, X.; Zeng, G.; Yang, Q. Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manag. 2017, 67, 308–314. [Google Scholar] [CrossRef]

	



Feijoo, G.; Soto, M.; Méndez, R.; Lema, J.M. Sodium inhibition in the anaerobic digestion process: Antagonism and adaptation phenomena. Enzyme Microb. Technol. 1995, 17, 180–188. [Google Scholar] [CrossRef]

	



Oliveira, J.V.; Alves, M.M.; Costa, J.C. Design of experiments to assess pre-treatment and co-digestion strategies that optimize biogas production from macroalgae Gracilaria vermiculophylla. Bioresour. Technol. 2014, 162, 323–330. [Google Scholar] [CrossRef] [PubMed]

	



Lindeboom, R.E.F.; Fermoso, F.G.; Weijma, J.; Zagt, K.; Van Lier, J.B. Autogenerative high pressure digestion: Anaerobic digestion and biogas upgrading in a single step reactor system. Water Sci. Technol. 2011, 64, 647–653. [Google Scholar] [CrossRef] [PubMed]

	



Li, X.; Sadiq, S.; Zhang, W.; Chen, Y.; Xu, X.; Abbas, A.; Chen, S.; Zhang, R.; Xue, G.; Sobotka, D.; et al. Salinity enhances high optically active L-lactate production from co-fermentation of food waste and waste activated sludge: Unveiling the response of microbial community shift and functional profiling. Bioresour. Technol. 2021, 319, 124124. [Google Scholar] [CrossRef] [PubMed]

	



He, X.; Yin, J.; Liu, J.; Chen, T.; Shen, D. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl. Bioresour. Technol. 2019, 271, 244–250. [Google Scholar] [CrossRef] [PubMed]

	



Sarkar, O.; Kiran Katari, J.; Chatterjee, S.; Venkata Mohan, S. Salinity induced acidogenic fermentation of food waste regulates biohydrogen production and volatile fatty acids profile. Fuel 2020, 276, 117794. [Google Scholar] [CrossRef]

	



Yasser Farouk, R.; Li, L.; Wang, Y.; Li, Y.; Melak, S. Influence of pretreatment and pH on the enhancement of hydrogen and volatile fatty acids production from food waste in the semi-continuously running reactor. Int. J. Hydrogen Energy 2020, 45, 3729–3738. [Google Scholar] [CrossRef]

	



Kim, H.; Kim, J.; Shin, S.G.; Hwang, S.; Lee, C. Continuous fermentation of food waste leachate for the production of volatile fatty acids and potential as a denitrification carbon source. Bioresour. Technol. 2016, 207, 440–445. [Google Scholar] [CrossRef] [PubMed]

	



Keshav, A.; Chand, S.; Wasewar, K.L. Recovery of propionic acid from aqueous phase by reactive extraction using quarternary amine (Aliquat 336) in various diluents. Chem. Eng. J. 2009, 152, 95–102. [Google Scholar] [CrossRef]

	



Atasoy, M.; Owusu-Agyeman, I.; Plaza, E.; Cetecioglu, Z. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresour. Technol. 2018, 268, 773–786. [Google Scholar] [CrossRef] [PubMed]

	



Hao, J.; Wang, X.; Wang, H. Overall process of using a valerate-dominant sludge hydrolysate to produce high-quality polyhydroxyalkanoates (PHA) in a mixed culture. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]

	



Reddy, M.V.; Mohan, S.V. Effect of substrate load and nutrients concentration on the polyhydroxyalkanoates (PHA) production using mixed consortia through wastewater treatment. Bioresour. Technol. 2012, 114, 573–582. [Google Scholar] [CrossRef] [PubMed]

	



Albuquerque, M.G.E.; Martino, V.; Pollet, E.; Avérous, L.; Reis, M.A.M. Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties. J. Biotechnol. 2011, 151, 66–76. [Google Scholar] [CrossRef]

	



Bengtsson, S.; Karlsson, A.; Alexandersson, T.; Quadri, L.; Hjort, M.; Johansson, P.; Morgan-Sagastume, F.; Anterrieu, S.; Arcos-Hernandez, M.; Karabegovic, L.; et al. A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnol. 2017, 35, 42–53. [Google Scholar] [CrossRef]

	



Sawatdeenarunat, C.; Sung, S.; Khanal, S.K. Enhanced volatile fatty acids production during anaerobic digestion of lignocellulosic biomass via micro-oxygenation. Bioresour. Technol. 2017, 237, 139–145. [Google Scholar] [CrossRef] [PubMed]

	



Yin, J.; Yu, X.; Zhang, Y.; Shen, D.; Wang, M.; Long, Y.; Chen, T. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum. Bioresour. Technol. 2016, 216, 996–1003. [Google Scholar] [CrossRef] [PubMed]

	



Xu, S.; Selvam, A.; Wong, J.W.C. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste. Waste Manag. 2014, 34, 363–369. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, Y.; Yang, Z.; Xu, R.; Xiang, Y.; Jia, M.; Hu, J.; Zheng, Y.; Xiong, W.P.; Cao, J. Enhanced mesophilic anaerobic digestion of waste sludge with the iron nanoparticles addition and kinetic analysis. Sci. Total Environ. 2019, 683, 124–133. [Google Scholar] [CrossRef] [PubMed]

	



Feng, Y.; Zhang, Y.; Quan, X.; Chen, S. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Res. 2014, 52, 242–250. [Google Scholar] [CrossRef]








[image: Fermentation 07 00303 g001 550] 





Figure 1. Schematic diagram of the experimental setup and conditions applied in experiments I and II. 
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Figure 2. VFA and lactic acid profiles in reactors GSBC-5 (a) and BSR-5 (b), over time. (c) Time course of pH in reactors GSBC-5 and BSR-5. 






Figure 2. VFA and lactic acid profiles in reactors GSBC-5 (a) and BSR-5 (b), over time. (c) Time course of pH in reactors GSBC-5 and BSR-5.
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Figure 3. VFA and lactic acid profiles in reactors PBSR-7 (a) and BSR-7 (b), over time. (c) Time course of pH in reactors PBSR-7and BSR-7. 
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Table 1. Characterization of the substrates in g of parameter per kg of substrate.
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	FW
	Biodiesel WW





	tCOD (g kg−1)
	169.7 ± 19.8
	61.4 ± 1.9



	TS (g kg−1)
	163.2 ± 5.3
	39.3 ± 0.2



	VS (g kg−1)
	146.1 ± 6.7
	15.2 ± 0.1
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Table 2. Total VFA (plus lactic acid) concentration in COD (VFA), soluble COD (sCOD), ratio VFA/sCOD, and acidification yield (ηa) in the reactors, over the experiments I and II.
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GSBC -5

	
BSR-5

	
PBSR-7

	
BSR-7




	
Time

	
VFA

	
sCOD

	
VFA/sCOD

	
ηa

	
VFA

	
sCOD

	
VFA/sCOD

	
ηa

	
VFA

	
sCOD

	
VFA/sCOD

	
ηa

	
VFA

	
sCOD

	
VFA/sCOD

	
ηa




	
(d)

	
(g/L in COD)

	
(g/L)

	
%

	
%

	
(g/L in COD)

	
g/L

	
%

	
%

	
(g/L in COD)

	
(g/L)

	
%

	
%

	
(g/L in COD)

	
(g/L)

	
%

	
%






	
0

	
0.9

	
38.4

	
3

	
2

	
1.1

	
35.9

	
3

	
2

	
6.1

	
28.6

	
21

	
12

	
6.1

	
28.6

	
21

	
12




	
1

	
9.1

	
40.4

	
23

	
18

	
8.2

	
37.8

	
22

	
16

	
11.9

	
30.7

	
39

	
24

	
13.5

	
33.8

	
40

	
27




	
2

	
9.9

	
41.2

	
24

	
20

	
14.1

	
38.5

	
37

	
28

	
10.8

	
32.2

	
34

	
22

	
16.1

	
33.3

	
48

	
32




	
5

	
11.9

	
39.4

	
30

	
24

	
11.0

	
36.0

	
30

	
22

	
15.0

	
36.1

	
42

	
30

	
19.6

	
36.1

	
54

	
39




	
7

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
17.6

	
36.3

	
48

	
35

	
17.7

	
36.9

	
48

	
35




	
9

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
18.9

	
35.9

	
53

	
38

	
20.4

	
36.5

	
56

	
41




	
12

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
19.1

	
36.5

	
52

	
38

	
22.0

	
36.4

	
60

	
44




	
14

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
20.3

	
37.2

	
55

	
41

	
22.8

	
34.7

	
66

	
46
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